Amazon DynamoDB#
By following this guide, you will learn how to use the
DynamoDB.ServiceResource
and DynamoDB.Table
resources in order to create tables, write items to tables, modify existing
items, retrieve items, and query/filter the items in the table.
Creating a new table#
In order to create a new table, use the
DynamoDB.ServiceResource.create_table()
method:
import boto3
# Get the service resource.
dynamodb = boto3.resource('dynamodb')
# Create the DynamoDB table.
table = dynamodb.create_table(
TableName='users',
KeySchema=[
{
'AttributeName': 'username',
'KeyType': 'HASH'
},
{
'AttributeName': 'last_name',
'KeyType': 'RANGE'
}
],
AttributeDefinitions=[
{
'AttributeName': 'username',
'AttributeType': 'S'
},
{
'AttributeName': 'last_name',
'AttributeType': 'S'
},
],
ProvisionedThroughput={
'ReadCapacityUnits': 5,
'WriteCapacityUnits': 5
}
)
# Wait until the table exists.
table.wait_until_exists()
# Print out some data about the table.
print(table.item_count)
Expected output:
0
This creates a table named users
that respectively has the hash and
range primary keys username
and last_name
.
This method will return a DynamoDB.Table
resource to call
additional methods on the created table.
Using an existing table#
It is also possible to create a DynamoDB.Table
resource from
an existing table:
import boto3
# Get the service resource.
dynamodb = boto3.resource('dynamodb')
# Instantiate a table resource object without actually
# creating a DynamoDB table. Note that the attributes of this table
# are lazy-loaded: a request is not made nor are the attribute
# values populated until the attributes
# on the table resource are accessed or its load() method is called.
table = dynamodb.Table('users')
# Print out some data about the table.
# This will cause a request to be made to DynamoDB and its attribute
# values will be set based on the response.
print(table.creation_date_time)
Expected output (Please note that the actual times will probably not match up):
2015-06-26 12:42:45.149000-07:00
Creating a new item#
Once you have a DynamoDB.Table
resource you can add new items
to the table using DynamoDB.Table.put_item()
:
table.put_item(
Item={
'username': 'janedoe',
'first_name': 'Jane',
'last_name': 'Doe',
'age': 25,
'account_type': 'standard_user',
}
)
For all of the valid types that can be used for an item, refer to Valid DynamoDB types.
Getting an item#
You can then retrieve the object using DynamoDB.Table.get_item()
:
response = table.get_item(
Key={
'username': 'janedoe',
'last_name': 'Doe'
}
)
item = response['Item']
print(item)
Expected output:
{u'username': u'janedoe',
u'first_name': u'Jane',
u'last_name': u'Doe',
u'account_type': u'standard_user',
u'age': Decimal('25')}
Updating an item#
You can then update attributes of the item in the table:
table.update_item(
Key={
'username': 'janedoe',
'last_name': 'Doe'
},
UpdateExpression='SET age = :val1',
ExpressionAttributeValues={
':val1': 26
}
)
Then if you retrieve the item again, it will be updated appropriately:
response = table.get_item(
Key={
'username': 'janedoe',
'last_name': 'Doe'
}
)
item = response['Item']
print(item)
Expected output:
{u'username': u'janedoe',
u'first_name': u'Jane',
u'last_name': u'Doe',
u'account_type': u'standard_user',
u'age': Decimal('26')}
Deleting an item#
You can also delete the item using DynamoDB.Table.delete_item()
:
table.delete_item(
Key={
'username': 'janedoe',
'last_name': 'Doe'
}
)
Batch writing#
If you are loading a lot of data at a time, you can make use of
DynamoDB.Table.batch_writer()
so you can both speed up the process and
reduce the number of write requests made to the service.
This method returns a handle to a batch writer object that will automatically
handle buffering and sending items in batches. In addition, the
batch writer will also automatically handle any unprocessed items and
resend them as needed. All you need to do is call put_item
for any
items you want to add, and delete_item
for any items you want to delete:
with table.batch_writer() as batch:
batch.put_item(
Item={
'account_type': 'standard_user',
'username': 'johndoe',
'first_name': 'John',
'last_name': 'Doe',
'age': 25,
'address': {
'road': '1 Jefferson Street',
'city': 'Los Angeles',
'state': 'CA',
'zipcode': 90001
}
}
)
batch.put_item(
Item={
'account_type': 'super_user',
'username': 'janedoering',
'first_name': 'Jane',
'last_name': 'Doering',
'age': 40,
'address': {
'road': '2 Washington Avenue',
'city': 'Seattle',
'state': 'WA',
'zipcode': 98109
}
}
)
batch.put_item(
Item={
'account_type': 'standard_user',
'username': 'bobsmith',
'first_name': 'Bob',
'last_name': 'Smith',
'age': 18,
'address': {
'road': '3 Madison Lane',
'city': 'Louisville',
'state': 'KY',
'zipcode': 40213
}
}
)
batch.put_item(
Item={
'account_type': 'super_user',
'username': 'alicedoe',
'first_name': 'Alice',
'last_name': 'Doe',
'age': 27,
'address': {
'road': '1 Jefferson Street',
'city': 'Los Angeles',
'state': 'CA',
'zipcode': 90001
}
}
)
The batch writer is even able to handle a very large amount of writes to the table.
with table.batch_writer() as batch:
for i in range(50):
batch.put_item(
Item={
'account_type': 'anonymous',
'username': 'user' + str(i),
'first_name': 'unknown',
'last_name': 'unknown'
}
)
The batch writer can help to de-duplicate request by specifying overwrite_by_pkeys=['partition_key', 'sort_key']
if you want to bypass no duplication limitation of single batch write request as
botocore.exceptions.ClientError: An error occurred (ValidationException) when calling the BatchWriteItem operation: Provided list of item keys contains duplicates
.
It will drop request items in the buffer if their primary keys(composite) values are the same as newly added one, as eventually consistent with streams of individual put/delete operations on the same item.
with table.batch_writer(overwrite_by_pkeys=['partition_key', 'sort_key']) as batch:
batch.put_item(
Item={
'partition_key': 'p1',
'sort_key': 's1',
'other': '111',
}
)
batch.put_item(
Item={
'partition_key': 'p1',
'sort_key': 's1',
'other': '222',
}
)
batch.delete_item(
Key={
'partition_key': 'p1',
'sort_key': 's2'
}
)
batch.put_item(
Item={
'partition_key': 'p1',
'sort_key': 's2',
'other': '444',
}
)
after de-duplicate:
batch.put_item(
Item={
'partition_key': 'p1',
'sort_key': 's1',
'other': '222',
}
)
batch.put_item(
Item={
'partition_key': 'p1',
'sort_key': 's2',
'other': '444',
}
)
Querying and scanning#
With the table full of items, you can then query or scan the items in the table
using the DynamoDB.Table.query()
or DynamoDB.Table.scan()
methods respectively. To add conditions to scanning and querying the table,
you will need to import the boto3.dynamodb.conditions.Key
and
boto3.dynamodb.conditions.Attr
classes. The
boto3.dynamodb.conditions.Key
should be used when the
condition is related to the key of the item.
The boto3.dynamodb.conditions.Attr
should be used when the
condition is related to an attribute of the item:
from boto3.dynamodb.conditions import Key, Attr
This queries for all of the users whose username
key equals johndoe
:
response = table.query(
KeyConditionExpression=Key('username').eq('johndoe')
)
items = response['Items']
print(items)
Expected output:
[{u'username': u'johndoe',
u'first_name': u'John',
u'last_name': u'Doe',
u'account_type': u'standard_user',
u'age': Decimal('25'),
u'address': {u'city': u'Los Angeles',
u'state': u'CA',
u'zipcode': Decimal('90001'),
u'road': u'1 Jefferson Street'}}]
Similarly you can scan the table based on attributes of the items. For
example, this scans for all the users whose age
is less than 27
:
response = table.scan(
FilterExpression=Attr('age').lt(27)
)
items = response['Items']
print(items)
Expected output:
[{u'username': u'johndoe',
u'first_name': u'John',
u'last_name': u'Doe',
u'account_type': u'standard_user',
u'age': Decimal('25'),
u'address': {u'city': u'Los Angeles',
u'state': u'CA',
u'zipcode': Decimal('90001'),
u'road': u'1 Jefferson Street'}},
{u'username': u'bobsmith',
u'first_name': u'Bob',
u'last_name': u'Smith',
u'account_type': u'standard_user',
u'age': Decimal('18'),
u'address': {u'city': u'Louisville',
u'state': u'KY',
u'zipcode': Decimal('40213'),
u'road': u'3 Madison Lane'}}]
You are also able to chain conditions together using the logical operators:
&
(and), |
(or), and ~
(not). For example, this scans for all
users whose first_name
starts with J
and whose account_type
is
super_user
:
response = table.scan(
FilterExpression=Attr('first_name').begins_with('J') & Attr('account_type').eq('super_user')
)
items = response['Items']
print(items)
Expected output:
[{u'username': u'janedoering',
u'first_name': u'Jane',
u'last_name': u'Doering',
u'account_type': u'super_user',
u'age': Decimal('40'),
u'address': {u'city': u'Seattle',
u'state': u'WA',
u'zipcode': Decimal('98109'),
u'road': u'2 Washington Avenue'}}]
You can even scan based on conditions of a nested attribute. For example this
scans for all users whose state
in their address
is CA
:
response = table.scan(
FilterExpression=Attr('address.state').eq('CA')
)
items = response['Items']
print(items)
Expected output:
[{u'username': u'johndoe',
u'first_name': u'John',
u'last_name': u'Doe',
u'account_type': u'standard_user',
u'age': Decimal('25'),
u'address': {u'city': u'Los Angeles',
u'state': u'CA',
u'zipcode': Decimal('90001'),
u'road': u'1 Jefferson Street'}},
{u'username': u'alicedoe',
u'first_name': u'Alice',
u'last_name': u'Doe',
u'account_type': u'super_user',
u'age': Decimal('27'),
u'address': {u'city': u'Los Angeles',
u'state': u'CA',
u'zipcode': Decimal('90001'),
u'road': u'1 Jefferson Street'}}]
For more information on the various conditions you can use for queries and scans, refer to DynamoDB conditions.
Deleting a table#
Finally, if you want to delete your table call
DynamoDB.Table.delete()
:
table.delete()