PersonalizeRuntime

Client

class PersonalizeRuntime.Client

A low-level client representing Amazon Personalize Runtime:

import boto3

client = boto3.client('personalize-runtime')

These are the available methods:

can_paginate(operation_name)

Check if an operation can be paginated.

Parameters
operation_name (string) -- The operation name. This is the same name as the method name on the client. For example, if the method name is create_foo, and you'd normally invoke the operation as client.create_foo(**kwargs), if the create_foo operation can be paginated, you can use the call client.get_paginator("create_foo").
Returns
True if the operation can be paginated, False otherwise.
generate_presigned_url(ClientMethod, Params=None, ExpiresIn=3600, HttpMethod=None)

Generate a presigned url given a client, its method, and arguments

Parameters
  • ClientMethod (string) -- The client method to presign for
  • Params (dict) -- The parameters normally passed to ClientMethod.
  • ExpiresIn (int) -- The number of seconds the presigned url is valid for. By default it expires in an hour (3600 seconds)
  • HttpMethod (string) -- The http method to use on the generated url. By default, the http method is whatever is used in the method's model.
Returns

The presigned url

get_paginator(operation_name)

Create a paginator for an operation.

Parameters
operation_name (string) -- The operation name. This is the same name as the method name on the client. For example, if the method name is create_foo, and you'd normally invoke the operation as client.create_foo(**kwargs), if the create_foo operation can be paginated, you can use the call client.get_paginator("create_foo").
Raises OperationNotPageableError
Raised if the operation is not pageable. You can use the client.can_paginate method to check if an operation is pageable.
Return type
L{botocore.paginate.Paginator}
Returns
A paginator object.
get_personalized_ranking(**kwargs)

Re-ranks a list of recommended items for the given user. The first item in the list is deemed the most likely item to be of interest to the user.

Note

The solution backing the campaign must have been created using a recipe of type PERSONALIZED_RANKING.

See also: AWS API Documentation

Request Syntax

response = client.get_personalized_ranking(
    campaignArn='string',
    inputList=[
        'string',
    ],
    userId='string',
    context={
        'string': 'string'
    }
)
Parameters
  • campaignArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of the campaign to use for generating the personalized ranking.

  • inputList (list) --

    [REQUIRED]

    A list of items (itemId's) to rank. If an item was not included in the training dataset, the item is appended to the end of the reranked list. The maximum is 500.

    • (string) --
  • userId (string) --

    [REQUIRED]

    The user for which you want the campaign to provide a personalized ranking.

  • context (dict) --

    The contextual metadata to use when getting recommendations. Contextual metadata includes any interaction information that might be relevant when getting a user's recommendations, such as the user's current location or device type.

    • (string) --
      • (string) --
Return type

dict

Returns

Response Syntax

{
    'personalizedRanking': [
        {
            'itemId': 'string',
            'score': 123.0
        },
    ]
}

Response Structure

  • (dict) --

    • personalizedRanking (list) --

      A list of items in order of most likely interest to the user. The maximum is 500.

      • (dict) --

        An object that identifies an item.

        The and APIs return a list of PredictedItem s.

        • itemId (string) --

          The recommended item ID.

        • score (float) --

          A numeric representation of the model's certainty that the item will be the next user selection. For more information on scoring logic, see how-scores-work .

Exceptions

  • PersonalizeRuntime.Client.exceptions.InvalidInputException
  • PersonalizeRuntime.Client.exceptions.ResourceNotFoundException
get_recommendations(**kwargs)

Returns a list of recommended items. The required input depends on the recipe type used to create the solution backing the campaign, as follows:

  • RELATED_ITEMS - itemId required, userId not used
  • USER_PERSONALIZATION - itemId optional, userId required

Note

Campaigns that are backed by a solution created using a recipe of type PERSONALIZED_RANKING use the API.

See also: AWS API Documentation

Request Syntax

response = client.get_recommendations(
    campaignArn='string',
    itemId='string',
    userId='string',
    numResults=123,
    context={
        'string': 'string'
    },
    filterArn='string'
)
Parameters
  • campaignArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of the campaign to use for getting recommendations.

  • itemId (string) --

    The item ID to provide recommendations for.

    Required for RELATED_ITEMS recipe type.

  • userId (string) --

    The user ID to provide recommendations for.

    Required for USER_PERSONALIZATION recipe type.

  • numResults (integer) -- The number of results to return. The default is 25. The maximum is 500.
  • context (dict) --

    The contextual metadata to use when getting recommendations. Contextual metadata includes any interaction information that might be relevant when getting a user's recommendations, such as the user's current location or device type.

    • (string) --
      • (string) --
  • filterArn (string) -- The ARN of the filter to apply to the returned recommendations. For more information, see Using Filters with Amazon Personalize.
Return type

dict

Returns

Response Syntax

{
    'itemList': [
        {
            'itemId': 'string',
            'score': 123.0
        },
    ]
}

Response Structure

  • (dict) --

    • itemList (list) --

      A list of recommendations sorted in ascending order by prediction score. There can be a maximum of 500 items in the list.

      • (dict) --

        An object that identifies an item.

        The and APIs return a list of PredictedItem s.

        • itemId (string) --

          The recommended item ID.

        • score (float) --

          A numeric representation of the model's certainty that the item will be the next user selection. For more information on scoring logic, see how-scores-work .

Exceptions

  • PersonalizeRuntime.Client.exceptions.InvalidInputException
  • PersonalizeRuntime.Client.exceptions.ResourceNotFoundException
get_waiter(waiter_name)

Returns an object that can wait for some condition.

Parameters
waiter_name (str) -- The name of the waiter to get. See the waiters section of the service docs for a list of available waiters.
Returns
The specified waiter object.
Return type
botocore.waiter.Waiter

Paginators

The available paginators are: