ForecastService

Table of Contents

Client

class ForecastService.Client

A low-level client representing Amazon Forecast Service:

import boto3

client = boto3.client('forecast')

These are the available methods:

can_paginate(operation_name)

Check if an operation can be paginated.

Parameters
operation_name (string) -- The operation name. This is the same name as the method name on the client. For example, if the method name is create_foo, and you'd normally invoke the operation as client.create_foo(**kwargs), if the create_foo operation can be paginated, you can use the call client.get_paginator("create_foo").
Returns
True if the operation can be paginated, False otherwise.
create_dataset(**kwargs)

Creates an Amazon Forecast dataset. The information about the dataset that you provide helps Forecast understand how to consume the data for model training. This includes the following:

  • *DataFrequency * - How frequently your historical time-series data is collected.
  • *Domain * and * DatasetType * - Each dataset has an associated dataset domain and a type within the domain. Amazon Forecast provides a list of predefined domains and types within each domain. For each unique dataset domain and type within the domain, Amazon Forecast requires your data to include a minimum set of predefined fields.
  • *Schema * - A schema specifies the fields in the dataset, including the field name and data type.

After creating a dataset, you import your training data into it and add the dataset to a dataset group. You use the dataset group to create a predictor. For more information, see howitworks-datasets-groups .

To get a list of all your datasets, use the ListDatasets operation.

For example Forecast datasets, see the Amazon Forecast Sample GitHub repository .

Note

The Status of a dataset must be ACTIVE before you can import training data. Use the DescribeDataset operation to get the status.

See also: AWS API Documentation

Request Syntax

response = client.create_dataset(
    DatasetName='string',
    Domain='RETAIL'|'CUSTOM'|'INVENTORY_PLANNING'|'EC2_CAPACITY'|'WORK_FORCE'|'WEB_TRAFFIC'|'METRICS',
    DatasetType='TARGET_TIME_SERIES'|'RELATED_TIME_SERIES'|'ITEM_METADATA',
    DataFrequency='string',
    Schema={
        'Attributes': [
            {
                'AttributeName': 'string',
                'AttributeType': 'string'|'integer'|'float'|'timestamp'
            },
        ]
    },
    EncryptionConfig={
        'RoleArn': 'string',
        'KMSKeyArn': 'string'
    }
)
Parameters
  • DatasetName (string) --

    [REQUIRED]

    A name for the dataset.

  • Domain (string) --

    [REQUIRED]

    The domain associated with the dataset. When you add a dataset to a dataset group, this value and the value specified for the Domain parameter of the CreateDatasetGroup operation must match.

    The Domain and DatasetType that you choose determine the fields that must be present in the training data that you import to the dataset. For example, if you choose the RETAIL domain and TARGET_TIME_SERIES as the DatasetType , Amazon Forecast requires item_id , timestamp , and demand fields to be present in your data. For more information, see howitworks-datasets-groups .

  • DatasetType (string) --

    [REQUIRED]

    The dataset type. Valid values depend on the chosen Domain .

  • DataFrequency (string) --

    The frequency of data collection. This parameter is required for RELATED_TIME_SERIES datasets.

    Valid intervals are Y (Year), M (Month), W (Week), D (Day), H (Hour), 30min (30 minutes), 15min (15 minutes), 10min (10 minutes), 5min (5 minutes), and 1min (1 minute). For example, "D" indicates every day and "15min" indicates every 15 minutes.

  • Schema (dict) --

    [REQUIRED]

    The schema for the dataset. The schema attributes and their order must match the fields in your data. The dataset Domain and DatasetType that you choose determine the minimum required fields in your training data. For information about the required fields for a specific dataset domain and type, see howitworks-domains-ds-types .

    • Attributes (list) --

      An array of attributes specifying the name and type of each field in a dataset.

      • (dict) --

        An attribute of a schema, which defines a dataset field. A schema attribute is required for every field in a dataset. The Schema object contains an array of SchemaAttribute objects.

        • AttributeName (string) --

          The name of the dataset field.

        • AttributeType (string) --

          The data type of the field.

  • EncryptionConfig (dict) --

    An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key.

    • RoleArn (string) -- [REQUIRED]

      The ARN of the IAM role that Amazon Forecast can assume to access the AWS KMS key.

      Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an InvalidInputException error.

    • KMSKeyArn (string) -- [REQUIRED]

      The Amazon Resource Name (ARN) of the KMS key.

Return type

dict

Returns

Response Syntax

{
    'DatasetArn': 'string'
}

Response Structure

  • (dict) --

    • DatasetArn (string) --

      The Amazon Resource Name (ARN) of the dataset.

create_dataset_group(**kwargs)

Creates a dataset group, which holds a collection of related datasets. You can add datasets to the dataset group when you create the dataset group, or later by using the UpdateDatasetGroup operation.

After creating a dataset group and adding datasets, you use the dataset group when you create a predictor. For more information, see howitworks-datasets-groups .

To get a list of all your datasets groups, use the ListDatasetGroups operation.

Note

The Status of a dataset group must be ACTIVE before you can create use the dataset group to create a predictor. To get the status, use the DescribeDatasetGroup operation.

See also: AWS API Documentation

Request Syntax

response = client.create_dataset_group(
    DatasetGroupName='string',
    Domain='RETAIL'|'CUSTOM'|'INVENTORY_PLANNING'|'EC2_CAPACITY'|'WORK_FORCE'|'WEB_TRAFFIC'|'METRICS',
    DatasetArns=[
        'string',
    ]
)
Parameters
  • DatasetGroupName (string) --

    [REQUIRED]

    A name for the dataset group.

  • Domain (string) --

    [REQUIRED]

    The domain associated with the dataset group. When you add a dataset to a dataset group, this value and the value specified for the Domain parameter of the CreateDataset operation must match.

    The Domain and DatasetType that you choose determine the fields that must be present in training data that you import to a dataset. For example, if you choose the RETAIL domain and TARGET_TIME_SERIES as the DatasetType , Amazon Forecast requires that item_id , timestamp , and demand fields are present in your data. For more information, see howitworks-datasets-groups .

  • DatasetArns (list) --

    An array of Amazon Resource Names (ARNs) of the datasets that you want to include in the dataset group.

    • (string) --
Return type

dict

Returns

Response Syntax

{
    'DatasetGroupArn': 'string'
}

Response Structure

  • (dict) --

    • DatasetGroupArn (string) --

      The Amazon Resource Name (ARN) of the dataset group.

create_dataset_import_job(**kwargs)

Imports your training data to an Amazon Forecast dataset. You provide the location of your training data in an Amazon Simple Storage Service (Amazon S3) bucket and the Amazon Resource Name (ARN) of the dataset that you want to import the data to.

You must specify a DataSource object that includes an AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the data. For more information, see aws-forecast-iam-roles .

The training data must be in CSV format. The delimiter must be a comma (,).

You can specify the path to a specific CSV file, the S3 bucket, or to a folder in the S3 bucket. For the latter two cases, Amazon Forecast imports all files up to the limit of 10,000 files.

To get a list of all your dataset import jobs, filtered by specified criteria, use the ListDatasetImportJobs operation.

See also: AWS API Documentation

Request Syntax

response = client.create_dataset_import_job(
    DatasetImportJobName='string',
    DatasetArn='string',
    DataSource={
        'S3Config': {
            'Path': 'string',
            'RoleArn': 'string',
            'KMSKeyArn': 'string'
        }
    },
    TimestampFormat='string'
)
Parameters
  • DatasetImportJobName (string) --

    [REQUIRED]

    The name for the dataset import job. We recommend including the current timestamp in the name, for example, 20190721DatasetImport . This can help you avoid getting a ResourceAlreadyExistsException exception.

  • DatasetArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of the Amazon Forecast dataset that you want to import data to.

  • DataSource (dict) --

    [REQUIRED]

    The location of the training data to import and an AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the data. The training data must be stored in an Amazon S3 bucket.

    If encryption is used, DataSource must include an AWS Key Management Service (KMS) key and the IAM role must allow Amazon Forecast permission to access the key. The KMS key and IAM role must match those specified in the EncryptionConfig parameter of the CreateDataset operation.

    • S3Config (dict) -- [REQUIRED]

      The path to the training data stored in an Amazon Simple Storage Service (Amazon S3) bucket along with the credentials to access the data.

      • Path (string) -- [REQUIRED]

        The path to an Amazon Simple Storage Service (Amazon S3) bucket or file(s) in an Amazon S3 bucket.

      • RoleArn (string) -- [REQUIRED]

        The ARN of the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the Amazon S3 bucket or files. If you provide a value for the KMSKeyArn key, the role must allow access to the key.

        Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an InvalidInputException error.

      • KMSKeyArn (string) --

        The Amazon Resource Name (ARN) of an AWS Key Management Service (KMS) key.

  • TimestampFormat (string) --

    The format of timestamps in the dataset. The format that you specify depends on the DataFrequency specified when the dataset was created. The following formats are supported

    • "yyyy-MM-dd" For the following data frequencies: Y, M, W, and D
    • "yyyy-MM-dd HH:mm:ss" For the following data frequencies: H, 30min, 15min, and 1min; and optionally, for: Y, M, W, and D

    If the format isn't specified, Amazon Forecast expects the format to be "yyyy-MM-dd HH:mm:ss".

Return type

dict

Returns

Response Syntax

{
    'DatasetImportJobArn': 'string'
}

Response Structure

  • (dict) --

    • DatasetImportJobArn (string) --

      The Amazon Resource Name (ARN) of the dataset import job.

create_forecast(**kwargs)

Creates a forecast for each item in the TARGET_TIME_SERIES dataset that was used to train the predictor. This is known as inference. To retrieve the forecast for a single item at low latency, use the operation. To export the complete forecast into your Amazon Simple Storage Service (Amazon S3) bucket, use the CreateForecastExportJob operation.

The range of the forecast is determined by the ForecastHorizon value, which you specify in the CreatePredictor request, multiplied by the DataFrequency value, which you specify in the CreateDataset request. When you query a forecast, you can request a specific date range within the forecast.

To get a list of all your forecasts, use the ListForecasts operation.

Note

The forecasts generated by Amazon Forecast are in the same time zone as the dataset that was used to create the predictor.

For more information, see howitworks-forecast .

Note

The Status of the forecast must be ACTIVE before you can query or export the forecast. Use the DescribeForecast operation to get the status.

See also: AWS API Documentation

Request Syntax

response = client.create_forecast(
    ForecastName='string',
    PredictorArn='string',
    ForecastTypes=[
        'string',
    ]
)
Parameters
  • ForecastName (string) --

    [REQUIRED]

    A name for the forecast.

  • PredictorArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of the predictor to use to generate the forecast.

  • ForecastTypes (list) --

    The quantiles at which probabilistic forecasts are generated. You can specify up to 5 quantiles per forecast. Accepted values include 0.01 to 0.99 (increments of .01 only) and mean . The mean forecast is different from the median (0.50) when the distribution is not symmetric (e.g. Beta, Negative Binomial). The default value is ["0.1", "0.5", "0.9"] .

    • (string) --
Return type

dict

Returns

Response Syntax

{
    'ForecastArn': 'string'
}

Response Structure

  • (dict) --

    • ForecastArn (string) --

      The Amazon Resource Name (ARN) of the forecast.

create_forecast_export_job(**kwargs)

Exports a forecast created by the CreateForecast operation to your Amazon Simple Storage Service (Amazon S3) bucket. The forecast file name will match the following conventions:

<ForecastExportJobName>_<ExportTimestamp>_<PageNumber>

where the <ExportTimestamp> component is in Java SimpleDateFormat (yyyy-MM-ddTHH-mm-ssZ).

You must specify a DataDestination object that includes an AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the Amazon S3 bucket. For more information, see aws-forecast-iam-roles .

For more information, see howitworks-forecast .

To get a list of all your forecast export jobs, use the ListForecastExportJobs operation.

Note

The Status of the forecast export job must be ACTIVE before you can access the forecast in your Amazon S3 bucket. To get the status, use the DescribeForecastExportJob operation.

See also: AWS API Documentation

Request Syntax

response = client.create_forecast_export_job(
    ForecastExportJobName='string',
    ForecastArn='string',
    Destination={
        'S3Config': {
            'Path': 'string',
            'RoleArn': 'string',
            'KMSKeyArn': 'string'
        }
    }
)
Parameters
  • ForecastExportJobName (string) --

    [REQUIRED]

    The name for the forecast export job.

  • ForecastArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of the forecast that you want to export.

  • Destination (dict) --

    [REQUIRED]

    The location where you want to save the forecast and an AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the location. The forecast must be exported to an Amazon S3 bucket.

    If encryption is used, Destination must include an AWS Key Management Service (KMS) key. The IAM role must allow Amazon Forecast permission to access the key.

    • S3Config (dict) -- [REQUIRED]

      The path to an Amazon Simple Storage Service (Amazon S3) bucket along with the credentials to access the bucket.

      • Path (string) -- [REQUIRED]

        The path to an Amazon Simple Storage Service (Amazon S3) bucket or file(s) in an Amazon S3 bucket.

      • RoleArn (string) -- [REQUIRED]

        The ARN of the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the Amazon S3 bucket or files. If you provide a value for the KMSKeyArn key, the role must allow access to the key.

        Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an InvalidInputException error.

      • KMSKeyArn (string) --

        The Amazon Resource Name (ARN) of an AWS Key Management Service (KMS) key.

Return type

dict

Returns

Response Syntax

{
    'ForecastExportJobArn': 'string'
}

Response Structure

  • (dict) --

    • ForecastExportJobArn (string) --

      The Amazon Resource Name (ARN) of the export job.

create_predictor(**kwargs)

Creates an Amazon Forecast predictor.

In the request, you provide a dataset group and either specify an algorithm or let Amazon Forecast choose the algorithm for you using AutoML. If you specify an algorithm, you also can override algorithm-specific hyperparameters.

Amazon Forecast uses the chosen algorithm to train a model using the latest version of the datasets in the specified dataset group. The result is called a predictor. You then generate a forecast using the CreateForecast operation.

After training a model, the CreatePredictor operation also evaluates it. To see the evaluation metrics, use the GetAccuracyMetrics operation. Always review the evaluation metrics before deciding to use the predictor to generate a forecast.

Optionally, you can specify a featurization configuration to fill and aggregate the data fields in the TARGET_TIME_SERIES dataset to improve model training. For more information, see FeaturizationConfig .

For RELATED_TIME_SERIES datasets, CreatePredictor verifies that the DataFrequency specified when the dataset was created matches the ForecastFrequency . TARGET_TIME_SERIES datasets don't have this restriction. Amazon Forecast also verifies the delimiter and timestamp format. For more information, see howitworks-datasets-groups .

AutoML

If you want Amazon Forecast to evaluate each algorithm and choose the one that minimizes the objective function , set PerformAutoML to true . The objective function is defined as the mean of the weighted p10, p50, and p90 quantile losses. For more information, see EvaluationResult .

When AutoML is enabled, the following properties are disallowed:

  • AlgorithmArn
  • HPOConfig
  • PerformHPO
  • TrainingParameters

To get a list of all of your predictors, use the ListPredictors operation.

Note

Before you can use the predictor to create a forecast, the Status of the predictor must be ACTIVE , signifying that training has completed. To get the status, use the DescribePredictor operation.

See also: AWS API Documentation

Request Syntax

response = client.create_predictor(
    PredictorName='string',
    AlgorithmArn='string',
    ForecastHorizon=123,
    PerformAutoML=True|False,
    PerformHPO=True|False,
    TrainingParameters={
        'string': 'string'
    },
    EvaluationParameters={
        'NumberOfBacktestWindows': 123,
        'BackTestWindowOffset': 123
    },
    HPOConfig={
        'ParameterRanges': {
            'CategoricalParameterRanges': [
                {
                    'Name': 'string',
                    'Values': [
                        'string',
                    ]
                },
            ],
            'ContinuousParameterRanges': [
                {
                    'Name': 'string',
                    'MaxValue': 123.0,
                    'MinValue': 123.0,
                    'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                },
            ],
            'IntegerParameterRanges': [
                {
                    'Name': 'string',
                    'MaxValue': 123,
                    'MinValue': 123,
                    'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                },
            ]
        }
    },
    InputDataConfig={
        'DatasetGroupArn': 'string',
        'SupplementaryFeatures': [
            {
                'Name': 'string',
                'Value': 'string'
            },
        ]
    },
    FeaturizationConfig={
        'ForecastFrequency': 'string',
        'ForecastDimensions': [
            'string',
        ],
        'Featurizations': [
            {
                'AttributeName': 'string',
                'FeaturizationPipeline': [
                    {
                        'FeaturizationMethodName': 'filling',
                        'FeaturizationMethodParameters': {
                            'string': 'string'
                        }
                    },
                ]
            },
        ]
    },
    EncryptionConfig={
        'RoleArn': 'string',
        'KMSKeyArn': 'string'
    }
)
Parameters
  • PredictorName (string) --

    [REQUIRED]

    A name for the predictor.

  • AlgorithmArn (string) --

    The Amazon Resource Name (ARN) of the algorithm to use for model training. Required if PerformAutoML is not set to true .

    Supported algorithms:
    • arn:aws:forecast:::algorithm/ARIMA
    • arn:aws:forecast:::algorithm/Deep_AR_Plus Supports hyperparameter optimization (HPO)
    • arn:aws:forecast:::algorithm/ETS
    • arn:aws:forecast:::algorithm/NPTS
    • arn:aws:forecast:::algorithm/Prophet
  • ForecastHorizon (integer) --

    [REQUIRED]

    Specifies the number of time-steps that the model is trained to predict. The forecast horizon is also called the prediction length.

    For example, if you configure a dataset for daily data collection (using the DataFrequency parameter of the CreateDataset operation) and set the forecast horizon to 10, the model returns predictions for 10 days.

    The maximum forecast horizon is the lesser of 500 time-steps or 1/3 of the TARGET_TIME_SERIES dataset length.

  • PerformAutoML (boolean) --

    Whether to perform AutoML. When Amazon Forecast performs AutoML, it evaluates the algorithms it provides and chooses the best algorithm and configuration for your training dataset.

    The default value is false . In this case, you are required to specify an algorithm.

    Set PerformAutoML to true to have Amazon Forecast perform AutoML. This is a good option if you aren't sure which algorithm is suitable for your training data. In this case, PerformHPO must be false.

  • PerformHPO (boolean) --

    Whether to perform hyperparameter optimization (HPO). HPO finds optimal hyperparameter values for your training data. The process of performing HPO is known as running a hyperparameter tuning job.

    The default value is false . In this case, Amazon Forecast uses default hyperparameter values from the chosen algorithm.

    To override the default values, set PerformHPO to true and, optionally, supply the HyperParameterTuningJobConfig object. The tuning job specifies a metric to optimize, which hyperparameters participate in tuning, and the valid range for each tunable hyperparameter. In this case, you are required to specify an algorithm and PerformAutoML must be false.

    The following algorithm supports HPO:

    • DeepAR+
  • TrainingParameters (dict) --

    The hyperparameters to override for model training. The hyperparameters that you can override are listed in the individual algorithms. For the list of supported algorithms, see aws-forecast-choosing-recipes .

    • (string) --
      • (string) --
  • EvaluationParameters (dict) --

    Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to perform the split and the number of iterations.

    • NumberOfBacktestWindows (integer) --

      The number of times to split the input data. The default is 1. Valid values are 1 through 5.

    • BackTestWindowOffset (integer) --

      The point from the end of the dataset where you want to split the data for model training and testing (evaluation). Specify the value as the number of data points. The default is the value of the forecast horizon. BackTestWindowOffset can be used to mimic a past virtual forecast start date. This value must be greater than or equal to the forecast horizon and less than half of the TARGET_TIME_SERIES dataset length.

      ForecastHorizon <= BackTestWindowOffset < 1/2 * TARGET_TIME_SERIES dataset length
  • HPOConfig (dict) --

    Provides hyperparameter override values for the algorithm. If you don't provide this parameter, Amazon Forecast uses default values. The individual algorithms specify which hyperparameters support hyperparameter optimization (HPO). For more information, see aws-forecast-choosing-recipes .

    If you included the HPOConfig object, you must set PerformHPO to true.

    • ParameterRanges (dict) --

      Specifies the ranges of valid values for the hyperparameters.

      • CategoricalParameterRanges (list) --

        Specifies the tunable range for each categorical hyperparameter.

        • (dict) --

          Specifies a categorical hyperparameter and it's range of tunable values. This object is part of the ParameterRanges object.

          • Name (string) -- [REQUIRED]

            The name of the categorical hyperparameter to tune.

          • Values (list) -- [REQUIRED]

            A list of the tunable categories for the hyperparameter.

            • (string) --
      • ContinuousParameterRanges (list) --

        Specifies the tunable range for each continuous hyperparameter.

        • (dict) --

          Specifies a continuous hyperparameter and it's range of tunable values. This object is part of the ParameterRanges object.

          • Name (string) -- [REQUIRED]

            The name of the hyperparameter to tune.

          • MaxValue (float) -- [REQUIRED]

            The maximum tunable value of the hyperparameter.

          • MinValue (float) -- [REQUIRED]

            The minimum tunable value of the hyperparameter.

          • ScalingType (string) --

            The scale that hyperparameter tuning uses to search the hyperparameter range. Valid values:

            Auto

            Amazon Forecast hyperparameter tuning chooses the best scale for the hyperparameter.

            Linear

            Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

            Logarithmic

            Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

            Logarithmic scaling works only for ranges that have values greater than 0.

            ReverseLogarithmic

            hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale.

            Reverse logarithmic scaling works only for ranges that are entirely within the range 0 <= x < 1.0.

            For information about choosing a hyperparameter scale, see Hyperparameter Scaling . One of the following values:

      • IntegerParameterRanges (list) --

        Specifies the tunable range for each integer hyperparameter.

        • (dict) --

          Specifies an integer hyperparameter and it's range of tunable values. This object is part of the ParameterRanges object.

          • Name (string) -- [REQUIRED]

            The name of the hyperparameter to tune.

          • MaxValue (integer) -- [REQUIRED]

            The maximum tunable value of the hyperparameter.

          • MinValue (integer) -- [REQUIRED]

            The minimum tunable value of the hyperparameter.

          • ScalingType (string) --

            The scale that hyperparameter tuning uses to search the hyperparameter range. Valid values:

            Auto

            Amazon Forecast hyperparameter tuning chooses the best scale for the hyperparameter.

            Linear

            Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

            Logarithmic

            Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

            Logarithmic scaling works only for ranges that have values greater than 0.

            ReverseLogarithmic

            Not supported for IntegerParameterRange .

            Reverse logarithmic scaling works only for ranges that are entirely within the range 0 <= x < 1.0.

            For information about choosing a hyperparameter scale, see Hyperparameter Scaling . One of the following values:

  • InputDataConfig (dict) --

    [REQUIRED]

    Describes the dataset group that contains the data to use to train the predictor.

    • DatasetGroupArn (string) -- [REQUIRED]

      The Amazon Resource Name (ARN) of the dataset group.

    • SupplementaryFeatures (list) --

      An array of supplementary features. The only supported feature is a holiday calendar.

      • (dict) --

        Describes a supplementary feature of a dataset group. This object is part of the InputDataConfig object.

        The only supported feature is a holiday calendar. If you use the calendar, all data in the datasets should belong to the same country as the calendar. For the holiday calendar data, see the Jollyday web site.

        • Name (string) -- [REQUIRED]

          The name of the feature. This must be "holiday".

        • Value (string) -- [REQUIRED]

          One of the following 2 letter country codes:

          • "AU" - AUSTRALIA
          • "DE" - GERMANY
          • "JP" - JAPAN
          • "US" - UNITED_STATES
          • "UK" - UNITED_KINGDOM
  • FeaturizationConfig (dict) --

    [REQUIRED]

    The featurization configuration.

    • ForecastFrequency (string) -- [REQUIRED]

      The frequency of predictions in a forecast.

      Valid intervals are Y (Year), M (Month), W (Week), D (Day), H (Hour), 30min (30 minutes), 15min (15 minutes), 10min (10 minutes), 5min (5 minutes), and 1min (1 minute). For example, "Y" indicates every year and "5min" indicates every five minutes.

      The frequency must be greater than or equal to the TARGET_TIME_SERIES dataset frequency.

      When a RELATED_TIME_SERIES dataset is provided, the frequency must be equal to the RELATED_TIME_SERIES dataset frequency.

    • ForecastDimensions (list) --

      An array of dimension (field) names that specify how to group the generated forecast.

      For example, suppose that you are generating a forecast for item sales across all of your stores, and your dataset contains a store_id field. If you want the sales forecast for each item by store, you would specify store_id as the dimension.

      All forecast dimensions specified in the TARGET_TIME_SERIES dataset don't need to be specified in the CreatePredictor request. All forecast dimensions specified in the RELATED_TIME_SERIES dataset must be specified in the CreatePredictor request.

      • (string) --
    • Featurizations (list) --

      An array of featurization (transformation) information for the fields of a dataset. Only a single featurization is supported.

      • (dict) --

        Provides featurization (transformation) information for a dataset field. This object is part of the FeaturizationConfig object.

        For example:

        {

        "AttributeName": "demand",

        FeaturizationPipeline [ {

        "FeaturizationMethodName": "filling",

        "FeaturizationMethodParameters": {"aggregation": "avg", "backfill": "nan"}

        } ]

        }

        • AttributeName (string) -- [REQUIRED]

          The name of the schema attribute that specifies the data field to be featurized. Only the target field of the TARGET_TIME_SERIES dataset type is supported. For example, for the RETAIL domain, the target is demand , and for the CUSTOM domain, the target is target_value .

        • FeaturizationPipeline (list) --

          An array of one FeaturizationMethod object that specifies the feature transformation method.

          • (dict) --

            Provides information about the method that featurizes (transforms) a dataset field. The method is part of the FeaturizationPipeline of the Featurization object. If you don't specify FeaturizationMethodParameters , Amazon Forecast uses default parameters.

            The following is an example of how you specify a FeaturizationMethod object.

            {

            "FeaturizationMethodName": "filling",

            "FeaturizationMethodParameters": {"aggregation": "avg", "backfill": "nan"}

            }

            • FeaturizationMethodName (string) -- [REQUIRED]

              The name of the method. The "filling" method is the only supported method.

            • FeaturizationMethodParameters (dict) --

              The method parameters (key-value pairs). Specify these parameters to override the default values. The following list shows the parameters and their valid values. Bold signifies the default value.

              • aggregation : sum , avg , first , min , max
              • frontfill : none
              • middlefill : zero , nan (not a number)
              • backfill : zero , nan
              • (string) --
                • (string) --
  • EncryptionConfig (dict) --

    An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key.

    • RoleArn (string) -- [REQUIRED]

      The ARN of the IAM role that Amazon Forecast can assume to access the AWS KMS key.

      Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an InvalidInputException error.

    • KMSKeyArn (string) -- [REQUIRED]

      The Amazon Resource Name (ARN) of the KMS key.

Return type

dict

Returns

Response Syntax

{
    'PredictorArn': 'string'
}

Response Structure

  • (dict) --

    • PredictorArn (string) --

      The Amazon Resource Name (ARN) of the predictor.

delete_dataset(**kwargs)

Deletes an Amazon Forecast dataset that was created using the CreateDataset operation. You can only delete datasets that have a status of ACTIVE or CREATE_FAILED . To get the status use the DescribeDataset operation.

See also: AWS API Documentation

Request Syntax

response = client.delete_dataset(
    DatasetArn='string'
)
Parameters
DatasetArn (string) --

[REQUIRED]

The Amazon Resource Name (ARN) of the dataset to delete.

Returns
None
delete_dataset_group(**kwargs)

Deletes a dataset group created using the CreateDatasetGroup operation. You can only delete dataset groups that have a status of ACTIVE , CREATE_FAILED , or UPDATE_FAILED . To get the status, use the DescribeDatasetGroup operation.

This operation deletes only the dataset group, not the datasets in the group.

See also: AWS API Documentation

Request Syntax

response = client.delete_dataset_group(
    DatasetGroupArn='string'
)
Parameters
DatasetGroupArn (string) --

[REQUIRED]

The Amazon Resource Name (ARN) of the dataset group to delete.

Returns
None
delete_dataset_import_job(**kwargs)

Deletes a dataset import job created using the CreateDatasetImportJob operation. You can delete only dataset import jobs that have a status of ACTIVE or CREATE_FAILED . To get the status, use the DescribeDatasetImportJob operation.

See also: AWS API Documentation

Request Syntax

response = client.delete_dataset_import_job(
    DatasetImportJobArn='string'
)
Parameters
DatasetImportJobArn (string) --

[REQUIRED]

The Amazon Resource Name (ARN) of the dataset import job to delete.

Returns
None
delete_forecast(**kwargs)

Deletes a forecast created using the CreateForecast operation. You can delete only forecasts that have a status of ACTIVE or CREATE_FAILED . To get the status, use the DescribeForecast operation.

You can't delete a forecast while it is being exported. After a forecast is deleted, you can no longer query the forecast.

See also: AWS API Documentation

Request Syntax

response = client.delete_forecast(
    ForecastArn='string'
)
Parameters
ForecastArn (string) --

[REQUIRED]

The Amazon Resource Name (ARN) of the forecast to delete.

Returns
None
delete_forecast_export_job(**kwargs)

Deletes a forecast export job created using the CreateForecastExportJob operation. You can delete only export jobs that have a status of ACTIVE or CREATE_FAILED . To get the status, use the DescribeForecastExportJob operation.

See also: AWS API Documentation

Request Syntax

response = client.delete_forecast_export_job(
    ForecastExportJobArn='string'
)
Parameters
ForecastExportJobArn (string) --

[REQUIRED]

The Amazon Resource Name (ARN) of the forecast export job to delete.

Returns
None
delete_predictor(**kwargs)

Deletes a predictor created using the CreatePredictor operation. You can delete only predictor that have a status of ACTIVE or CREATE_FAILED . To get the status, use the DescribePredictor operation.

See also: AWS API Documentation

Request Syntax

response = client.delete_predictor(
    PredictorArn='string'
)
Parameters
PredictorArn (string) --

[REQUIRED]

The Amazon Resource Name (ARN) of the predictor to delete.

Returns
None
describe_dataset(**kwargs)

Describes an Amazon Forecast dataset created using the CreateDataset operation.

In addition to listing the parameters specified in the CreateDataset request, this operation includes the following dataset properties:

  • CreationTime
  • LastModificationTime
  • Status

See also: AWS API Documentation

Request Syntax

response = client.describe_dataset(
    DatasetArn='string'
)
Parameters
DatasetArn (string) --

[REQUIRED]

The Amazon Resource Name (ARN) of the dataset.

Return type
dict
Returns
Response Syntax
{
    'DatasetArn': 'string',
    'DatasetName': 'string',
    'Domain': 'RETAIL'|'CUSTOM'|'INVENTORY_PLANNING'|'EC2_CAPACITY'|'WORK_FORCE'|'WEB_TRAFFIC'|'METRICS',
    'DatasetType': 'TARGET_TIME_SERIES'|'RELATED_TIME_SERIES'|'ITEM_METADATA',
    'DataFrequency': 'string',
    'Schema': {
        'Attributes': [
            {
                'AttributeName': 'string',
                'AttributeType': 'string'|'integer'|'float'|'timestamp'
            },
        ]
    },
    'EncryptionConfig': {
        'RoleArn': 'string',
        'KMSKeyArn': 'string'
    },
    'Status': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'LastModificationTime': datetime(2015, 1, 1)
}

Response Structure

  • (dict) --
    • DatasetArn (string) --

      The Amazon Resource Name (ARN) of the dataset.

    • DatasetName (string) --

      The name of the dataset.

    • Domain (string) --

      The domain associated with the dataset.

    • DatasetType (string) --

      The dataset type.

    • DataFrequency (string) --

      The frequency of data collection.

      Valid intervals are Y (Year), M (Month), W (Week), D (Day), H (Hour), 30min (30 minutes), 15min (15 minutes), 10min (10 minutes), 5min (5 minutes), and 1min (1 minute). For example, "M" indicates every month and "30min" indicates every 30 minutes.

    • Schema (dict) --

      An array of SchemaAttribute objects that specify the dataset fields. Each SchemaAttribute specifies the name and data type of a field.

      • Attributes (list) --

        An array of attributes specifying the name and type of each field in a dataset.

        • (dict) --

          An attribute of a schema, which defines a dataset field. A schema attribute is required for every field in a dataset. The Schema object contains an array of SchemaAttribute objects.

          • AttributeName (string) --

            The name of the dataset field.

          • AttributeType (string) --

            The data type of the field.

    • EncryptionConfig (dict) --

      The AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key.

      • RoleArn (string) --

        The ARN of the IAM role that Amazon Forecast can assume to access the AWS KMS key.

        Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an InvalidInputException error.

      • KMSKeyArn (string) --

        The Amazon Resource Name (ARN) of the KMS key.

    • Status (string) --

      The status of the dataset. States include:

      • ACTIVE
      • CREATE_PENDING , CREATE_IN_PROGRESS , CREATE_FAILED
      • DELETE_PENDING , DELETE_IN_PROGRESS , DELETE_FAILED
      • UPDATE_PENDING , UPDATE_IN_PROGRESS , UPDATE_FAILED

      The UPDATE states apply while data is imported to the dataset from a call to the CreateDatasetImportJob operation and reflect the status of the dataset import job. For example, when the import job status is CREATE_IN_PROGRESS , the status of the dataset is UPDATE_IN_PROGRESS .

      Note

      The Status of the dataset must be ACTIVE before you can import training data.

    • CreationTime (datetime) --

      When the dataset was created.

    • LastModificationTime (datetime) --

      When you create a dataset, LastModificationTime is the same as CreationTime . While data is being imported to the dataset, LastModificationTime is the current time of the DescribeDataset call. After a CreateDatasetImportJob operation has finished, LastModificationTime is when the import job completed or failed.

describe_dataset_group(**kwargs)

Describes a dataset group created using the CreateDatasetGroup operation.

In addition to listing the parameters provided in the CreateDatasetGroup request, this operation includes the following properties:

  • DatasetArns - The datasets belonging to the group.
  • CreationTime
  • LastModificationTime
  • Status

See also: AWS API Documentation

Request Syntax

response = client.describe_dataset_group(
    DatasetGroupArn='string'
)
Parameters
DatasetGroupArn (string) --

[REQUIRED]

The Amazon Resource Name (ARN) of the dataset group.

Return type
dict
Returns
Response Syntax
{
    'DatasetGroupName': 'string',
    'DatasetGroupArn': 'string',
    'DatasetArns': [
        'string',
    ],
    'Domain': 'RETAIL'|'CUSTOM'|'INVENTORY_PLANNING'|'EC2_CAPACITY'|'WORK_FORCE'|'WEB_TRAFFIC'|'METRICS',
    'Status': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'LastModificationTime': datetime(2015, 1, 1)
}

Response Structure

  • (dict) --
    • DatasetGroupName (string) --

      The name of the dataset group.

    • DatasetGroupArn (string) --

      The ARN of the dataset group.

    • DatasetArns (list) --

      An array of Amazon Resource Names (ARNs) of the datasets contained in the dataset group.

      • (string) --
    • Domain (string) --

      The domain associated with the dataset group.

    • Status (string) --

      The status of the dataset group. States include:

      • ACTIVE
      • CREATE_PENDING , CREATE_IN_PROGRESS , CREATE_FAILED
      • DELETE_PENDING , DELETE_IN_PROGRESS , DELETE_FAILED
      • UPDATE_PENDING , UPDATE_IN_PROGRESS , UPDATE_FAILED

      The UPDATE states apply when you call the UpdateDatasetGroup operation.

      Note

      The Status of the dataset group must be ACTIVE before you can use the dataset group to create a predictor.

    • CreationTime (datetime) --

      When the dataset group was created.

    • LastModificationTime (datetime) --

      When the dataset group was created or last updated from a call to the UpdateDatasetGroup operation. While the dataset group is being updated, LastModificationTime is the current time of the DescribeDatasetGroup call.

describe_dataset_import_job(**kwargs)

Describes a dataset import job created using the CreateDatasetImportJob operation.

In addition to listing the parameters provided in the CreateDatasetImportJob request, this operation includes the following properties:

  • CreationTime
  • LastModificationTime
  • DataSize
  • FieldStatistics
  • Status
  • Message - If an error occurred, information about the error.

See also: AWS API Documentation

Request Syntax

response = client.describe_dataset_import_job(
    DatasetImportJobArn='string'
)
Parameters
DatasetImportJobArn (string) --

[REQUIRED]

The Amazon Resource Name (ARN) of the dataset import job.

Return type
dict
Returns
Response Syntax
{
    'DatasetImportJobName': 'string',
    'DatasetImportJobArn': 'string',
    'DatasetArn': 'string',
    'TimestampFormat': 'string',
    'DataSource': {
        'S3Config': {
            'Path': 'string',
            'RoleArn': 'string',
            'KMSKeyArn': 'string'
        }
    },
    'FieldStatistics': {
        'string': {
            'Count': 123,
            'CountDistinct': 123,
            'CountNull': 123,
            'CountNan': 123,
            'Min': 'string',
            'Max': 'string',
            'Avg': 123.0,
            'Stddev': 123.0
        }
    },
    'DataSize': 123.0,
    'Status': 'string',
    'Message': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'LastModificationTime': datetime(2015, 1, 1)
}

Response Structure

  • (dict) --
    • DatasetImportJobName (string) --

      The name of the dataset import job.

    • DatasetImportJobArn (string) --

      The ARN of the dataset import job.

    • DatasetArn (string) --

      The Amazon Resource Name (ARN) of the dataset that the training data was imported to.

    • TimestampFormat (string) --

      The format of timestamps in the dataset. The format that you specify depends on the DataFrequency specified when the dataset was created. The following formats are supported

      • "yyyy-MM-dd" For the following data frequencies: Y, M, W, and D
      • "yyyy-MM-dd HH:mm:ss" For the following data frequencies: H, 30min, 15min, and 1min; and optionally, for: Y, M, W, and D
    • DataSource (dict) --

      The location of the training data to import and an AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the data.

      If encryption is used, DataSource includes an AWS Key Management Service (KMS) key.

      • S3Config (dict) --

        The path to the training data stored in an Amazon Simple Storage Service (Amazon S3) bucket along with the credentials to access the data.

        • Path (string) --

          The path to an Amazon Simple Storage Service (Amazon S3) bucket or file(s) in an Amazon S3 bucket.

        • RoleArn (string) --

          The ARN of the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the Amazon S3 bucket or files. If you provide a value for the KMSKeyArn key, the role must allow access to the key.

          Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an InvalidInputException error.

        • KMSKeyArn (string) --

          The Amazon Resource Name (ARN) of an AWS Key Management Service (KMS) key.

    • FieldStatistics (dict) --

      Statistical information about each field in the input data.

      • (string) --
        • (dict) --

          Provides statistics for each data field imported into to an Amazon Forecast dataset with the CreateDatasetImportJob operation.

          • Count (integer) --

            The number of values in the field.

          • CountDistinct (integer) --

            The number of distinct values in the field.

          • CountNull (integer) --

            The number of null values in the field.

          • CountNan (integer) --

            The number of NAN (not a number) values in the field.

          • Min (string) --

            For a numeric field, the minimum value in the field.

          • Max (string) --

            For a numeric field, the maximum value in the field.

          • Avg (float) --

            For a numeric field, the average value in the field.

          • Stddev (float) --

            For a numeric field, the standard deviation.

    • DataSize (float) --

      The size of the dataset in gigabytes (GB) after the import job has finished.

    • Status (string) --

      The status of the dataset import job. The status is reflected in the status of the dataset. For example, when the import job status is CREATE_IN_PROGRESS , the status of the dataset is UPDATE_IN_PROGRESS . States include:

      • ACTIVE
      • CREATE_PENDING , CREATE_IN_PROGRESS , CREATE_FAILED
      • DELETE_PENDING , DELETE_IN_PROGRESS , DELETE_FAILED
    • Message (string) --

      If an error occurred, an informational message about the error.

    • CreationTime (datetime) --

      When the dataset import job was created.

    • LastModificationTime (datetime) --

      The last time that the dataset was modified. The time depends on the status of the job, as follows:

      • CREATE_PENDING - The same time as CreationTime .
      • CREATE_IN_PROGRESS - The current timestamp.
      • ACTIVE or CREATE_FAILED - When the job finished or failed.
describe_forecast(**kwargs)

Describes a forecast created using the CreateForecast operation.

In addition to listing the properties provided in the CreateForecast request, this operation lists the following properties:

  • DatasetGroupArn - The dataset group that provided the training data.
  • CreationTime
  • LastModificationTime
  • Status
  • Message - If an error occurred, information about the error.

See also: AWS API Documentation

Request Syntax

response = client.describe_forecast(
    ForecastArn='string'
)
Parameters
ForecastArn (string) --

[REQUIRED]

The Amazon Resource Name (ARN) of the forecast.

Return type
dict
Returns
Response Syntax
{
    'ForecastArn': 'string',
    'ForecastName': 'string',
    'ForecastTypes': [
        'string',
    ],
    'PredictorArn': 'string',
    'DatasetGroupArn': 'string',
    'Status': 'string',
    'Message': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'LastModificationTime': datetime(2015, 1, 1)
}

Response Structure

  • (dict) --
    • ForecastArn (string) --

      The forecast ARN as specified in the request.

    • ForecastName (string) --

      The name of the forecast.

    • ForecastTypes (list) --

      The quantiles at which proababilistic forecasts were generated.

      • (string) --
    • PredictorArn (string) --

      The ARN of the predictor used to generate the forecast.

    • DatasetGroupArn (string) --

      The ARN of the dataset group that provided the data used to train the predictor.

    • Status (string) --

      The status of the forecast. States include:

      • ACTIVE
      • CREATE_PENDING , CREATE_IN_PROGRESS , CREATE_FAILED
      • DELETE_PENDING , DELETE_IN_PROGRESS , DELETE_FAILED

      Note

      The Status of the forecast must be ACTIVE before you can query or export the forecast.

    • Message (string) --

      If an error occurred, an informational message about the error.

    • CreationTime (datetime) --

      When the forecast creation task was created.

    • LastModificationTime (datetime) --

      Initially, the same as CreationTime (status is CREATE_PENDING ). Updated when inference (creating the forecast) starts (status changed to CREATE_IN_PROGRESS ), and when inference is complete (status changed to ACTIVE ) or fails (status changed to CREATE_FAILED ).

describe_forecast_export_job(**kwargs)

Describes a forecast export job created using the CreateForecastExportJob operation.

In addition to listing the properties provided by the user in the CreateForecastExportJob request, this operation lists the following properties:

  • CreationTime
  • LastModificationTime
  • Status
  • Message - If an error occurred, information about the error.

See also: AWS API Documentation

Request Syntax

response = client.describe_forecast_export_job(
    ForecastExportJobArn='string'
)
Parameters
ForecastExportJobArn (string) --

[REQUIRED]

The Amazon Resource Name (ARN) of the forecast export job.

Return type
dict
Returns
Response Syntax
{
    'ForecastExportJobArn': 'string',
    'ForecastExportJobName': 'string',
    'ForecastArn': 'string',
    'Destination': {
        'S3Config': {
            'Path': 'string',
            'RoleArn': 'string',
            'KMSKeyArn': 'string'
        }
    },
    'Message': 'string',
    'Status': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'LastModificationTime': datetime(2015, 1, 1)
}

Response Structure

  • (dict) --
    • ForecastExportJobArn (string) --

      The ARN of the forecast export job.

    • ForecastExportJobName (string) --

      The name of the forecast export job.

    • ForecastArn (string) --

      The Amazon Resource Name (ARN) of the exported forecast.

    • Destination (dict) --

      The path to the Amazon Simple Storage Service (Amazon S3) bucket where the forecast is exported.

      • S3Config (dict) --

        The path to an Amazon Simple Storage Service (Amazon S3) bucket along with the credentials to access the bucket.

        • Path (string) --

          The path to an Amazon Simple Storage Service (Amazon S3) bucket or file(s) in an Amazon S3 bucket.

        • RoleArn (string) --

          The ARN of the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the Amazon S3 bucket or files. If you provide a value for the KMSKeyArn key, the role must allow access to the key.

          Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an InvalidInputException error.

        • KMSKeyArn (string) --

          The Amazon Resource Name (ARN) of an AWS Key Management Service (KMS) key.

    • Message (string) --

      If an error occurred, an informational message about the error.

    • Status (string) --

      The status of the forecast export job. States include:

      • ACTIVE
      • CREATE_PENDING , CREATE_IN_PROGRESS , CREATE_FAILED
      • DELETE_PENDING , DELETE_IN_PROGRESS , DELETE_FAILED

      Note

      The Status of the forecast export job must be ACTIVE before you can access the forecast in your S3 bucket.

    • CreationTime (datetime) --

      When the forecast export job was created.

    • LastModificationTime (datetime) --

      When the last successful export job finished.

describe_predictor(**kwargs)

Describes a predictor created using the CreatePredictor operation.

In addition to listing the properties provided in the CreatePredictor request, this operation lists the following properties:

  • DatasetImportJobArns - The dataset import jobs used to import training data.
  • AutoMLAlgorithmArns - If AutoML is performed, the algorithms that were evaluated.
  • CreationTime
  • LastModificationTime
  • Status
  • Message - If an error occurred, information about the error.

See also: AWS API Documentation

Request Syntax

response = client.describe_predictor(
    PredictorArn='string'
)
Parameters
PredictorArn (string) --

[REQUIRED]

The Amazon Resource Name (ARN) of the predictor that you want information about.

Return type
dict
Returns
Response Syntax
{
    'PredictorArn': 'string',
    'PredictorName': 'string',
    'AlgorithmArn': 'string',
    'ForecastHorizon': 123,
    'PerformAutoML': True|False,
    'PerformHPO': True|False,
    'TrainingParameters': {
        'string': 'string'
    },
    'EvaluationParameters': {
        'NumberOfBacktestWindows': 123,
        'BackTestWindowOffset': 123
    },
    'HPOConfig': {
        'ParameterRanges': {
            'CategoricalParameterRanges': [
                {
                    'Name': 'string',
                    'Values': [
                        'string',
                    ]
                },
            ],
            'ContinuousParameterRanges': [
                {
                    'Name': 'string',
                    'MaxValue': 123.0,
                    'MinValue': 123.0,
                    'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                },
            ],
            'IntegerParameterRanges': [
                {
                    'Name': 'string',
                    'MaxValue': 123,
                    'MinValue': 123,
                    'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                },
            ]
        }
    },
    'InputDataConfig': {
        'DatasetGroupArn': 'string',
        'SupplementaryFeatures': [
            {
                'Name': 'string',
                'Value': 'string'
            },
        ]
    },
    'FeaturizationConfig': {
        'ForecastFrequency': 'string',
        'ForecastDimensions': [
            'string',
        ],
        'Featurizations': [
            {
                'AttributeName': 'string',
                'FeaturizationPipeline': [
                    {
                        'FeaturizationMethodName': 'filling',
                        'FeaturizationMethodParameters': {
                            'string': 'string'
                        }
                    },
                ]
            },
        ]
    },
    'EncryptionConfig': {
        'RoleArn': 'string',
        'KMSKeyArn': 'string'
    },
    'PredictorExecutionDetails': {
        'PredictorExecutions': [
            {
                'AlgorithmArn': 'string',
                'TestWindows': [
                    {
                        'TestWindowStart': datetime(2015, 1, 1),
                        'TestWindowEnd': datetime(2015, 1, 1),
                        'Status': 'string',
                        'Message': 'string'
                    },
                ]
            },
        ]
    },
    'DatasetImportJobArns': [
        'string',
    ],
    'AutoMLAlgorithmArns': [
        'string',
    ],
    'Status': 'string',
    'Message': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'LastModificationTime': datetime(2015, 1, 1)
}

Response Structure

  • (dict) --
    • PredictorArn (string) --

      The ARN of the predictor.

    • PredictorName (string) --

      The name of the predictor.

    • AlgorithmArn (string) --

      The Amazon Resource Name (ARN) of the algorithm used for model training.

    • ForecastHorizon (integer) --

      The number of time-steps of the forecast. The forecast horizon is also called the prediction length.

    • PerformAutoML (boolean) --

      Whether the predictor is set to perform AutoML.

    • PerformHPO (boolean) --

      Whether the predictor is set to perform hyperparameter optimization (HPO).

    • TrainingParameters (dict) --

      The default training parameters or overrides selected during model training. If using the AutoML algorithm or if HPO is turned on while using the DeepAR+ algorithms, the optimized values for the chosen hyperparameters are returned. For more information, see aws-forecast-choosing-recipes .

      • (string) --
        • (string) --
    • EvaluationParameters (dict) --

      Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to perform the split and the number of iterations.

      • NumberOfBacktestWindows (integer) --

        The number of times to split the input data. The default is 1. Valid values are 1 through 5.

      • BackTestWindowOffset (integer) --

        The point from the end of the dataset where you want to split the data for model training and testing (evaluation). Specify the value as the number of data points. The default is the value of the forecast horizon. BackTestWindowOffset can be used to mimic a past virtual forecast start date. This value must be greater than or equal to the forecast horizon and less than half of the TARGET_TIME_SERIES dataset length.

        ForecastHorizon <= BackTestWindowOffset < 1/2 * TARGET_TIME_SERIES dataset length
    • HPOConfig (dict) --

      The hyperparameter override values for the algorithm.

      • ParameterRanges (dict) --

        Specifies the ranges of valid values for the hyperparameters.

        • CategoricalParameterRanges (list) --

          Specifies the tunable range for each categorical hyperparameter.

          • (dict) --

            Specifies a categorical hyperparameter and it's range of tunable values. This object is part of the ParameterRanges object.

            • Name (string) --

              The name of the categorical hyperparameter to tune.

            • Values (list) --

              A list of the tunable categories for the hyperparameter.

              • (string) --
        • ContinuousParameterRanges (list) --

          Specifies the tunable range for each continuous hyperparameter.

          • (dict) --

            Specifies a continuous hyperparameter and it's range of tunable values. This object is part of the ParameterRanges object.

            • Name (string) --

              The name of the hyperparameter to tune.

            • MaxValue (float) --

              The maximum tunable value of the hyperparameter.

            • MinValue (float) --

              The minimum tunable value of the hyperparameter.

            • ScalingType (string) --

              The scale that hyperparameter tuning uses to search the hyperparameter range. Valid values:

              Auto

              Amazon Forecast hyperparameter tuning chooses the best scale for the hyperparameter.

              Linear

              Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

              Logarithmic

              Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

              Logarithmic scaling works only for ranges that have values greater than 0.

              ReverseLogarithmic

              hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale.

              Reverse logarithmic scaling works only for ranges that are entirely within the range 0 <= x < 1.0.

              For information about choosing a hyperparameter scale, see Hyperparameter Scaling . One of the following values:

        • IntegerParameterRanges (list) --

          Specifies the tunable range for each integer hyperparameter.

          • (dict) --

            Specifies an integer hyperparameter and it's range of tunable values. This object is part of the ParameterRanges object.

            • Name (string) --

              The name of the hyperparameter to tune.

            • MaxValue (integer) --

              The maximum tunable value of the hyperparameter.

            • MinValue (integer) --

              The minimum tunable value of the hyperparameter.

            • ScalingType (string) --

              The scale that hyperparameter tuning uses to search the hyperparameter range. Valid values:

              Auto

              Amazon Forecast hyperparameter tuning chooses the best scale for the hyperparameter.

              Linear

              Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

              Logarithmic

              Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

              Logarithmic scaling works only for ranges that have values greater than 0.

              ReverseLogarithmic

              Not supported for IntegerParameterRange .

              Reverse logarithmic scaling works only for ranges that are entirely within the range 0 <= x < 1.0.

              For information about choosing a hyperparameter scale, see Hyperparameter Scaling . One of the following values:

    • InputDataConfig (dict) --

      Describes the dataset group that contains the data to use to train the predictor.

      • DatasetGroupArn (string) --

        The Amazon Resource Name (ARN) of the dataset group.

      • SupplementaryFeatures (list) --

        An array of supplementary features. The only supported feature is a holiday calendar.

        • (dict) --

          Describes a supplementary feature of a dataset group. This object is part of the InputDataConfig object.

          The only supported feature is a holiday calendar. If you use the calendar, all data in the datasets should belong to the same country as the calendar. For the holiday calendar data, see the Jollyday web site.

          • Name (string) --

            The name of the feature. This must be "holiday".

          • Value (string) --

            One of the following 2 letter country codes:

            • "AU" - AUSTRALIA
            • "DE" - GERMANY
            • "JP" - JAPAN
            • "US" - UNITED_STATES
            • "UK" - UNITED_KINGDOM
    • FeaturizationConfig (dict) --

      The featurization configuration.

      • ForecastFrequency (string) --

        The frequency of predictions in a forecast.

        Valid intervals are Y (Year), M (Month), W (Week), D (Day), H (Hour), 30min (30 minutes), 15min (15 minutes), 10min (10 minutes), 5min (5 minutes), and 1min (1 minute). For example, "Y" indicates every year and "5min" indicates every five minutes.

        The frequency must be greater than or equal to the TARGET_TIME_SERIES dataset frequency.

        When a RELATED_TIME_SERIES dataset is provided, the frequency must be equal to the RELATED_TIME_SERIES dataset frequency.

      • ForecastDimensions (list) --

        An array of dimension (field) names that specify how to group the generated forecast.

        For example, suppose that you are generating a forecast for item sales across all of your stores, and your dataset contains a store_id field. If you want the sales forecast for each item by store, you would specify store_id as the dimension.

        All forecast dimensions specified in the TARGET_TIME_SERIES dataset don't need to be specified in the CreatePredictor request. All forecast dimensions specified in the RELATED_TIME_SERIES dataset must be specified in the CreatePredictor request.

        • (string) --
      • Featurizations (list) --

        An array of featurization (transformation) information for the fields of a dataset. Only a single featurization is supported.

        • (dict) --

          Provides featurization (transformation) information for a dataset field. This object is part of the FeaturizationConfig object.

          For example:

          {

          "AttributeName": "demand",

          FeaturizationPipeline [ {

          "FeaturizationMethodName": "filling",

          "FeaturizationMethodParameters": {"aggregation": "avg", "backfill": "nan"}

          } ]

          }

          • AttributeName (string) --

            The name of the schema attribute that specifies the data field to be featurized. Only the target field of the TARGET_TIME_SERIES dataset type is supported. For example, for the RETAIL domain, the target is demand , and for the CUSTOM domain, the target is target_value .

          • FeaturizationPipeline (list) --

            An array of one FeaturizationMethod object that specifies the feature transformation method.

            • (dict) --

              Provides information about the method that featurizes (transforms) a dataset field. The method is part of the FeaturizationPipeline of the Featurization object. If you don't specify FeaturizationMethodParameters , Amazon Forecast uses default parameters.

              The following is an example of how you specify a FeaturizationMethod object.

              {

              "FeaturizationMethodName": "filling",

              "FeaturizationMethodParameters": {"aggregation": "avg", "backfill": "nan"}

              }

              • FeaturizationMethodName (string) --

                The name of the method. The "filling" method is the only supported method.

              • FeaturizationMethodParameters (dict) --

                The method parameters (key-value pairs). Specify these parameters to override the default values. The following list shows the parameters and their valid values. Bold signifies the default value.

                • aggregation : sum , avg , first , min , max
                • frontfill : none
                • middlefill : zero , nan (not a number)
                • backfill : zero , nan
                • (string) --
                  • (string) --
    • EncryptionConfig (dict) --

      An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key.

      • RoleArn (string) --

        The ARN of the IAM role that Amazon Forecast can assume to access the AWS KMS key.

        Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an InvalidInputException error.

      • KMSKeyArn (string) --

        The Amazon Resource Name (ARN) of the KMS key.

    • PredictorExecutionDetails (dict) --

      Details on the the status and results of the backtests performed to evaluate the accuracy of the predictor. You specify the number of backtests to perform when you call the operation.

      • PredictorExecutions (list) --

        An array of the backtests performed to evaluate the accuracy of the predictor against a particular algorithm. The NumberOfBacktestWindows from the object determines the number of windows in the array.

        • (dict) --

          The algorithm used to perform a backtest and the status of those tests.

          • AlgorithmArn (string) --

            The ARN of the algorithm used to test the predictor.

          • TestWindows (list) --

            An array of test windows used to evaluate the algorithm. The NumberOfBacktestWindows from the object determines the number of windows in the array.

            • (dict) --

              The status, start time, and end time of a backtest, as well as a failure reason if applicable.

              • TestWindowStart (datetime) --

                The time at which the test began.

              • TestWindowEnd (datetime) --

                The time at which the test ended.

              • Status (string) --

                The status of the test. Possible status values are:

                • ACTIVE
                • CREATE_IN_PROGRESS
                • CREATE_FAILED
              • Message (string) --

                If the test failed, the reason why it failed.

    • DatasetImportJobArns (list) --

      An array of the ARNs of the dataset import jobs used to import training data for the predictor.

      • (string) --
    • AutoMLAlgorithmArns (list) --

      When PerformAutoML is specified, the ARN of the chosen algorithm.

      • (string) --
    • Status (string) --

      The status of the predictor. States include:

      • ACTIVE
      • CREATE_PENDING , CREATE_IN_PROGRESS , CREATE_FAILED
      • DELETE_PENDING , DELETE_IN_PROGRESS , DELETE_FAILED
      • UPDATE_PENDING , UPDATE_IN_PROGRESS , UPDATE_FAILED

      Note

      The Status of the predictor must be ACTIVE before you can use the predictor to create a forecast.

    • Message (string) --

      If an error occurred, an informational message about the error.

    • CreationTime (datetime) --

      When the model training task was created.

    • LastModificationTime (datetime) --

      Initially, the same as CreationTime (when the status is CREATE_PENDING ). This value is updated when training starts (when the status changes to CREATE_IN_PROGRESS ), and when training has completed (when the status changes to ACTIVE ) or fails (when the status changes to CREATE_FAILED ).

generate_presigned_url(ClientMethod, Params=None, ExpiresIn=3600, HttpMethod=None)

Generate a presigned url given a client, its method, and arguments

Parameters
  • ClientMethod (string) -- The client method to presign for
  • Params (dict) -- The parameters normally passed to ClientMethod.
  • ExpiresIn (int) -- The number of seconds the presigned url is valid for. By default it expires in an hour (3600 seconds)
  • HttpMethod (string) -- The http method to use on the generated url. By default, the http method is whatever is used in the method's model.
Returns

The presigned url

get_accuracy_metrics(**kwargs)

Provides metrics on the accuracy of the models that were trained by the CreatePredictor operation. Use metrics to see how well the model performed and to decide whether to use the predictor to generate a forecast. For more information, see metrics .

This operation generates metrics for each backtest window that was evaluated. The number of backtest windows (NumberOfBacktestWindows ) is specified using the EvaluationParameters object, which is optionally included in the CreatePredictor request. If NumberOfBacktestWindows isn't specified, the number defaults to one.

The parameters of the filling method determine which items contribute to the metrics. If you want all items to contribute, specify zero . If you want only those items that have complete data in the range being evaluated to contribute, specify nan . For more information, see FeaturizationMethod .

Note

Before you can get accuracy metrics, the Status of the predictor must be ACTIVE , signifying that training has completed. To get the status, use the DescribePredictor operation.

See also: AWS API Documentation

Request Syntax

response = client.get_accuracy_metrics(
    PredictorArn='string'
)
Parameters
PredictorArn (string) --

[REQUIRED]

The Amazon Resource Name (ARN) of the predictor to get metrics for.

Return type
dict
Returns
Response Syntax
{
    'PredictorEvaluationResults': [
        {
            'AlgorithmArn': 'string',
            'TestWindows': [
                {
                    'TestWindowStart': datetime(2015, 1, 1),
                    'TestWindowEnd': datetime(2015, 1, 1),
                    'ItemCount': 123,
                    'EvaluationType': 'SUMMARY'|'COMPUTED',
                    'Metrics': {
                        'RMSE': 123.0,
                        'WeightedQuantileLosses': [
                            {
                                'Quantile': 123.0,
                                'LossValue': 123.0
                            },
                        ]
                    }
                },
            ]
        },
    ]
}

Response Structure

  • (dict) --
    • PredictorEvaluationResults (list) --

      An array of results from evaluating the predictor.

      • (dict) --

        The results of evaluating an algorithm. Returned as part of the GetAccuracyMetrics response.

        • AlgorithmArn (string) --

          The Amazon Resource Name (ARN) of the algorithm that was evaluated.

        • TestWindows (list) --

          The array of test windows used for evaluating the algorithm. The NumberOfBacktestWindows from the EvaluationParameters object determines the number of windows in the array.

          • (dict) --

            The metrics for a time range within the evaluation portion of a dataset. This object is part of the EvaluationResult object.

            The TestWindowStart and TestWindowEnd parameters are determined by the BackTestWindowOffset parameter of the EvaluationParameters object.

            • TestWindowStart (datetime) --

              The timestamp that defines the start of the window.

            • TestWindowEnd (datetime) --

              The timestamp that defines the end of the window.

            • ItemCount (integer) --

              The number of data points within the window.

            • EvaluationType (string) --

              The type of evaluation.

              • SUMMARY - The average metrics across all windows.
              • COMPUTED - The metrics for the specified window.
            • Metrics (dict) --

              Provides metrics used to evaluate the performance of a predictor.

              • RMSE (float) --

                The root mean square error (RMSE).

              • WeightedQuantileLosses (list) --

                An array of weighted quantile losses. Quantiles divide a probability distribution into regions of equal probability. The distribution in this case is the loss function.

                • (dict) --

                  The weighted loss value for a quantile. This object is part of the Metrics object.

                  • Quantile (float) --

                    The quantile. Quantiles divide a probability distribution into regions of equal probability. For example, if the distribution was divided into 5 regions of equal probability, the quantiles would be 0.2, 0.4, 0.6, and 0.8.

                  • LossValue (float) --

                    The difference between the predicted value and the actual value over the quantile, weighted (normalized) by dividing by the sum over all quantiles.

get_paginator(operation_name)

Create a paginator for an operation.

Parameters
operation_name (string) -- The operation name. This is the same name as the method name on the client. For example, if the method name is create_foo, and you'd normally invoke the operation as client.create_foo(**kwargs), if the create_foo operation can be paginated, you can use the call client.get_paginator("create_foo").
Raises OperationNotPageableError
Raised if the operation is not pageable. You can use the client.can_paginate method to check if an operation is pageable.
Return type
L{botocore.paginate.Paginator}
Returns
A paginator object.
get_waiter(waiter_name)

Returns an object that can wait for some condition.

Parameters
waiter_name (str) -- The name of the waiter to get. See the waiters section of the service docs for a list of available waiters.
Returns
The specified waiter object.
Return type
botocore.waiter.Waiter
list_dataset_groups(**kwargs)

Returns a list of dataset groups created using the CreateDatasetGroup operation. For each dataset group, this operation returns a summary of its properties, including its Amazon Resource Name (ARN). You can retrieve the complete set of properties by using the dataset group ARN with the DescribeDatasetGroup operation.

See also: AWS API Documentation

Request Syntax

response = client.list_dataset_groups(
    NextToken='string',
    MaxResults=123
)
Parameters
  • NextToken (string) -- If the result of the previous request was truncated, the response includes a NextToken . To retrieve the next set of results, use the token in the next request. Tokens expire after 24 hours.
  • MaxResults (integer) -- The number of items to return in the response.
Return type

dict

Returns

Response Syntax

{
    'DatasetGroups': [
        {
            'DatasetGroupArn': 'string',
            'DatasetGroupName': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModificationTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • DatasetGroups (list) --

      An array of objects that summarize each dataset group's properties.

      • (dict) --

        Provides a summary of the dataset group properties used in the ListDatasetGroups operation. To get the complete set of properties, call the DescribeDatasetGroup operation, and provide the DatasetGroupArn .

        • DatasetGroupArn (string) --

          The Amazon Resource Name (ARN) of the dataset group.

        • DatasetGroupName (string) --

          The name of the dataset group.

        • CreationTime (datetime) --

          When the dataset group was created.

        • LastModificationTime (datetime) --

          When the dataset group was created or last updated from a call to the UpdateDatasetGroup operation. While the dataset group is being updated, LastModificationTime is the current time of the ListDatasetGroups call.

    • NextToken (string) --

      If the response is truncated, Amazon Forecast returns this token. To retrieve the next set of results, use the token in the next request.

list_dataset_import_jobs(**kwargs)

Returns a list of dataset import jobs created using the CreateDatasetImportJob operation. For each import job, this operation returns a summary of its properties, including its Amazon Resource Name (ARN). You can retrieve the complete set of properties by using the ARN with the DescribeDatasetImportJob operation. You can filter the list by providing an array of Filter objects.

See also: AWS API Documentation

Request Syntax

response = client.list_dataset_import_jobs(
    NextToken='string',
    MaxResults=123,
    Filters=[
        {
            'Key': 'string',
            'Value': 'string',
            'Condition': 'IS'|'IS_NOT'
        },
    ]
)
Parameters
  • NextToken (string) -- If the result of the previous request was truncated, the response includes a NextToken . To retrieve the next set of results, use the token in the next request. Tokens expire after 24 hours.
  • MaxResults (integer) -- The number of items to return in the response.
  • Filters (list) --

    An array of filters. For each filter, you provide a condition and a match statement. The condition is either IS or IS_NOT , which specifies whether to include or exclude the datasets that match the statement from the list, respectively. The match statement consists of a key and a value.

    Filter properties
    • Condition - The condition to apply. Valid values are IS and IS_NOT . To include the datasets that match the statement, specify IS . To exclude matching datasets, specify IS_NOT .
    • Key - The name of the parameter to filter on. Valid values are DatasetArn and Status .
    • Value - The value to match.

    For example, to list all dataset import jobs whose status is ACTIVE, you specify the following filter:

    "Filters": [ { "Condition": "IS", "Key": "Status", "Value": "ACTIVE" } ]
    • (dict) --

      Describes a filter for choosing a subset of objects. Each filter consists of a condition and a match statement. The condition is either IS or IS_NOT , which specifies whether to include or exclude the objects that match the statement, respectively. The match statement consists of a key and a value.

      • Key (string) -- [REQUIRED]

        The name of the parameter to filter on.

      • Value (string) -- [REQUIRED]

        The value to match.

      • Condition (string) -- [REQUIRED]

        The condition to apply. To include the objects that match the statement, specify IS . To exclude matching objects, specify IS_NOT .

Return type

dict

Returns

Response Syntax

{
    'DatasetImportJobs': [
        {
            'DatasetImportJobArn': 'string',
            'DatasetImportJobName': 'string',
            'DataSource': {
                'S3Config': {
                    'Path': 'string',
                    'RoleArn': 'string',
                    'KMSKeyArn': 'string'
                }
            },
            'Status': 'string',
            'Message': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModificationTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • DatasetImportJobs (list) --

      An array of objects that summarize each dataset import job's properties.

      • (dict) --

        Provides a summary of the dataset import job properties used in the ListDatasetImportJobs operation. To get the complete set of properties, call the DescribeDatasetImportJob operation, and provide the DatasetImportJobArn .

        • DatasetImportJobArn (string) --

          The Amazon Resource Name (ARN) of the dataset import job.

        • DatasetImportJobName (string) --

          The name of the dataset import job.

        • DataSource (dict) --

          The location of the training data to import and an AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the data. The training data must be stored in an Amazon S3 bucket.

          If encryption is used, DataSource includes an AWS Key Management Service (KMS) key.

          • S3Config (dict) --

            The path to the training data stored in an Amazon Simple Storage Service (Amazon S3) bucket along with the credentials to access the data.

            • Path (string) --

              The path to an Amazon Simple Storage Service (Amazon S3) bucket or file(s) in an Amazon S3 bucket.

            • RoleArn (string) --

              The ARN of the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the Amazon S3 bucket or files. If you provide a value for the KMSKeyArn key, the role must allow access to the key.

              Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an InvalidInputException error.

            • KMSKeyArn (string) --

              The Amazon Resource Name (ARN) of an AWS Key Management Service (KMS) key.

        • Status (string) --

          The status of the dataset import job. The status is reflected in the status of the dataset. For example, when the import job status is CREATE_IN_PROGRESS , the status of the dataset is UPDATE_IN_PROGRESS . States include:

          • ACTIVE
          • CREATE_PENDING , CREATE_IN_PROGRESS , CREATE_FAILED
          • DELETE_PENDING , DELETE_IN_PROGRESS , DELETE_FAILED
        • Message (string) --

          If an error occurred, an informational message about the error.

        • CreationTime (datetime) --

          When the dataset import job was created.

        • LastModificationTime (datetime) --

          The last time that the dataset was modified. The time depends on the status of the job, as follows:

          • CREATE_PENDING - The same time as CreationTime .
          • CREATE_IN_PROGRESS - The current timestamp.
          • ACTIVE or CREATE_FAILED - When the job finished or failed.
    • NextToken (string) --

      If the response is truncated, Amazon Forecast returns this token. To retrieve the next set of results, use the token in the next request.

list_datasets(**kwargs)

Returns a list of datasets created using the CreateDataset operation. For each dataset, a summary of its properties, including its Amazon Resource Name (ARN), is returned. To retrieve the complete set of properties, use the ARN with the DescribeDataset operation.

See also: AWS API Documentation

Request Syntax

response = client.list_datasets(
    NextToken='string',
    MaxResults=123
)
Parameters
  • NextToken (string) -- If the result of the previous request was truncated, the response includes a NextToken . To retrieve the next set of results, use the token in the next request. Tokens expire after 24 hours.
  • MaxResults (integer) -- The number of items to return in the response.
Return type

dict

Returns

Response Syntax

{
    'Datasets': [
        {
            'DatasetArn': 'string',
            'DatasetName': 'string',
            'DatasetType': 'TARGET_TIME_SERIES'|'RELATED_TIME_SERIES'|'ITEM_METADATA',
            'Domain': 'RETAIL'|'CUSTOM'|'INVENTORY_PLANNING'|'EC2_CAPACITY'|'WORK_FORCE'|'WEB_TRAFFIC'|'METRICS',
            'CreationTime': datetime(2015, 1, 1),
            'LastModificationTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • Datasets (list) --

      An array of objects that summarize each dataset's properties.

      • (dict) --

        Provides a summary of the dataset properties used in the ListDatasets operation. To get the complete set of properties, call the DescribeDataset operation, and provide the DatasetArn .

        • DatasetArn (string) --

          The Amazon Resource Name (ARN) of the dataset.

        • DatasetName (string) --

          The name of the dataset.

        • DatasetType (string) --

          The dataset type.

        • Domain (string) --

          The domain associated with the dataset.

        • CreationTime (datetime) --

          When the dataset was created.

        • LastModificationTime (datetime) --

          When you create a dataset, LastModificationTime is the same as CreationTime . While data is being imported to the dataset, LastModificationTime is the current time of the ListDatasets call. After a CreateDatasetImportJob operation has finished, LastModificationTime is when the import job completed or failed.

    • NextToken (string) --

      If the response is truncated, Amazon Forecast returns this token. To retrieve the next set of results, use the token in the next request.

list_forecast_export_jobs(**kwargs)

Returns a list of forecast export jobs created using the CreateForecastExportJob operation. For each forecast export job, this operation returns a summary of its properties, including its Amazon Resource Name (ARN). To retrieve the complete set of properties, use the ARN with the DescribeForecastExportJob operation. You can filter the list using an array of Filter objects.

See also: AWS API Documentation

Request Syntax

response = client.list_forecast_export_jobs(
    NextToken='string',
    MaxResults=123,
    Filters=[
        {
            'Key': 'string',
            'Value': 'string',
            'Condition': 'IS'|'IS_NOT'
        },
    ]
)
Parameters
  • NextToken (string) -- If the result of the previous request was truncated, the response includes a NextToken . To retrieve the next set of results, use the token in the next request. Tokens expire after 24 hours.
  • MaxResults (integer) -- The number of items to return in the response.
  • Filters (list) --

    An array of filters. For each filter, you provide a condition and a match statement. The condition is either IS or IS_NOT , which specifies whether to include or exclude the forecast export jobs that match the statement from the list, respectively. The match statement consists of a key and a value.

    Filter properties
    • Condition - The condition to apply. Valid values are IS and IS_NOT . To include the forecast export jobs that match the statement, specify IS . To exclude matching forecast export jobs, specify IS_NOT .
    • Key - The name of the parameter to filter on. Valid values are ForecastArn and Status .
    • Value - The value to match.

    For example, to list all jobs that export a forecast named electricityforecast , specify the following filter:

    "Filters": [ { "Condition": "IS", "Key": "ForecastArn", "Value": "arn:aws:forecast:us-west-2:<acct-id>:forecast/electricityforecast" } ]
    • (dict) --

      Describes a filter for choosing a subset of objects. Each filter consists of a condition and a match statement. The condition is either IS or IS_NOT , which specifies whether to include or exclude the objects that match the statement, respectively. The match statement consists of a key and a value.

      • Key (string) -- [REQUIRED]

        The name of the parameter to filter on.

      • Value (string) -- [REQUIRED]

        The value to match.

      • Condition (string) -- [REQUIRED]

        The condition to apply. To include the objects that match the statement, specify IS . To exclude matching objects, specify IS_NOT .

Return type

dict

Returns

Response Syntax

{
    'ForecastExportJobs': [
        {
            'ForecastExportJobArn': 'string',
            'ForecastExportJobName': 'string',
            'Destination': {
                'S3Config': {
                    'Path': 'string',
                    'RoleArn': 'string',
                    'KMSKeyArn': 'string'
                }
            },
            'Status': 'string',
            'Message': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModificationTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • ForecastExportJobs (list) --

      An array of objects that summarize each export job's properties.

      • (dict) --

        Provides a summary of the forecast export job properties used in the ListForecastExportJobs operation. To get the complete set of properties, call the DescribeForecastExportJob operation, and provide the listed ForecastExportJobArn .

        • ForecastExportJobArn (string) --

          The Amazon Resource Name (ARN) of the forecast export job.

        • ForecastExportJobName (string) --

          The name of the forecast export job.

        • Destination (dict) --

          The path to the Amazon Simple Storage Service (Amazon S3) bucket where the forecast is exported.

          • S3Config (dict) --

            The path to an Amazon Simple Storage Service (Amazon S3) bucket along with the credentials to access the bucket.

            • Path (string) --

              The path to an Amazon Simple Storage Service (Amazon S3) bucket or file(s) in an Amazon S3 bucket.

            • RoleArn (string) --

              The ARN of the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the Amazon S3 bucket or files. If you provide a value for the KMSKeyArn key, the role must allow access to the key.

              Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an InvalidInputException error.

            • KMSKeyArn (string) --

              The Amazon Resource Name (ARN) of an AWS Key Management Service (KMS) key.

        • Status (string) --

          The status of the forecast export job. States include:

          • ACTIVE
          • CREATE_PENDING , CREATE_IN_PROGRESS , CREATE_FAILED
          • DELETE_PENDING , DELETE_IN_PROGRESS , DELETE_FAILED

          Note

          The Status of the forecast export job must be ACTIVE before you can access the forecast in your S3 bucket.

        • Message (string) --

          If an error occurred, an informational message about the error.

        • CreationTime (datetime) --

          When the forecast export job was created.

        • LastModificationTime (datetime) --

          When the last successful export job finished.

    • NextToken (string) --

      If the response is truncated, Amazon Forecast returns this token. To retrieve the next set of results, use the token in the next request.

list_forecasts(**kwargs)

Returns a list of forecasts created using the CreateForecast operation. For each forecast, this operation returns a summary of its properties, including its Amazon Resource Name (ARN). To retrieve the complete set of properties, specify the ARN with the DescribeForecast operation. You can filter the list using an array of Filter objects.

See also: AWS API Documentation

Request Syntax

response = client.list_forecasts(
    NextToken='string',
    MaxResults=123,
    Filters=[
        {
            'Key': 'string',
            'Value': 'string',
            'Condition': 'IS'|'IS_NOT'
        },
    ]
)
Parameters
  • NextToken (string) -- If the result of the previous request was truncated, the response includes a NextToken . To retrieve the next set of results, use the token in the next request. Tokens expire after 24 hours.
  • MaxResults (integer) -- The number of items to return in the response.
  • Filters (list) --

    An array of filters. For each filter, you provide a condition and a match statement. The condition is either IS or IS_NOT , which specifies whether to include or exclude the forecasts that match the statement from the list, respectively. The match statement consists of a key and a value.

    Filter properties
    • Condition - The condition to apply. Valid values are IS and IS_NOT . To include the forecasts that match the statement, specify IS . To exclude matching forecasts, specify IS_NOT .
    • Key - The name of the parameter to filter on. Valid values are DatasetGroupArn , PredictorArn , and Status .
    • Value - The value to match.

    For example, to list all forecasts whose status is not ACTIVE, you would specify:

    "Filters": [ { "Condition": "IS_NOT", "Key": "Status", "Value": "ACTIVE" } ]
    • (dict) --

      Describes a filter for choosing a subset of objects. Each filter consists of a condition and a match statement. The condition is either IS or IS_NOT , which specifies whether to include or exclude the objects that match the statement, respectively. The match statement consists of a key and a value.

      • Key (string) -- [REQUIRED]

        The name of the parameter to filter on.

      • Value (string) -- [REQUIRED]

        The value to match.

      • Condition (string) -- [REQUIRED]

        The condition to apply. To include the objects that match the statement, specify IS . To exclude matching objects, specify IS_NOT .

Return type

dict

Returns

Response Syntax

{
    'Forecasts': [
        {
            'ForecastArn': 'string',
            'ForecastName': 'string',
            'PredictorArn': 'string',
            'DatasetGroupArn': 'string',
            'Status': 'string',
            'Message': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModificationTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • Forecasts (list) --

      An array of objects that summarize each forecast's properties.

      • (dict) --

        Provides a summary of the forecast properties used in the ListForecasts operation. To get the complete set of properties, call the DescribeForecast operation, and provide the ForecastArn that is listed in the summary.

        • ForecastArn (string) --

          The ARN of the forecast.

        • ForecastName (string) --

          The name of the forecast.

        • PredictorArn (string) --

          The ARN of the predictor used to generate the forecast.

        • DatasetGroupArn (string) --

          The Amazon Resource Name (ARN) of the dataset group that provided the data used to train the predictor.

        • Status (string) --

          The status of the forecast. States include:

          • ACTIVE
          • CREATE_PENDING , CREATE_IN_PROGRESS , CREATE_FAILED
          • DELETE_PENDING , DELETE_IN_PROGRESS , DELETE_FAILED

          Note

          The Status of the forecast must be ACTIVE before you can query or export the forecast.

        • Message (string) --

          If an error occurred, an informational message about the error.

        • CreationTime (datetime) --

          When the forecast creation task was created.

        • LastModificationTime (datetime) --

          Initially, the same as CreationTime (status is CREATE_PENDING ). Updated when inference (creating the forecast) starts (status changed to CREATE_IN_PROGRESS ), and when inference is complete (status changed to ACTIVE ) or fails (status changed to CREATE_FAILED ).

    • NextToken (string) --

      If the response is truncated, Amazon Forecast returns this token. To retrieve the next set of results, use the token in the next request.

list_predictors(**kwargs)

Returns a list of predictors created using the CreatePredictor operation. For each predictor, this operation returns a summary of its properties, including its Amazon Resource Name (ARN). You can retrieve the complete set of properties by using the ARN with the DescribePredictor operation. You can filter the list using an array of Filter objects.

See also: AWS API Documentation

Request Syntax

response = client.list_predictors(
    NextToken='string',
    MaxResults=123,
    Filters=[
        {
            'Key': 'string',
            'Value': 'string',
            'Condition': 'IS'|'IS_NOT'
        },
    ]
)
Parameters
  • NextToken (string) -- If the result of the previous request was truncated, the response includes a NextToken . To retrieve the next set of results, use the token in the next request. Tokens expire after 24 hours.
  • MaxResults (integer) -- The number of items to return in the response.
  • Filters (list) --

    An array of filters. For each filter, you provide a condition and a match statement. The condition is either IS or IS_NOT , which specifies whether to include or exclude the predictors that match the statement from the list, respectively. The match statement consists of a key and a value.

    Filter properties
    • Condition - The condition to apply. Valid values are IS and IS_NOT . To include the predictors that match the statement, specify IS . To exclude matching predictors, specify IS_NOT .
    • Key - The name of the parameter to filter on. Valid values are DatasetGroupArn and Status .
    • Value - The value to match.

    For example, to list all predictors whose status is ACTIVE, you would specify:

    "Filters": [ { "Condition": "IS", "Key": "Status", "Value": "ACTIVE" } ]
    • (dict) --

      Describes a filter for choosing a subset of objects. Each filter consists of a condition and a match statement. The condition is either IS or IS_NOT , which specifies whether to include or exclude the objects that match the statement, respectively. The match statement consists of a key and a value.

      • Key (string) -- [REQUIRED]

        The name of the parameter to filter on.

      • Value (string) -- [REQUIRED]

        The value to match.

      • Condition (string) -- [REQUIRED]

        The condition to apply. To include the objects that match the statement, specify IS . To exclude matching objects, specify IS_NOT .

Return type

dict

Returns

Response Syntax

{
    'Predictors': [
        {
            'PredictorArn': 'string',
            'PredictorName': 'string',
            'DatasetGroupArn': 'string',
            'Status': 'string',
            'Message': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModificationTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • Predictors (list) --

      An array of objects that summarize each predictor's properties.

      • (dict) --

        Provides a summary of the predictor properties that are used in the ListPredictors operation. To get the complete set of properties, call the DescribePredictor operation, and provide the listed PredictorArn .

        • PredictorArn (string) --

          The ARN of the predictor.

        • PredictorName (string) --

          The name of the predictor.

        • DatasetGroupArn (string) --

          The Amazon Resource Name (ARN) of the dataset group that contains the data used to train the predictor.

        • Status (string) --

          The status of the predictor. States include:

          • ACTIVE
          • CREATE_PENDING , CREATE_IN_PROGRESS , CREATE_FAILED
          • DELETE_PENDING , DELETE_IN_PROGRESS , DELETE_FAILED
          • UPDATE_PENDING , UPDATE_IN_PROGRESS , UPDATE_FAILED

          Note

          The Status of the predictor must be ACTIVE before you can use the predictor to create a forecast.

        • Message (string) --

          If an error occurred, an informational message about the error.

        • CreationTime (datetime) --

          When the model training task was created.

        • LastModificationTime (datetime) --

          Initially, the same as CreationTime (status is CREATE_PENDING ). Updated when training starts (status changed to CREATE_IN_PROGRESS ), and when training is complete (status changed to ACTIVE ) or fails (status changed to CREATE_FAILED ).

    • NextToken (string) --

      If the response is truncated, Amazon Forecast returns this token. To retrieve the next set of results, use the token in the next request.

update_dataset_group(**kwargs)

Replaces the datasets in a dataset group with the specified datasets.

Note

The Status of the dataset group must be ACTIVE before you can use the dataset group to create a predictor. Use the DescribeDatasetGroup operation to get the status.

See also: AWS API Documentation

Request Syntax

response = client.update_dataset_group(
    DatasetGroupArn='string',
    DatasetArns=[
        'string',
    ]
)
Parameters
  • DatasetGroupArn (string) --

    [REQUIRED]

    The ARN of the dataset group.

  • DatasetArns (list) --

    [REQUIRED]

    An array of the Amazon Resource Names (ARNs) of the datasets to add to the dataset group.

    • (string) --
Return type

dict

Returns

Response Syntax

{}

Response Structure

  • (dict) --

Paginators

The available paginators are:

class ForecastService.Paginator.ListDatasetGroups
paginator = client.get_paginator('list_dataset_groups')
paginate(**kwargs)

Creates an iterator that will paginate through responses from ForecastService.Client.list_dataset_groups().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
PaginationConfig (dict) --

A dictionary that provides parameters to control pagination.

  • MaxItems (integer) --

    The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

  • PageSize (integer) --

    The size of each page.

  • StartingToken (string) --

    A token to specify where to start paginating. This is the NextToken from a previous response.

Return type
dict
Returns
Response Syntax
{
    'DatasetGroups': [
        {
            'DatasetGroupArn': 'string',
            'DatasetGroupName': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModificationTime': datetime(2015, 1, 1)
        },
    ],

}

Response Structure

  • (dict) --
    • DatasetGroups (list) --

      An array of objects that summarize each dataset group's properties.

      • (dict) --

        Provides a summary of the dataset group properties used in the ListDatasetGroups operation. To get the complete set of properties, call the DescribeDatasetGroup operation, and provide the DatasetGroupArn .

        • DatasetGroupArn (string) --

          The Amazon Resource Name (ARN) of the dataset group.

        • DatasetGroupName (string) --

          The name of the dataset group.

        • CreationTime (datetime) --

          When the dataset group was created.

        • LastModificationTime (datetime) --

          When the dataset group was created or last updated from a call to the UpdateDatasetGroup operation. While the dataset group is being updated, LastModificationTime is the current time of the ListDatasetGroups call.

class ForecastService.Paginator.ListDatasetImportJobs
paginator = client.get_paginator('list_dataset_import_jobs')
paginate(**kwargs)

Creates an iterator that will paginate through responses from ForecastService.Client.list_dataset_import_jobs().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    Filters=[
        {
            'Key': 'string',
            'Value': 'string',
            'Condition': 'IS'|'IS_NOT'
        },
    ],
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • Filters (list) --

    An array of filters. For each filter, you provide a condition and a match statement. The condition is either IS or IS_NOT , which specifies whether to include or exclude the datasets that match the statement from the list, respectively. The match statement consists of a key and a value.

    Filter properties
    • Condition - The condition to apply. Valid values are IS and IS_NOT . To include the datasets that match the statement, specify IS . To exclude matching datasets, specify IS_NOT .
    • Key - The name of the parameter to filter on. Valid values are DatasetArn and Status .
    • Value - The value to match.

    For example, to list all dataset import jobs whose status is ACTIVE, you specify the following filter:

    "Filters": [ { "Condition": "IS", "Key": "Status", "Value": "ACTIVE" } ]
    • (dict) --

      Describes a filter for choosing a subset of objects. Each filter consists of a condition and a match statement. The condition is either IS or IS_NOT , which specifies whether to include or exclude the objects that match the statement, respectively. The match statement consists of a key and a value.

      • Key (string) -- [REQUIRED]

        The name of the parameter to filter on.

      • Value (string) -- [REQUIRED]

        The value to match.

      • Condition (string) -- [REQUIRED]

        The condition to apply. To include the objects that match the statement, specify IS . To exclude matching objects, specify IS_NOT .

  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'DatasetImportJobs': [
        {
            'DatasetImportJobArn': 'string',
            'DatasetImportJobName': 'string',
            'DataSource': {
                'S3Config': {
                    'Path': 'string',
                    'RoleArn': 'string',
                    'KMSKeyArn': 'string'
                }
            },
            'Status': 'string',
            'Message': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModificationTime': datetime(2015, 1, 1)
        },
    ],

}

Response Structure

  • (dict) --

    • DatasetImportJobs (list) --

      An array of objects that summarize each dataset import job's properties.

      • (dict) --

        Provides a summary of the dataset import job properties used in the ListDatasetImportJobs operation. To get the complete set of properties, call the DescribeDatasetImportJob operation, and provide the DatasetImportJobArn .

        • DatasetImportJobArn (string) --

          The Amazon Resource Name (ARN) of the dataset import job.

        • DatasetImportJobName (string) --

          The name of the dataset import job.

        • DataSource (dict) --

          The location of the training data to import and an AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the data. The training data must be stored in an Amazon S3 bucket.

          If encryption is used, DataSource includes an AWS Key Management Service (KMS) key.

          • S3Config (dict) --

            The path to the training data stored in an Amazon Simple Storage Service (Amazon S3) bucket along with the credentials to access the data.

            • Path (string) --

              The path to an Amazon Simple Storage Service (Amazon S3) bucket or file(s) in an Amazon S3 bucket.

            • RoleArn (string) --

              The ARN of the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the Amazon S3 bucket or files. If you provide a value for the KMSKeyArn key, the role must allow access to the key.

              Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an InvalidInputException error.

            • KMSKeyArn (string) --

              The Amazon Resource Name (ARN) of an AWS Key Management Service (KMS) key.

        • Status (string) --

          The status of the dataset import job. The status is reflected in the status of the dataset. For example, when the import job status is CREATE_IN_PROGRESS , the status of the dataset is UPDATE_IN_PROGRESS . States include:

          • ACTIVE
          • CREATE_PENDING , CREATE_IN_PROGRESS , CREATE_FAILED
          • DELETE_PENDING , DELETE_IN_PROGRESS , DELETE_FAILED
        • Message (string) --

          If an error occurred, an informational message about the error.

        • CreationTime (datetime) --

          When the dataset import job was created.

        • LastModificationTime (datetime) --

          The last time that the dataset was modified. The time depends on the status of the job, as follows:

          • CREATE_PENDING - The same time as CreationTime .
          • CREATE_IN_PROGRESS - The current timestamp.
          • ACTIVE or CREATE_FAILED - When the job finished or failed.

class ForecastService.Paginator.ListDatasets
paginator = client.get_paginator('list_datasets')
paginate(**kwargs)

Creates an iterator that will paginate through responses from ForecastService.Client.list_datasets().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
PaginationConfig (dict) --

A dictionary that provides parameters to control pagination.

  • MaxItems (integer) --

    The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

  • PageSize (integer) --

    The size of each page.

  • StartingToken (string) --

    A token to specify where to start paginating. This is the NextToken from a previous response.

Return type
dict
Returns
Response Syntax
{
    'Datasets': [
        {
            'DatasetArn': 'string',
            'DatasetName': 'string',
            'DatasetType': 'TARGET_TIME_SERIES'|'RELATED_TIME_SERIES'|'ITEM_METADATA',
            'Domain': 'RETAIL'|'CUSTOM'|'INVENTORY_PLANNING'|'EC2_CAPACITY'|'WORK_FORCE'|'WEB_TRAFFIC'|'METRICS',
            'CreationTime': datetime(2015, 1, 1),
            'LastModificationTime': datetime(2015, 1, 1)
        },
    ],

}

Response Structure

  • (dict) --
    • Datasets (list) --

      An array of objects that summarize each dataset's properties.

      • (dict) --

        Provides a summary of the dataset properties used in the ListDatasets operation. To get the complete set of properties, call the DescribeDataset operation, and provide the DatasetArn .

        • DatasetArn (string) --

          The Amazon Resource Name (ARN) of the dataset.

        • DatasetName (string) --

          The name of the dataset.

        • DatasetType (string) --

          The dataset type.

        • Domain (string) --

          The domain associated with the dataset.

        • CreationTime (datetime) --

          When the dataset was created.

        • LastModificationTime (datetime) --

          When you create a dataset, LastModificationTime is the same as CreationTime . While data is being imported to the dataset, LastModificationTime is the current time of the ListDatasets call. After a CreateDatasetImportJob operation has finished, LastModificationTime is when the import job completed or failed.

class ForecastService.Paginator.ListForecastExportJobs
paginator = client.get_paginator('list_forecast_export_jobs')
paginate(**kwargs)

Creates an iterator that will paginate through responses from ForecastService.Client.list_forecast_export_jobs().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    Filters=[
        {
            'Key': 'string',
            'Value': 'string',
            'Condition': 'IS'|'IS_NOT'
        },
    ],
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • Filters (list) --

    An array of filters. For each filter, you provide a condition and a match statement. The condition is either IS or IS_NOT , which specifies whether to include or exclude the forecast export jobs that match the statement from the list, respectively. The match statement consists of a key and a value.

    Filter properties
    • Condition - The condition to apply. Valid values are IS and IS_NOT . To include the forecast export jobs that match the statement, specify IS . To exclude matching forecast export jobs, specify IS_NOT .
    • Key - The name of the parameter to filter on. Valid values are ForecastArn and Status .
    • Value - The value to match.

    For example, to list all jobs that export a forecast named electricityforecast , specify the following filter:

    "Filters": [ { "Condition": "IS", "Key": "ForecastArn", "Value": "arn:aws:forecast:us-west-2:<acct-id>:forecast/electricityforecast" } ]
    • (dict) --

      Describes a filter for choosing a subset of objects. Each filter consists of a condition and a match statement. The condition is either IS or IS_NOT , which specifies whether to include or exclude the objects that match the statement, respectively. The match statement consists of a key and a value.

      • Key (string) -- [REQUIRED]

        The name of the parameter to filter on.

      • Value (string) -- [REQUIRED]

        The value to match.

      • Condition (string) -- [REQUIRED]

        The condition to apply. To include the objects that match the statement, specify IS . To exclude matching objects, specify IS_NOT .

  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'ForecastExportJobs': [
        {
            'ForecastExportJobArn': 'string',
            'ForecastExportJobName': 'string',
            'Destination': {
                'S3Config': {
                    'Path': 'string',
                    'RoleArn': 'string',
                    'KMSKeyArn': 'string'
                }
            },
            'Status': 'string',
            'Message': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModificationTime': datetime(2015, 1, 1)
        },
    ],

}

Response Structure

  • (dict) --

    • ForecastExportJobs (list) --

      An array of objects that summarize each export job's properties.

      • (dict) --

        Provides a summary of the forecast export job properties used in the ListForecastExportJobs operation. To get the complete set of properties, call the DescribeForecastExportJob operation, and provide the listed ForecastExportJobArn .

        • ForecastExportJobArn (string) --

          The Amazon Resource Name (ARN) of the forecast export job.

        • ForecastExportJobName (string) --

          The name of the forecast export job.

        • Destination (dict) --

          The path to the Amazon Simple Storage Service (Amazon S3) bucket where the forecast is exported.

          • S3Config (dict) --

            The path to an Amazon Simple Storage Service (Amazon S3) bucket along with the credentials to access the bucket.

            • Path (string) --

              The path to an Amazon Simple Storage Service (Amazon S3) bucket or file(s) in an Amazon S3 bucket.

            • RoleArn (string) --

              The ARN of the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the Amazon S3 bucket or files. If you provide a value for the KMSKeyArn key, the role must allow access to the key.

              Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an InvalidInputException error.

            • KMSKeyArn (string) --

              The Amazon Resource Name (ARN) of an AWS Key Management Service (KMS) key.

        • Status (string) --

          The status of the forecast export job. States include:

          • ACTIVE
          • CREATE_PENDING , CREATE_IN_PROGRESS , CREATE_FAILED
          • DELETE_PENDING , DELETE_IN_PROGRESS , DELETE_FAILED

          Note

          The Status of the forecast export job must be ACTIVE before you can access the forecast in your S3 bucket.

        • Message (string) --

          If an error occurred, an informational message about the error.

        • CreationTime (datetime) --

          When the forecast export job was created.

        • LastModificationTime (datetime) --

          When the last successful export job finished.

class ForecastService.Paginator.ListForecasts
paginator = client.get_paginator('list_forecasts')
paginate(**kwargs)

Creates an iterator that will paginate through responses from ForecastService.Client.list_forecasts().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    Filters=[
        {
            'Key': 'string',
            'Value': 'string',
            'Condition': 'IS'|'IS_NOT'
        },
    ],
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • Filters (list) --

    An array of filters. For each filter, you provide a condition and a match statement. The condition is either IS or IS_NOT , which specifies whether to include or exclude the forecasts that match the statement from the list, respectively. The match statement consists of a key and a value.

    Filter properties
    • Condition - The condition to apply. Valid values are IS and IS_NOT . To include the forecasts that match the statement, specify IS . To exclude matching forecasts, specify IS_NOT .
    • Key - The name of the parameter to filter on. Valid values are DatasetGroupArn , PredictorArn , and Status .
    • Value - The value to match.

    For example, to list all forecasts whose status is not ACTIVE, you would specify:

    "Filters": [ { "Condition": "IS_NOT", "Key": "Status", "Value": "ACTIVE" } ]
    • (dict) --

      Describes a filter for choosing a subset of objects. Each filter consists of a condition and a match statement. The condition is either IS or IS_NOT , which specifies whether to include or exclude the objects that match the statement, respectively. The match statement consists of a key and a value.

      • Key (string) -- [REQUIRED]

        The name of the parameter to filter on.

      • Value (string) -- [REQUIRED]

        The value to match.

      • Condition (string) -- [REQUIRED]

        The condition to apply. To include the objects that match the statement, specify IS . To exclude matching objects, specify IS_NOT .

  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'Forecasts': [
        {
            'ForecastArn': 'string',
            'ForecastName': 'string',
            'PredictorArn': 'string',
            'DatasetGroupArn': 'string',
            'Status': 'string',
            'Message': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModificationTime': datetime(2015, 1, 1)
        },
    ],

}

Response Structure

  • (dict) --

    • Forecasts (list) --

      An array of objects that summarize each forecast's properties.

      • (dict) --

        Provides a summary of the forecast properties used in the ListForecasts operation. To get the complete set of properties, call the DescribeForecast operation, and provide the ForecastArn that is listed in the summary.

        • ForecastArn (string) --

          The ARN of the forecast.

        • ForecastName (string) --

          The name of the forecast.

        • PredictorArn (string) --

          The ARN of the predictor used to generate the forecast.

        • DatasetGroupArn (string) --

          The Amazon Resource Name (ARN) of the dataset group that provided the data used to train the predictor.

        • Status (string) --

          The status of the forecast. States include:

          • ACTIVE
          • CREATE_PENDING , CREATE_IN_PROGRESS , CREATE_FAILED
          • DELETE_PENDING , DELETE_IN_PROGRESS , DELETE_FAILED

          Note

          The Status of the forecast must be ACTIVE before you can query or export the forecast.

        • Message (string) --

          If an error occurred, an informational message about the error.

        • CreationTime (datetime) --

          When the forecast creation task was created.

        • LastModificationTime (datetime) --

          Initially, the same as CreationTime (status is CREATE_PENDING ). Updated when inference (creating the forecast) starts (status changed to CREATE_IN_PROGRESS ), and when inference is complete (status changed to ACTIVE ) or fails (status changed to CREATE_FAILED ).

class ForecastService.Paginator.ListPredictors
paginator = client.get_paginator('list_predictors')
paginate(**kwargs)

Creates an iterator that will paginate through responses from ForecastService.Client.list_predictors().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    Filters=[
        {
            'Key': 'string',
            'Value': 'string',
            'Condition': 'IS'|'IS_NOT'
        },
    ],
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • Filters (list) --

    An array of filters. For each filter, you provide a condition and a match statement. The condition is either IS or IS_NOT , which specifies whether to include or exclude the predictors that match the statement from the list, respectively. The match statement consists of a key and a value.

    Filter properties
    • Condition - The condition to apply. Valid values are IS and IS_NOT . To include the predictors that match the statement, specify IS . To exclude matching predictors, specify IS_NOT .
    • Key - The name of the parameter to filter on. Valid values are DatasetGroupArn and Status .
    • Value - The value to match.

    For example, to list all predictors whose status is ACTIVE, you would specify:

    "Filters": [ { "Condition": "IS", "Key": "Status", "Value": "ACTIVE" } ]
    • (dict) --

      Describes a filter for choosing a subset of objects. Each filter consists of a condition and a match statement. The condition is either IS or IS_NOT , which specifies whether to include or exclude the objects that match the statement, respectively. The match statement consists of a key and a value.

      • Key (string) -- [REQUIRED]

        The name of the parameter to filter on.

      • Value (string) -- [REQUIRED]

        The value to match.

      • Condition (string) -- [REQUIRED]

        The condition to apply. To include the objects that match the statement, specify IS . To exclude matching objects, specify IS_NOT .

  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'Predictors': [
        {
            'PredictorArn': 'string',
            'PredictorName': 'string',
            'DatasetGroupArn': 'string',
            'Status': 'string',
            'Message': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModificationTime': datetime(2015, 1, 1)
        },
    ],

}

Response Structure

  • (dict) --

    • Predictors (list) --

      An array of objects that summarize each predictor's properties.

      • (dict) --

        Provides a summary of the predictor properties that are used in the ListPredictors operation. To get the complete set of properties, call the DescribePredictor operation, and provide the listed PredictorArn .

        • PredictorArn (string) --

          The ARN of the predictor.

        • PredictorName (string) --

          The name of the predictor.

        • DatasetGroupArn (string) --

          The Amazon Resource Name (ARN) of the dataset group that contains the data used to train the predictor.

        • Status (string) --

          The status of the predictor. States include:

          • ACTIVE
          • CREATE_PENDING , CREATE_IN_PROGRESS , CREATE_FAILED
          • DELETE_PENDING , DELETE_IN_PROGRESS , DELETE_FAILED
          • UPDATE_PENDING , UPDATE_IN_PROGRESS , UPDATE_FAILED

          Note

          The Status of the predictor must be ACTIVE before you can use the predictor to create a forecast.

        • Message (string) --

          If an error occurred, an informational message about the error.

        • CreationTime (datetime) --

          When the model training task was created.

        • LastModificationTime (datetime) --

          Initially, the same as CreationTime (status is CREATE_PENDING ). Updated when training starts (status changed to CREATE_IN_PROGRESS ), and when training is complete (status changed to ACTIVE ) or fails (status changed to CREATE_FAILED ).