Glue / Client / start_job_run
start_job_run#
- Glue.Client.start_job_run(**kwargs)#
Starts a job run using a job definition.
See also: AWS API Documentation
Request Syntax
response = client.start_job_run( JobName='string', JobRunId='string', Arguments={ 'string': 'string' }, AllocatedCapacity=123, Timeout=123, MaxCapacity=123.0, SecurityConfiguration='string', NotificationProperty={ 'NotifyDelayAfter': 123 }, WorkerType='Standard'|'G.1X'|'G.2X'|'G.025X'|'G.4X'|'G.8X'|'Z.2X', NumberOfWorkers=123, ExecutionClass='FLEX'|'STANDARD' )
- Parameters:
JobName (string) –
[REQUIRED]
The name of the job definition to use.
JobRunId (string) – The ID of a previous
JobRun
to retry.Arguments (dict) –
The job arguments associated with this run. For this job run, they replace the default arguments set in the job definition itself.
You can specify arguments here that your own job-execution script consumes, as well as arguments that Glue itself consumes.
Job arguments may be logged. Do not pass plaintext secrets as arguments. Retrieve secrets from a Glue Connection, Secrets Manager or other secret management mechanism if you intend to keep them within the Job.
For information about how to specify and consume your own Job arguments, see the Calling Glue APIs in Python topic in the developer guide.
For information about the arguments you can provide to this field when configuring Spark jobs, see the Special Parameters Used by Glue topic in the developer guide.
For information about the arguments you can provide to this field when configuring Ray jobs, see Using job parameters in Ray jobs in the developer guide.
(string) –
(string) –
AllocatedCapacity (integer) –
This field is deprecated. Use
MaxCapacity
instead.The number of Glue data processing units (DPUs) to allocate to this JobRun. You can allocate a minimum of 2 DPUs; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the Glue pricing page.
Timeout (integer) –
The
JobRun
timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and entersTIMEOUT
status. This value overrides the timeout value set in the parent job.Streaming jobs do not have a timeout. The default for non-streaming jobs is 2,880 minutes (48 hours).
MaxCapacity (float) –
For Glue version 1.0 or earlier jobs, using the standard worker type, the number of Glue data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the Glue pricing page.
For Glue version 2.0+ jobs, you cannot specify a
Maximum capacity
. Instead, you should specify aWorker type
and theNumber of workers
.Do not set
MaxCapacity
if usingWorkerType
andNumberOfWorkers
.The value that can be allocated for
MaxCapacity
depends on whether you are running a Python shell job, an Apache Spark ETL job, or an Apache Spark streaming ETL job:When you specify a Python shell job ( ``JobCommand.Name``=”pythonshell”), you can allocate either 0.0625 or 1 DPU. The default is 0.0625 DPU.
When you specify an Apache Spark ETL job ( ``JobCommand.Name``=”glueetl”) or Apache Spark streaming ETL job ( ``JobCommand.Name``=”gluestreaming”), you can allocate from 2 to 100 DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation.
SecurityConfiguration (string) – The name of the
SecurityConfiguration
structure to be used with this job run.NotificationProperty (dict) –
Specifies configuration properties of a job run notification.
NotifyDelayAfter (integer) –
After a job run starts, the number of minutes to wait before sending a job run delay notification.
WorkerType (string) –
The type of predefined worker that is allocated when a job runs. Accepts a value of Standard, G.1X, G.2X, or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.
For the
Standard
worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker.For the
G.1X
worker type, each worker maps to 1 DPU (4 vCPU, 16 GB of memory, 64 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs.For the
G.2X
worker type, each worker maps to 2 DPU (8 vCPU, 32 GB of memory, 128 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs.For the
G.025X
worker type, each worker maps to 0.25 DPU (2 vCPU, 4 GB of memory, 64 GB disk), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.For the
Z.2X
worker type, each worker maps to 2 DPU (8vCPU, 64 GB of m emory, 128 GB disk), and provides up to 8 Ray workers (one per vCPU) based on the autoscaler.
NumberOfWorkers (integer) – The number of workers of a defined
workerType
that are allocated when a job runs.ExecutionClass (string) –
Indicates whether the job is run with a standard or flexible execution class. The standard execution-class is ideal for time-sensitive workloads that require fast job startup and dedicated resources.
The flexible execution class is appropriate for time-insensitive jobs whose start and completion times may vary.
Only jobs with Glue version 3.0 and above and command type
glueetl
will be allowed to setExecutionClass
toFLEX
. The flexible execution class is available for Spark jobs.
- Return type:
dict
- Returns:
Response Syntax
{ 'JobRunId': 'string' }
Response Structure
(dict) –
JobRunId (string) –
The ID assigned to this job run.
Exceptions
Glue.Client.exceptions.InvalidInputException
Glue.Client.exceptions.EntityNotFoundException
Glue.Client.exceptions.InternalServiceException
Glue.Client.exceptions.OperationTimeoutException
Glue.Client.exceptions.ResourceNumberLimitExceededException
Glue.Client.exceptions.ConcurrentRunsExceededException