SageMaker

Table of Contents

Client

class SageMaker.Client

A low-level client representing Amazon SageMaker Service

Provides APIs for creating and managing SageMaker resources.

Other Resources:

import boto3

client = boto3.client('sagemaker')

These are the available methods:

add_association(**kwargs)

Creates an association between the source and the destination. A source can be associated with multiple destinations, and a destination can be associated with multiple sources. An association is a lineage tracking entity. For more information, see Amazon SageMaker ML Lineage Tracking.

See also: AWS API Documentation

Request Syntax

response = client.add_association(
    SourceArn='string',
    DestinationArn='string',
    AssociationType='ContributedTo'|'AssociatedWith'|'DerivedFrom'|'Produced'
)
Parameters
  • SourceArn (string) --

    [REQUIRED]

    The ARN of the source.

  • DestinationArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of the destination.

  • AssociationType (string) --

    The type of association. The following are suggested uses for each type. Amazon SageMaker places no restrictions on their use.

    • ContributedTo - The source contributed to the destination or had a part in enabling the destination. For example, the training data contributed to the training job.
    • AssociatedWith - The source is connected to the destination. For example, an approval workflow is associated with a model deployment.
    • DerivedFrom - The destination is a modification of the source. For example, a digest output of a channel input for a processing job is derived from the original inputs.
    • Produced - The source generated the destination. For example, a training job produced a model artifact.
Return type

dict

Returns

Response Syntax

{
    'SourceArn': 'string',
    'DestinationArn': 'string'
}

Response Structure

  • (dict) --

    • SourceArn (string) --

      The ARN of the source.

    • DestinationArn (string) --

      The Amazon Resource Name (ARN) of the destination.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
  • SageMaker.Client.exceptions.ResourceLimitExceeded
add_tags(**kwargs)

Adds or overwrites one or more tags for the specified SageMaker resource. You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints.

Each tag consists of a key and an optional value. Tag keys must be unique per resource. For more information about tags, see For more information, see Amazon Web Services Tagging Strategies.

Note

Tags that you add to a hyperparameter tuning job by calling this API are also added to any training jobs that the hyperparameter tuning job launches after you call this API, but not to training jobs that the hyperparameter tuning job launched before you called this API. To make sure that the tags associated with a hyperparameter tuning job are also added to all training jobs that the hyperparameter tuning job launches, add the tags when you first create the tuning job by specifying them in the Tags parameter of CreateHyperParameterTuningJob

Note

Tags that you add to a SageMaker Studio Domain or User Profile by calling this API are also added to any Apps that the Domain or User Profile launches after you call this API, but not to Apps that the Domain or User Profile launched before you called this API. To make sure that the tags associated with a Domain or User Profile are also added to all Apps that the Domain or User Profile launches, add the tags when you first create the Domain or User Profile by specifying them in the Tags parameter of CreateDomain or CreateUserProfile.

See also: AWS API Documentation

Request Syntax

response = client.add_tags(
    ResourceArn='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • ResourceArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of the resource that you want to tag.

  • Tags (list) --

    [REQUIRED]

    An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'Tags': [
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
}

Response Structure

  • (dict) --

    • Tags (list) --

      A list of tags associated with the SageMaker resource.

      • (dict) --

        A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

        You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

        For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

        • Key (string) --

          The tag key. Tag keys must be unique per resource.

        • Value (string) --

          The tag value.

associate_trial_component(**kwargs)

Associates a trial component with a trial. A trial component can be associated with multiple trials. To disassociate a trial component from a trial, call the DisassociateTrialComponent API.

See also: AWS API Documentation

Request Syntax

response = client.associate_trial_component(
    TrialComponentName='string',
    TrialName='string'
)
Parameters
  • TrialComponentName (string) --

    [REQUIRED]

    The name of the component to associated with the trial.

  • TrialName (string) --

    [REQUIRED]

    The name of the trial to associate with.

Return type

dict

Returns

Response Syntax

{
    'TrialComponentArn': 'string',
    'TrialArn': 'string'
}

Response Structure

  • (dict) --

    • TrialComponentArn (string) --

      The Amazon Resource Name (ARN) of the trial component.

    • TrialArn (string) --

      The Amazon Resource Name (ARN) of the trial.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
  • SageMaker.Client.exceptions.ResourceLimitExceeded
batch_describe_model_package(**kwargs)

This action batch describes a list of versioned model packages

See also: AWS API Documentation

Request Syntax

response = client.batch_describe_model_package(
    ModelPackageArnList=[
        'string',
    ]
)
Parameters
ModelPackageArnList (list) --

[REQUIRED]

The list of Amazon Resource Name (ARN) of the model package groups.

  • (string) --
Return type
dict
Returns
Response Syntax
{
    'ModelPackageSummaries': {
        'string': {
            'ModelPackageGroupName': 'string',
            'ModelPackageVersion': 123,
            'ModelPackageArn': 'string',
            'ModelPackageDescription': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'InferenceSpecification': {
                'Containers': [
                    {
                        'ContainerHostname': 'string',
                        'Image': 'string',
                        'ImageDigest': 'string',
                        'ModelDataUrl': 'string',
                        'ProductId': 'string',
                        'Environment': {
                            'string': 'string'
                        },
                        'ModelInput': {
                            'DataInputConfig': 'string'
                        },
                        'Framework': 'string',
                        'FrameworkVersion': 'string',
                        'NearestModelName': 'string'
                    },
                ],
                'SupportedTransformInstanceTypes': [
                    'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
                ],
                'SupportedRealtimeInferenceInstanceTypes': [
                    'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge',
                ],
                'SupportedContentTypes': [
                    'string',
                ],
                'SupportedResponseMIMETypes': [
                    'string',
                ]
            },
            'ModelPackageStatus': 'Pending'|'InProgress'|'Completed'|'Failed'|'Deleting',
            'ModelApprovalStatus': 'Approved'|'Rejected'|'PendingManualApproval'
        }
    },
    'BatchDescribeModelPackageErrorMap': {
        'string': {
            'ErrorCode': 'string',
            'ErrorResponse': 'string'
        }
    }
}

Response Structure

  • (dict) --
    • ModelPackageSummaries (dict) --

      The summaries for the model package versions

      • (string) --
        • (dict) --

          Provides summary information about the model package.

          • ModelPackageGroupName (string) --

            The group name for the model package

          • ModelPackageVersion (integer) --

            The version number of a versioned model.

          • ModelPackageArn (string) --

            The Amazon Resource Name (ARN) of the model package.

          • ModelPackageDescription (string) --

            The description of the model package.

          • CreationTime (datetime) --

            The creation time of the mortgage package summary.

          • InferenceSpecification (dict) --

            Defines how to perform inference generation after a training job is run.

            • Containers (list) --

              The Amazon ECR registry path of the Docker image that contains the inference code.

              • (dict) --

                Describes the Docker container for the model package.

                • ContainerHostname (string) --

                  The DNS host name for the Docker container.

                • Image (string) --

                  The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.

                  If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

                • ImageDigest (string) --

                  An MD5 hash of the training algorithm that identifies the Docker image used for training.

                • ModelDataUrl (string) --

                  The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).

                  Note

                  The model artifacts must be in an S3 bucket that is in the same region as the model package.

                • ProductId (string) --

                  The Amazon Web Services Marketplace product ID of the model package.

                • Environment (dict) --

                  The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.

                  • (string) --
                    • (string) --
                • ModelInput (dict) --

                  A structure with Model Input details.

                  • DataInputConfig (string) --

                    The input configuration object for the model.

                • Framework (string) --

                  The machine learning framework of the model package container image.

                • FrameworkVersion (string) --

                  The framework version of the Model Package Container Image.

                • NearestModelName (string) --

                  The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata .

            • SupportedTransformInstanceTypes (list) --

              A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.

              This parameter is required for unversioned models, and optional for versioned models.

              • (string) --
            • SupportedRealtimeInferenceInstanceTypes (list) --

              A list of the instance types that are used to generate inferences in real-time.

              This parameter is required for unversioned models, and optional for versioned models.

              • (string) --
            • SupportedContentTypes (list) --

              The supported MIME types for the input data.

              • (string) --
            • SupportedResponseMIMETypes (list) --

              The supported MIME types for the output data.

              • (string) --
          • ModelPackageStatus (string) --

            The status of the mortgage package.

          • ModelApprovalStatus (string) --

            The approval status of the model.

    • BatchDescribeModelPackageErrorMap (dict) --

      A map of the resource and BatchDescribeModelPackageError objects reporting the error associated with describing the model package.

      • (string) --
        • (dict) --

          The error code and error description associated with the resource.

          • ErrorCode (string) --
          • ErrorResponse (string) --
can_paginate(operation_name)

Check if an operation can be paginated.

Parameters
operation_name (string) -- The operation name. This is the same name as the method name on the client. For example, if the method name is create_foo, and you'd normally invoke the operation as client.create_foo(**kwargs), if the create_foo operation can be paginated, you can use the call client.get_paginator("create_foo").
Returns
True if the operation can be paginated, False otherwise.
close()

Closes underlying endpoint connections.

create_action(**kwargs)

Creates an action . An action is a lineage tracking entity that represents an action or activity. For example, a model deployment or an HPO job. Generally, an action involves at least one input or output artifact. For more information, see Amazon SageMaker ML Lineage Tracking.

See also: AWS API Documentation

Request Syntax

response = client.create_action(
    ActionName='string',
    Source={
        'SourceUri': 'string',
        'SourceType': 'string',
        'SourceId': 'string'
    },
    ActionType='string',
    Description='string',
    Status='Unknown'|'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
    Properties={
        'string': 'string'
    },
    MetadataProperties={
        'CommitId': 'string',
        'Repository': 'string',
        'GeneratedBy': 'string',
        'ProjectId': 'string'
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • ActionName (string) --

    [REQUIRED]

    The name of the action. Must be unique to your account in an Amazon Web Services Region.

  • Source (dict) --

    [REQUIRED]

    The source type, ID, and URI.

    • SourceUri (string) -- [REQUIRED]

      The URI of the source.

    • SourceType (string) --

      The type of the source.

    • SourceId (string) --

      The ID of the source.

  • ActionType (string) --

    [REQUIRED]

    The action type.

  • Description (string) -- The description of the action.
  • Status (string) -- The status of the action.
  • Properties (dict) --

    A list of properties to add to the action.

    • (string) --
      • (string) --
  • MetadataProperties (dict) --

    Metadata properties of the tracking entity, trial, or trial component.

    • CommitId (string) --

      The commit ID.

    • Repository (string) --

      The repository.

    • GeneratedBy (string) --

      The entity this entity was generated by.

    • ProjectId (string) --

      The project ID.

  • Tags (list) --

    A list of tags to apply to the action.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'ActionArn': 'string'
}

Response Structure

  • (dict) --

    • ActionArn (string) --

      The Amazon Resource Name (ARN) of the action.

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
create_algorithm(**kwargs)

Create a machine learning algorithm that you can use in SageMaker and list in the Amazon Web Services Marketplace.

See also: AWS API Documentation

Request Syntax

response = client.create_algorithm(
    AlgorithmName='string',
    AlgorithmDescription='string',
    TrainingSpecification={
        'TrainingImage': 'string',
        'TrainingImageDigest': 'string',
        'SupportedHyperParameters': [
            {
                'Name': 'string',
                'Description': 'string',
                'Type': 'Integer'|'Continuous'|'Categorical'|'FreeText',
                'Range': {
                    'IntegerParameterRangeSpecification': {
                        'MinValue': 'string',
                        'MaxValue': 'string'
                    },
                    'ContinuousParameterRangeSpecification': {
                        'MinValue': 'string',
                        'MaxValue': 'string'
                    },
                    'CategoricalParameterRangeSpecification': {
                        'Values': [
                            'string',
                        ]
                    }
                },
                'IsTunable': True|False,
                'IsRequired': True|False,
                'DefaultValue': 'string'
            },
        ],
        'SupportedTrainingInstanceTypes': [
            'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge',
        ],
        'SupportsDistributedTraining': True|False,
        'MetricDefinitions': [
            {
                'Name': 'string',
                'Regex': 'string'
            },
        ],
        'TrainingChannels': [
            {
                'Name': 'string',
                'Description': 'string',
                'IsRequired': True|False,
                'SupportedContentTypes': [
                    'string',
                ],
                'SupportedCompressionTypes': [
                    'None'|'Gzip',
                ],
                'SupportedInputModes': [
                    'Pipe'|'File'|'FastFile',
                ]
            },
        ],
        'SupportedTuningJobObjectiveMetrics': [
            {
                'Type': 'Maximize'|'Minimize',
                'MetricName': 'string'
            },
        ]
    },
    InferenceSpecification={
        'Containers': [
            {
                'ContainerHostname': 'string',
                'Image': 'string',
                'ImageDigest': 'string',
                'ModelDataUrl': 'string',
                'ProductId': 'string',
                'Environment': {
                    'string': 'string'
                },
                'ModelInput': {
                    'DataInputConfig': 'string'
                },
                'Framework': 'string',
                'FrameworkVersion': 'string',
                'NearestModelName': 'string'
            },
        ],
        'SupportedTransformInstanceTypes': [
            'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
        ],
        'SupportedRealtimeInferenceInstanceTypes': [
            'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge',
        ],
        'SupportedContentTypes': [
            'string',
        ],
        'SupportedResponseMIMETypes': [
            'string',
        ]
    },
    ValidationSpecification={
        'ValidationRole': 'string',
        'ValidationProfiles': [
            {
                'ProfileName': 'string',
                'TrainingJobDefinition': {
                    'TrainingInputMode': 'Pipe'|'File'|'FastFile',
                    'HyperParameters': {
                        'string': 'string'
                    },
                    'InputDataConfig': [
                        {
                            'ChannelName': 'string',
                            'DataSource': {
                                'S3DataSource': {
                                    'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                                    'S3Uri': 'string',
                                    'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                                    'AttributeNames': [
                                        'string',
                                    ],
                                    'InstanceGroupNames': [
                                        'string',
                                    ]
                                },
                                'FileSystemDataSource': {
                                    'FileSystemId': 'string',
                                    'FileSystemAccessMode': 'rw'|'ro',
                                    'FileSystemType': 'EFS'|'FSxLustre',
                                    'DirectoryPath': 'string'
                                }
                            },
                            'ContentType': 'string',
                            'CompressionType': 'None'|'Gzip',
                            'RecordWrapperType': 'None'|'RecordIO',
                            'InputMode': 'Pipe'|'File'|'FastFile',
                            'ShuffleConfig': {
                                'Seed': 123
                            }
                        },
                    ],
                    'OutputDataConfig': {
                        'KmsKeyId': 'string',
                        'S3OutputPath': 'string'
                    },
                    'ResourceConfig': {
                        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge',
                        'InstanceCount': 123,
                        'VolumeSizeInGB': 123,
                        'VolumeKmsKeyId': 'string',
                        'InstanceGroups': [
                            {
                                'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge',
                                'InstanceCount': 123,
                                'InstanceGroupName': 'string'
                            },
                        ],
                        'KeepAlivePeriodInSeconds': 123
                    },
                    'StoppingCondition': {
                        'MaxRuntimeInSeconds': 123,
                        'MaxWaitTimeInSeconds': 123
                    }
                },
                'TransformJobDefinition': {
                    'MaxConcurrentTransforms': 123,
                    'MaxPayloadInMB': 123,
                    'BatchStrategy': 'MultiRecord'|'SingleRecord',
                    'Environment': {
                        'string': 'string'
                    },
                    'TransformInput': {
                        'DataSource': {
                            'S3DataSource': {
                                'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                                'S3Uri': 'string'
                            }
                        },
                        'ContentType': 'string',
                        'CompressionType': 'None'|'Gzip',
                        'SplitType': 'None'|'Line'|'RecordIO'|'TFRecord'
                    },
                    'TransformOutput': {
                        'S3OutputPath': 'string',
                        'Accept': 'string',
                        'AssembleWith': 'None'|'Line',
                        'KmsKeyId': 'string'
                    },
                    'TransformResources': {
                        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
                        'InstanceCount': 123,
                        'VolumeKmsKeyId': 'string'
                    }
                }
            },
        ]
    },
    CertifyForMarketplace=True|False,
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • AlgorithmName (string) --

    [REQUIRED]

    The name of the algorithm.

  • AlgorithmDescription (string) -- A description of the algorithm.
  • TrainingSpecification (dict) --

    [REQUIRED]

    Specifies details about training jobs run by this algorithm, including the following:

    • The Amazon ECR path of the container and the version digest of the algorithm.
    • The hyperparameters that the algorithm supports.
    • The instance types that the algorithm supports for training.
    • Whether the algorithm supports distributed training.
    • The metrics that the algorithm emits to Amazon CloudWatch.
    • Which metrics that the algorithm emits can be used as the objective metric for hyperparameter tuning jobs.
    • The input channels that the algorithm supports for training data. For example, an algorithm might support train , validation , and test channels.
    • TrainingImage (string) -- [REQUIRED]

      The Amazon ECR registry path of the Docker image that contains the training algorithm.

    • TrainingImageDigest (string) --

      An MD5 hash of the training algorithm that identifies the Docker image used for training.

    • SupportedHyperParameters (list) --

      A list of the HyperParameterSpecification objects, that define the supported hyperparameters. This is required if the algorithm supports automatic model tuning.>

      • (dict) --

        Defines a hyperparameter to be used by an algorithm.

        • Name (string) -- [REQUIRED]

          The name of this hyperparameter. The name must be unique.

        • Description (string) --

          A brief description of the hyperparameter.

        • Type (string) -- [REQUIRED]

          The type of this hyperparameter. The valid types are Integer , Continuous , Categorical , and FreeText .

        • Range (dict) --

          The allowed range for this hyperparameter.

          • IntegerParameterRangeSpecification (dict) --

            A IntegerParameterRangeSpecification object that defines the possible values for an integer hyperparameter.

            • MinValue (string) -- [REQUIRED]

              The minimum integer value allowed.

            • MaxValue (string) -- [REQUIRED]

              The maximum integer value allowed.

          • ContinuousParameterRangeSpecification (dict) --

            A ContinuousParameterRangeSpecification object that defines the possible values for a continuous hyperparameter.

            • MinValue (string) -- [REQUIRED]

              The minimum floating-point value allowed.

            • MaxValue (string) -- [REQUIRED]

              The maximum floating-point value allowed.

          • CategoricalParameterRangeSpecification (dict) --

            A CategoricalParameterRangeSpecification object that defines the possible values for a categorical hyperparameter.

            • Values (list) -- [REQUIRED]

              The allowed categories for the hyperparameter.

              • (string) --
        • IsTunable (boolean) --

          Indicates whether this hyperparameter is tunable in a hyperparameter tuning job.

        • IsRequired (boolean) --

          Indicates whether this hyperparameter is required.

        • DefaultValue (string) --

          The default value for this hyperparameter. If a default value is specified, a hyperparameter cannot be required.

    • SupportedTrainingInstanceTypes (list) -- [REQUIRED]

      A list of the instance types that this algorithm can use for training.

      • (string) --
    • SupportsDistributedTraining (boolean) --

      Indicates whether the algorithm supports distributed training. If set to false, buyers can't request more than one instance during training.

    • MetricDefinitions (list) --

      A list of MetricDefinition objects, which are used for parsing metrics generated by the algorithm.

      • (dict) --

        Specifies a metric that the training algorithm writes to stderr or stdout . SageMakerhyperparameter tuning captures all defined metrics. You specify one metric that a hyperparameter tuning job uses as its objective metric to choose the best training job.

        • Name (string) -- [REQUIRED]

          The name of the metric.

        • Regex (string) -- [REQUIRED]

          A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining Objective Metrics.

    • TrainingChannels (list) -- [REQUIRED]

      A list of ChannelSpecification objects, which specify the input sources to be used by the algorithm.

      • (dict) --

        Defines a named input source, called a channel, to be used by an algorithm.

        • Name (string) -- [REQUIRED]

          The name of the channel.

        • Description (string) --

          A brief description of the channel.

        • IsRequired (boolean) --

          Indicates whether the channel is required by the algorithm.

        • SupportedContentTypes (list) -- [REQUIRED]

          The supported MIME types for the data.

          • (string) --
        • SupportedCompressionTypes (list) --

          The allowed compression types, if data compression is used.

          • (string) --
        • SupportedInputModes (list) -- [REQUIRED]

          The allowed input mode, either FILE or PIPE.

          In FILE mode, Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used input mode.

          In PIPE mode, Amazon SageMaker streams input data from the source directly to your algorithm without using the EBS volume.

          • (string) --

            The training input mode that the algorithm supports. For more information about input modes, see Algorithms.

            Pipe mode

            If an algorithm supports Pipe mode, Amazon SageMaker streams data directly from Amazon S3 to the container.

            File mode

            If an algorithm supports File mode, SageMaker downloads the training data from S3 to the provisioned ML storage volume, and mounts the directory to the Docker volume for the training container.

            You must provision the ML storage volume with sufficient capacity to accommodate the data downloaded from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container uses the ML storage volume to also store intermediate information, if any.

            For distributed algorithms, training data is distributed uniformly. Your training duration is predictable if the input data objects sizes are approximately the same. SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed when one host in a training cluster is overloaded, thus becoming a bottleneck in training.

            FastFile mode

            If an algorithm supports FastFile mode, SageMaker streams data directly from S3 to the container with no code changes, and provides file system access to the data. Users can author their training script to interact with these files as if they were stored on disk.

            FastFile mode works best when the data is read sequentially. Augmented manifest files aren't supported. The startup time is lower when there are fewer files in the S3 bucket provided.
    • SupportedTuningJobObjectiveMetrics (list) --

      A list of the metrics that the algorithm emits that can be used as the objective metric in a hyperparameter tuning job.

      • (dict) --

        Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the Type parameter.

        • Type (string) -- [REQUIRED]

          Whether to minimize or maximize the objective metric.

        • MetricName (string) -- [REQUIRED]

          The name of the metric to use for the objective metric.

  • InferenceSpecification (dict) --

    Specifies details about inference jobs that the algorithm runs, including the following:

    • The Amazon ECR paths of containers that contain the inference code and model artifacts.
    • The instance types that the algorithm supports for transform jobs and real-time endpoints used for inference.
    • The input and output content formats that the algorithm supports for inference.
    • Containers (list) -- [REQUIRED]

      The Amazon ECR registry path of the Docker image that contains the inference code.

      • (dict) --

        Describes the Docker container for the model package.

        • ContainerHostname (string) --

          The DNS host name for the Docker container.

        • Image (string) -- [REQUIRED]

          The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.

          If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

        • ImageDigest (string) --

          An MD5 hash of the training algorithm that identifies the Docker image used for training.

        • ModelDataUrl (string) --

          The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).

          Note

          The model artifacts must be in an S3 bucket that is in the same region as the model package.

        • ProductId (string) --

          The Amazon Web Services Marketplace product ID of the model package.

        • Environment (dict) --

          The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.

          • (string) --
            • (string) --
        • ModelInput (dict) --

          A structure with Model Input details.

          • DataInputConfig (string) -- [REQUIRED]

            The input configuration object for the model.

        • Framework (string) --

          The machine learning framework of the model package container image.

        • FrameworkVersion (string) --

          The framework version of the Model Package Container Image.

        • NearestModelName (string) --

          The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata .

    • SupportedTransformInstanceTypes (list) --

      A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.

      This parameter is required for unversioned models, and optional for versioned models.

      • (string) --
    • SupportedRealtimeInferenceInstanceTypes (list) --

      A list of the instance types that are used to generate inferences in real-time.

      This parameter is required for unversioned models, and optional for versioned models.

      • (string) --
    • SupportedContentTypes (list) -- [REQUIRED]

      The supported MIME types for the input data.

      • (string) --
    • SupportedResponseMIMETypes (list) -- [REQUIRED]

      The supported MIME types for the output data.

      • (string) --
  • ValidationSpecification (dict) --

    Specifies configurations for one or more training jobs and that SageMaker runs to test the algorithm's training code and, optionally, one or more batch transform jobs that SageMaker runs to test the algorithm's inference code.

    • ValidationRole (string) -- [REQUIRED]

      The IAM roles that SageMaker uses to run the training jobs.

    • ValidationProfiles (list) -- [REQUIRED]

      An array of AlgorithmValidationProfile objects, each of which specifies a training job and batch transform job that SageMaker runs to validate your algorithm.

      • (dict) --

        Defines a training job and a batch transform job that SageMaker runs to validate your algorithm.

        The data provided in the validation profile is made available to your buyers on Amazon Web Services Marketplace.

        • ProfileName (string) -- [REQUIRED]

          The name of the profile for the algorithm. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).

        • TrainingJobDefinition (dict) -- [REQUIRED]

          The TrainingJobDefinition object that describes the training job that SageMaker runs to validate your algorithm.

          • TrainingInputMode (string) -- [REQUIRED]

            The training input mode that the algorithm supports. For more information about input modes, see Algorithms.

            Pipe mode

            If an algorithm supports Pipe mode, Amazon SageMaker streams data directly from Amazon S3 to the container.

            File mode

            If an algorithm supports File mode, SageMaker downloads the training data from S3 to the provisioned ML storage volume, and mounts the directory to the Docker volume for the training container.

            You must provision the ML storage volume with sufficient capacity to accommodate the data downloaded from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container uses the ML storage volume to also store intermediate information, if any.

            For distributed algorithms, training data is distributed uniformly. Your training duration is predictable if the input data objects sizes are approximately the same. SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed when one host in a training cluster is overloaded, thus becoming a bottleneck in training.

            FastFile mode

            If an algorithm supports FastFile mode, SageMaker streams data directly from S3 to the container with no code changes, and provides file system access to the data. Users can author their training script to interact with these files as if they were stored on disk.

            FastFile mode works best when the data is read sequentially. Augmented manifest files aren't supported. The startup time is lower when there are fewer files in the S3 bucket provided.
          • HyperParameters (dict) --

            The hyperparameters used for the training job.

            • (string) --
              • (string) --
          • InputDataConfig (list) -- [REQUIRED]

            An array of Channel objects, each of which specifies an input source.

            • (dict) --

              A channel is a named input source that training algorithms can consume.

              • ChannelName (string) -- [REQUIRED]

                The name of the channel.

              • DataSource (dict) -- [REQUIRED]

                The location of the channel data.

                • S3DataSource (dict) --

                  The S3 location of the data source that is associated with a channel.

                  • S3DataType (string) -- [REQUIRED]

                    If you choose S3Prefix , S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix for model training.

                    If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want SageMaker to use for model training.

                    If you choose AugmentedManifestFile , S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel's input mode is Pipe .

                  • S3Uri (string) -- [REQUIRED]

                    Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

                    • A key name prefix might look like this: s3://bucketname/exampleprefix
                    • A manifest might look like this: s3://bucketname/example.manifest A manifest is an S3 object which is a JSON file consisting of an array of elements. The first element is a prefix which is followed by one or more suffixes. SageMaker appends the suffix elements to the prefix to get a full set of S3Uri . Note that the prefix must be a valid non-empty S3Uri that precludes users from specifying a manifest whose individual S3Uri is sourced from different S3 buckets. The following code example shows a valid manifest format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] This JSON is equivalent to the following S3Uri list: s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uri in this manifest is the input data for the channel for this data source. The object that each S3Uri points to must be readable by the IAM role that SageMaker uses to perform tasks on your behalf.
                  • S3DataDistributionType (string) --

                    If you want SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated .

                    If you want SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key . If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.

                    Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.

                    In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key . If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File ), this copies 1/n of the number of objects.

                  • AttributeNames (list) --

                    A list of one or more attribute names to use that are found in a specified augmented manifest file.

                    • (string) --
                  • InstanceGroupNames (list) --

                    A list of names of instance groups that get data from the S3 data source.

                    • (string) --
                • FileSystemDataSource (dict) --

                  The file system that is associated with a channel.

                  • FileSystemId (string) -- [REQUIRED]

                    The file system id.

                  • FileSystemAccessMode (string) -- [REQUIRED]

                    The access mode of the mount of the directory associated with the channel. A directory can be mounted either in ro (read-only) or rw (read-write) mode.

                  • FileSystemType (string) -- [REQUIRED]

                    The file system type.

                  • DirectoryPath (string) -- [REQUIRED]

                    The full path to the directory to associate with the channel.

              • ContentType (string) --

                The MIME type of the data.

              • CompressionType (string) --

                If training data is compressed, the compression type. The default value is None . CompressionType is used only in Pipe input mode. In File mode, leave this field unset or set it to None.

              • RecordWrapperType (string) --

                Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.

                In File mode, leave this field unset or set it to None.

              • InputMode (string) --

                (Optional) The input mode to use for the data channel in a training job. If you don't set a value for InputMode , SageMaker uses the value set for TrainingInputMode . Use this parameter to override the TrainingInputMode setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use File input mode. To stream data directly from Amazon S3 to the container, choose Pipe input mode.

                To use a model for incremental training, choose File input model.

              • ShuffleConfig (dict) --

                A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType , this shuffles the results of the S3 key prefix matches. If you use ManifestFile , the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile , the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value.

                For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key , the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.

                • Seed (integer) -- [REQUIRED]

                  Determines the shuffling order in ShuffleConfig value.

          • OutputDataConfig (dict) -- [REQUIRED]

            the path to the S3 bucket where you want to store model artifacts. SageMaker creates subfolders for the artifacts.

            • KmsKeyId (string) --

              The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

              • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
              • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
              • // KMS Key Alias "alias/ExampleAlias"
              • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

              If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

              The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob , CreateTransformJob , or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .

            • S3OutputPath (string) -- [REQUIRED]

              Identifies the S3 path where you want SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix .

          • ResourceConfig (dict) -- [REQUIRED]

            The resources, including the ML compute instances and ML storage volumes, to use for model training.

            • InstanceType (string) --

              The ML compute instance type.

              Note

              SageMaker Training on Amazon Elastic Compute Cloud (EC2) P4de instances is in preview release starting December 9th, 2022.

              Amazon EC2 P4de instances (currently in preview) are powered by 8 NVIDIA A100 GPUs with 80GB high-performance HBM2e GPU memory, which accelerate the speed of training ML models that need to be trained on large datasets of high-resolution data. In this preview release, Amazon SageMaker supports ML training jobs on P4de instances ( ml.p4de.24xlarge ) to reduce model training time. The ml.p4de.24xlarge instances are available in the following Amazon Web Services Regions.
              • US East (N. Virginia) (us-east-1)
              • US West (Oregon) (us-west-2)

              To request quota limit increase and start using P4de instances, contact the SageMaker Training service team through your account team.

            • InstanceCount (integer) --

              The number of ML compute instances to use. For distributed training, provide a value greater than 1.

            • VolumeSizeInGB (integer) -- [REQUIRED]

              The size of the ML storage volume that you want to provision.

              ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.

              When using an ML instance with NVMe SSD volumes, SageMaker doesn't provision Amazon EBS General Purpose SSD (gp2) storage. Available storage is fixed to the NVMe-type instance's storage capacity. SageMaker configures storage paths for training datasets, checkpoints, model artifacts, and outputs to use the entire capacity of the instance storage. For example, ML instance families with the NVMe-type instance storage include ml.p4d , ml.g4dn , and ml.g5 .

              When using an ML instance with the EBS-only storage option and without instance storage, you must define the size of EBS volume through VolumeSizeInGB in the ResourceConfig API. For example, ML instance families that use EBS volumes include ml.c5 and ml.p2 .

              To look up instance types and their instance storage types and volumes, see Amazon EC2 Instance Types.

              To find the default local paths defined by the SageMaker training platform, see Amazon SageMaker Training Storage Folders for Training Datasets, Checkpoints, Model Artifacts, and Outputs.

            • VolumeKmsKeyId (string) --

              The Amazon Web Services KMS key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.

              Note

              Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

              For a list of instance types that support local instance storage, see Instance Store Volumes.

              For more information about local instance storage encryption, see SSD Instance Store Volumes.

              The VolumeKmsKeyId can be in any of the following formats:

              • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
              • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
            • InstanceGroups (list) --

              The configuration of a heterogeneous cluster in JSON format.

              • (dict) --

                Defines an instance group for heterogeneous cluster training. When requesting a training job using the CreateTrainingJob API, you can configure multiple instance groups .

                • InstanceType (string) -- [REQUIRED]

                  Specifies the instance type of the instance group.

                • InstanceCount (integer) -- [REQUIRED]

                  Specifies the number of instances of the instance group.

                • InstanceGroupName (string) -- [REQUIRED]

                  Specifies the name of the instance group.

            • KeepAlivePeriodInSeconds (integer) --

              The duration of time in seconds to retain configured resources in a warm pool for subsequent training jobs.

          • StoppingCondition (dict) -- [REQUIRED]

            Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.

            To stop a job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts.

            • MaxRuntimeInSeconds (integer) --

              The maximum length of time, in seconds, that a training or compilation job can run before it is stopped.

              For compilation jobs, if the job does not complete during this time, a TimeOut error is generated. We recommend starting with 900 seconds and increasing as necessary based on your model.

              For all other jobs, if the job does not complete during this time, SageMaker ends the job. When RetryStrategy is specified in the job request, MaxRuntimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt. The default value is 1 day. The maximum value is 28 days.

              The maximum time that a TrainingJob can run in total, including any time spent publishing metrics or archiving and uploading models after it has been stopped, is 30 days.

            • MaxWaitTimeInSeconds (integer) --

              The maximum length of time, in seconds, that a managed Spot training job has to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the job can run. It must be equal to or greater than MaxRuntimeInSeconds . If the job does not complete during this time, SageMaker ends the job.

              When RetryStrategy is specified in the job request, MaxWaitTimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt.

        • TransformJobDefinition (dict) --

          The TransformJobDefinition object that describes the transform job that SageMaker runs to validate your algorithm.

          • MaxConcurrentTransforms (integer) --

            The maximum number of parallel requests that can be sent to each instance in a transform job. The default value is 1.

          • MaxPayloadInMB (integer) --

            The maximum payload size allowed, in MB. A payload is the data portion of a record (without metadata).

          • BatchStrategy (string) --

            A string that determines the number of records included in a single mini-batch.

            SingleRecord means only one record is used per mini-batch. MultiRecord means a mini-batch is set to contain as many records that can fit within the MaxPayloadInMB limit.
          • Environment (dict) --

            The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.

            • (string) --
              • (string) --
          • TransformInput (dict) -- [REQUIRED]

            A description of the input source and the way the transform job consumes it.

            • DataSource (dict) -- [REQUIRED]

              Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.

              • S3DataSource (dict) -- [REQUIRED]

                The S3 location of the data source that is associated with a channel.

                • S3DataType (string) -- [REQUIRED]

                  If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.

                  If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.

                  The following values are compatible: ManifestFile , S3Prefix

                  The following value is not compatible: AugmentedManifestFile

                • S3Uri (string) -- [REQUIRED]

                  Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

                  • A key name prefix might look like this: s3://bucketname/exampleprefix .
                  • A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following S3Uris : s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uris in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.
            • ContentType (string) --

              The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.

            • CompressionType (string) --

              If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None .

            • SplitType (string) --

              The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType is None , which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line to split records on a newline character boundary. SplitType also supports a number of record-oriented binary data formats. Currently, the supported record formats are:

              • RecordIO
              • TFRecord

              When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord , Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord , Amazon SageMaker sends individual records in each request.

              Note

              Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of BatchStrategy is set to SingleRecord . Padding is not removed if the value of BatchStrategy is set to MultiRecord .

              For more information about RecordIO , see Create a Dataset Using RecordIO in the MXNet documentation. For more information about TFRecord , see Consuming TFRecord data in the TensorFlow documentation.

          • TransformOutput (dict) -- [REQUIRED]

            Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.

            • S3OutputPath (string) -- [REQUIRED]

              The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix .

              For every S3 object used as input for the transform job, batch transform stores the transformed data with an . out suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv , batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out . Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an . out file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.

            • Accept (string) --

              The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.

            • AssembleWith (string) --

              Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None . To add a newline character at the end of every transformed record, specify Line .

            • KmsKeyId (string) --

              The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

              • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
              • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
              • Alias name: alias/ExampleAlias
              • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

              If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

              The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .

          • TransformResources (dict) -- [REQUIRED]

            Identifies the ML compute instances for the transform job.

            • InstanceType (string) -- [REQUIRED]

              The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ml.m5.large instance types.

            • InstanceCount (integer) -- [REQUIRED]

              The number of ML compute instances to use in the transform job. The default value is 1 , and the maximum is 100 . For distributed transform jobs, specify a value greater than 1 .

            • VolumeKmsKeyId (string) --

              The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job.

              Note

              Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

              For a list of instance types that support local instance storage, see Instance Store Volumes.

              For more information about local instance storage encryption, see SSD Instance Store Volumes.

              The VolumeKmsKeyId can be any of the following formats:

              • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
              • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
              • Alias name: alias/ExampleAlias
              • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
  • CertifyForMarketplace (boolean) -- Whether to certify the algorithm so that it can be listed in Amazon Web Services Marketplace.
  • Tags (list) --

    An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'AlgorithmArn': 'string'
}

Response Structure

  • (dict) --

    • AlgorithmArn (string) --

      The Amazon Resource Name (ARN) of the new algorithm.

create_app(**kwargs)

Creates a running app for the specified UserProfile. This operation is automatically invoked by Amazon SageMaker Studio upon access to the associated Domain, and when new kernel configurations are selected by the user. A user may have multiple Apps active simultaneously.

See also: AWS API Documentation

Request Syntax

response = client.create_app(
    DomainId='string',
    UserProfileName='string',
    AppType='JupyterServer'|'KernelGateway'|'TensorBoard'|'RStudioServerPro'|'RSessionGateway',
    AppName='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    ResourceSpec={
        'SageMakerImageArn': 'string',
        'SageMakerImageVersionArn': 'string',
        'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
        'LifecycleConfigArn': 'string'
    },
    SpaceName='string'
)
Parameters
  • DomainId (string) --

    [REQUIRED]

    The domain ID.

  • UserProfileName (string) -- The user profile name. If this value is not set, then SpaceName must be set.
  • AppType (string) --

    [REQUIRED]

    The type of app.

  • AppName (string) --

    [REQUIRED]

    The name of the app.

  • Tags (list) --

    Each tag consists of a key and an optional value. Tag keys must be unique per resource.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

  • ResourceSpec (dict) --

    The instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.

    Note

    The value of InstanceType passed as part of the ResourceSpec in the CreateApp call overrides the value passed as part of the ResourceSpec configured for the user profile or the domain. If InstanceType is not specified in any of those three ResourceSpec values for a KernelGateway app, the CreateApp call fails with a request validation error.

    • SageMakerImageArn (string) --

      The ARN of the SageMaker image that the image version belongs to.

    • SageMakerImageVersionArn (string) --

      The ARN of the image version created on the instance.

    • InstanceType (string) --

      The instance type that the image version runs on.

      Note

      JupyterServer apps only support the system value.

      For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

    • LifecycleConfigArn (string) --

      The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

  • SpaceName (string) -- The name of the space. If this value is not set, then UserProfileName must be set.
Return type

dict

Returns

Response Syntax

{
    'AppArn': 'string'
}

Response Structure

  • (dict) --

    • AppArn (string) --

      The Amazon Resource Name (ARN) of the app.

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
  • SageMaker.Client.exceptions.ResourceInUse
create_app_image_config(**kwargs)

Creates a configuration for running a SageMaker image as a KernelGateway app. The configuration specifies the Amazon Elastic File System (EFS) storage volume on the image, and a list of the kernels in the image.

See also: AWS API Documentation

Request Syntax

response = client.create_app_image_config(
    AppImageConfigName='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    KernelGatewayImageConfig={
        'KernelSpecs': [
            {
                'Name': 'string',
                'DisplayName': 'string'
            },
        ],
        'FileSystemConfig': {
            'MountPath': 'string',
            'DefaultUid': 123,
            'DefaultGid': 123
        }
    }
)
Parameters
  • AppImageConfigName (string) --

    [REQUIRED]

    The name of the AppImageConfig. Must be unique to your account.

  • Tags (list) --

    A list of tags to apply to the AppImageConfig.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

  • KernelGatewayImageConfig (dict) --

    The KernelGatewayImageConfig. You can only specify one image kernel in the AppImageConfig API. This kernel will be shown to users before the image starts. Once the image runs, all kernels are visible in JupyterLab.

    • KernelSpecs (list) -- [REQUIRED]

      The specification of the Jupyter kernels in the image.

      • (dict) --

        The specification of a Jupyter kernel.

        • Name (string) -- [REQUIRED]

          The name of the Jupyter kernel in the image. This value is case sensitive.

        • DisplayName (string) --

          The display name of the kernel.

    • FileSystemConfig (dict) --

      The Amazon Elastic File System (EFS) storage configuration for a SageMaker image.

      • MountPath (string) --

        The path within the image to mount the user's EFS home directory. The directory should be empty. If not specified, defaults to /home/sagemaker-user .

      • DefaultUid (integer) --

        The default POSIX user ID (UID). If not specified, defaults to 1000 .

      • DefaultGid (integer) --

        The default POSIX group ID (GID). If not specified, defaults to 100 .

Return type

dict

Returns

Response Syntax

{
    'AppImageConfigArn': 'string'
}

Response Structure

  • (dict) --

    • AppImageConfigArn (string) --

      The Amazon Resource Name (ARN) of the AppImageConfig.

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
create_artifact(**kwargs)

Creates an artifact . An artifact is a lineage tracking entity that represents a URI addressable object or data. Some examples are the S3 URI of a dataset and the ECR registry path of an image. For more information, see Amazon SageMaker ML Lineage Tracking.

See also: AWS API Documentation

Request Syntax

response = client.create_artifact(
    ArtifactName='string',
    Source={
        'SourceUri': 'string',
        'SourceTypes': [
            {
                'SourceIdType': 'MD5Hash'|'S3ETag'|'S3Version'|'Custom',
                'Value': 'string'
            },
        ]
    },
    ArtifactType='string',
    Properties={
        'string': 'string'
    },
    MetadataProperties={
        'CommitId': 'string',
        'Repository': 'string',
        'GeneratedBy': 'string',
        'ProjectId': 'string'
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • ArtifactName (string) -- The name of the artifact. Must be unique to your account in an Amazon Web Services Region.
  • Source (dict) --

    [REQUIRED]

    The ID, ID type, and URI of the source.

    • SourceUri (string) -- [REQUIRED]

      The URI of the source.

    • SourceTypes (list) --

      A list of source types.

      • (dict) --

        The ID and ID type of an artifact source.

        • SourceIdType (string) -- [REQUIRED]

          The type of ID.

        • Value (string) -- [REQUIRED]

          The ID.

  • ArtifactType (string) --

    [REQUIRED]

    The artifact type.

  • Properties (dict) --

    A list of properties to add to the artifact.

    • (string) --
      • (string) --
  • MetadataProperties (dict) --

    Metadata properties of the tracking entity, trial, or trial component.

    • CommitId (string) --

      The commit ID.

    • Repository (string) --

      The repository.

    • GeneratedBy (string) --

      The entity this entity was generated by.

    • ProjectId (string) --

      The project ID.

  • Tags (list) --

    A list of tags to apply to the artifact.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'ArtifactArn': 'string'
}

Response Structure

  • (dict) --

    • ArtifactArn (string) --

      The Amazon Resource Name (ARN) of the artifact.

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
create_auto_ml_job(**kwargs)

Creates an Autopilot job.

Find the best-performing model after you run an Autopilot job by calling .

For information about how to use Autopilot, see Automate Model Development with Amazon SageMaker Autopilot.

See also: AWS API Documentation

Request Syntax

response = client.create_auto_ml_job(
    AutoMLJobName='string',
    InputDataConfig=[
        {
            'DataSource': {
                'S3DataSource': {
                    'S3DataType': 'ManifestFile'|'S3Prefix',
                    'S3Uri': 'string'
                }
            },
            'CompressionType': 'None'|'Gzip',
            'TargetAttributeName': 'string',
            'ContentType': 'string',
            'ChannelType': 'training'|'validation'
        },
    ],
    OutputDataConfig={
        'KmsKeyId': 'string',
        'S3OutputPath': 'string'
    },
    ProblemType='BinaryClassification'|'MulticlassClassification'|'Regression',
    AutoMLJobObjective={
        'MetricName': 'Accuracy'|'MSE'|'F1'|'F1macro'|'AUC'|'RMSE'|'MAE'|'R2'|'BalancedAccuracy'|'Precision'|'PrecisionMacro'|'Recall'|'RecallMacro'
    },
    AutoMLJobConfig={
        'CompletionCriteria': {
            'MaxCandidates': 123,
            'MaxRuntimePerTrainingJobInSeconds': 123,
            'MaxAutoMLJobRuntimeInSeconds': 123
        },
        'SecurityConfig': {
            'VolumeKmsKeyId': 'string',
            'EnableInterContainerTrafficEncryption': True|False,
            'VpcConfig': {
                'SecurityGroupIds': [
                    'string',
                ],
                'Subnets': [
                    'string',
                ]
            }
        },
        'DataSplitConfig': {
            'ValidationFraction': ...
        },
        'CandidateGenerationConfig': {
            'FeatureSpecificationS3Uri': 'string',
            'AlgorithmsConfig': [
                {
                    'AutoMLAlgorithms': [
                        'xgboost'|'linear-learner'|'mlp'|'lightgbm'|'catboost'|'randomforest'|'extra-trees'|'nn-torch'|'fastai',
                    ]
                },
            ]
        },
        'Mode': 'AUTO'|'ENSEMBLING'|'HYPERPARAMETER_TUNING'
    },
    RoleArn='string',
    GenerateCandidateDefinitionsOnly=True|False,
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    ModelDeployConfig={
        'AutoGenerateEndpointName': True|False,
        'EndpointName': 'string'
    }
)
Parameters
  • AutoMLJobName (string) --

    [REQUIRED]

    Identifies an Autopilot job. The name must be unique to your account and is case insensitive.

  • InputDataConfig (list) --

    [REQUIRED]

    An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to InputDataConfig supported by . Format(s) supported: CSV, Parquet. A minimum of 500 rows is required for the training dataset. There is not a minimum number of rows required for the validation dataset.

    • (dict) --

      A channel is a named input source that training algorithms can consume. The validation dataset size is limited to less than 2 GB. The training dataset size must be less than 100 GB. For more information, see .

      Note

      A validation dataset must contain the same headers as the training dataset.

      • DataSource (dict) -- [REQUIRED]

        The data source for an AutoML channel.

        • S3DataSource (dict) -- [REQUIRED]

          The Amazon S3 location of the input data.

          • S3DataType (string) -- [REQUIRED]

            The data type.

            A ManifestFile should have the format shown below:

            [ {"prefix": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"},

            "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1",

            "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2",

            ... "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ]

            An S3Prefix should have the following format:

            s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE
          • S3Uri (string) -- [REQUIRED]

            The URL to the Amazon S3 data source.

      • CompressionType (string) --

        You can use Gzip or None . The default value is None .

      • TargetAttributeName (string) -- [REQUIRED]

        The name of the target variable in supervised learning, usually represented by 'y'.

      • ContentType (string) --

        The content type of the data from the input source. You can use text/csv;header=present or x-application/vnd.amazon+parquet . The default value is text/csv;header=present .

      • ChannelType (string) --

        The channel type (optional) is an enum string. The default value is training . Channels for training and validation must share the same ContentType and TargetAttributeName . For information on specifying training and validation channel types, see How to specify training and validation datasets.

  • OutputDataConfig (dict) --

    [REQUIRED]

    Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.

    • KmsKeyId (string) --

      The Key Management Service (KMS) encryption key ID.

    • S3OutputPath (string) -- [REQUIRED]

      The Amazon S3 output path. Must be 128 characters or less.

  • ProblemType (string) -- Defines the type of supervised learning available for the candidates. For more information, see Amazon SageMaker Autopilot problem types and algorithm support.
  • AutoMLJobObjective (dict) --

    Defines the objective metric used to measure the predictive quality of an AutoML job. You provide an AutoMLJobObjective$MetricName and Autopilot infers whether to minimize or maximize it.

    • MetricName (string) -- [REQUIRED]

      The name of the objective metric used to measure the predictive quality of a machine learning system. This metric is optimized during training to provide the best estimate for model parameter values from data.

      Here are the options:

      Accuracy

      The ratio of the number of correctly classified items to the total number of (correctly and incorrectly) classified items. It is used for both binary and multiclass classification. Accuracy measures how close the predicted class values are to the actual values. Values for accuracy metrics vary between zero (0) and one (1). A value of 1 indicates perfect accuracy, and 0 indicates perfect inaccuracy.

      AUC

      The area under the curve (AUC) metric is used to compare and evaluate binary classification by algorithms that return probabilities, such as logistic regression. To map the probabilities into classifications, these are compared against a threshold value.

      The relevant curve is the receiver operating characteristic curve (ROC curve). The ROC curve plots the true positive rate (TPR) of predictions (or recall) against the false positive rate (FPR) as a function of the threshold value, above which a prediction is considered positive. Increasing the threshold results in fewer false positives, but more false negatives.

      AUC is the area under this ROC curve. Therefore, AUC provides an aggregated measure of the model performance across all possible classification thresholds. AUC scores vary between 0 and 1. A score of 1 indicates perfect accuracy, and a score of one half (0.5) indicates that the prediction is not better than a random classifier.

      BalancedAccuracy

      BalancedAccuracy is a metric that measures the ratio of accurate predictions to all predictions. This ratio is calculated after normalizing true positives (TP) and true negatives (TN) by the total number of positive (P) and negative (N) values. It is used in both binary and multiclass classification and is defined as follows: 0.5*((TP/P)+(TN/N)), with values ranging from 0 to 1. BalancedAccuracy gives a better measure of accuracy when the number of positives or negatives differ greatly from each other in an imbalanced dataset. For example, when only 1% of email is spam.

      F1

      The F1 score is the harmonic mean of the precision and recall, defined as follows: F1 = 2 * (precision * recall) / (precision + recall). It is used for binary classification into classes traditionally referred to as positive and negative. Predictions are said to be true when they match their actual (correct) class, and false when they do not.

      Precision is the ratio of the true positive predictions to all positive predictions, and it includes the false positives in a dataset. Precision measures the quality of the prediction when it predicts the positive class.

      Recall (or sensitivity) is the ratio of the true positive predictions to all actual positive instances. Recall measures how completely a model predicts the actual class members in a dataset.

      F1 scores vary between 0 and 1. A score of 1 indicates the best possible performance, and 0 indicates the worst.

      F1macro

      The F1macro score applies F1 scoring to multiclass classification problems. It does this by calculating the precision and recall, and then taking their harmonic mean to calculate the F1 score for each class. Lastly, the F1macro averages the individual scores to obtain the F1macro score. F1macro scores vary between 0 and 1. A score of 1 indicates the best possible performance, and 0 indicates the worst.

      MAE

      The mean absolute error (MAE) is a measure of how different the predicted and actual values are, when they're averaged over all values. MAE is commonly used in regression analysis to understand model prediction error. If there is linear regression, MAE represents the average distance from a predicted line to the actual value. MAE is defined as the sum of absolute errors divided by the number of observations. Values range from 0 to infinity, with smaller numbers indicating a better model fit to the data.

      MSE

      The mean squared error (MSE) is the average of the squared differences between the predicted and actual values. It is used for regression. MSE values are always positive. The better a model is at predicting the actual values, the smaller the MSE value is

      Precision

      Precision measures how well an algorithm predicts the true positives (TP) out of all of the positives that it identifies. It is defined as follows: Precision = TP/(TP+FP), with values ranging from zero (0) to one (1), and is used in binary classification. Precision is an important metric when the cost of a false positive is high. For example, the cost of a false positive is very high if an airplane safety system is falsely deemed safe to fly. A false positive (FP) reflects a positive prediction that is actually negative in the data.

      PrecisionMacro

      The precision macro computes precision for multiclass classification problems. It does this by calculating precision for each class and averaging scores to obtain precision for several classes. PrecisionMacro scores range from zero (0) to one (1). Higher scores reflect the model's ability to predict true positives (TP) out of all of the positives that it identifies, averaged across multiple classes.

      R2

      R2, also known as the coefficient of determination, is used in regression to quantify how much a model can explain the variance of a dependent variable. Values range from one (1) to negative one (-1). Higher numbers indicate a higher fraction of explained variability. R2 values close to zero (0) indicate that very little of the dependent variable can be explained by the model. Negative values indicate a poor fit and that the model is outperformed by a constant function. For linear regression, this is a horizontal line.

      Recall

      Recall measures how well an algorithm correctly predicts all of the true positives (TP) in a dataset. A true positive is a positive prediction that is also an actual positive value in the data. Recall is defined as follows: Recall = TP/(TP+FN), with values ranging from 0 to 1. Higher scores reflect a better ability of the model to predict true positives (TP) in the data, and is used in binary classification.

      Recall is important when testing for cancer because it's used to find all of the true positives. A false positive (FP) reflects a positive prediction that is actually negative in the data. It is often insufficient to measure only recall, because predicting every output as a true positive yield a perfect recall score.

      RecallMacro

      The RecallMacro computes recall for multiclass classification problems by calculating recall for each class and averaging scores to obtain recall for several classes. RecallMacro scores range from 0 to 1. Higher scores reflect the model's ability to predict true positives (TP) in a dataset. Whereas, a true positive reflects a positive prediction that is also an actual positive value in the data. It is often insufficient to measure only recall, because predicting every output as a true positive yields a perfect recall score.

      RMSE

      Root mean squared error (RMSE) measures the square root of the squared difference between predicted and actual values, and it's averaged over all values. It is used in regression analysis to understand model prediction error. It's an important metric to indicate the presence of large model errors and outliers. Values range from zero (0) to infinity, with smaller numbers indicating a better model fit to the data. RMSE is dependent on scale, and should not be used to compare datasets of different sizes.

      If you do not specify a metric explicitly, the default behavior is to automatically use:

      • MSE : for regression.
      • F1 : for binary classification
      • Accuracy : for multiclass classification.
  • AutoMLJobConfig (dict) --

    A collection of settings used to configure an AutoML job.

    • CompletionCriteria (dict) --

      How long an AutoML job is allowed to run, or how many candidates a job is allowed to generate.

      • MaxCandidates (integer) --

        The maximum number of times a training job is allowed to run.

      • MaxRuntimePerTrainingJobInSeconds (integer) --

        The maximum time, in seconds, that each training job executed inside hyperparameter tuning is allowed to run as part of a hyperparameter tuning job. For more information, see the used by the action.

      • MaxAutoMLJobRuntimeInSeconds (integer) --

        The maximum runtime, in seconds, an AutoML job has to complete.

        If an AutoML job exceeds the maximum runtime, the job is stopped automatically and its processing is ended gracefully. The AutoML job identifies the best model whose training was completed and marks it as the best-performing model. Any unfinished steps of the job, such as automatic one-click Autopilot model deployment, are not completed.

    • SecurityConfig (dict) --

      The security configuration for traffic encryption or Amazon VPC settings.

      • VolumeKmsKeyId (string) --

        The key used to encrypt stored data.

      • EnableInterContainerTrafficEncryption (boolean) --

        Whether to use traffic encryption between the container layers.

      • VpcConfig (dict) --

        The VPC configuration.

        • SecurityGroupIds (list) -- [REQUIRED]

          The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

          • (string) --
        • Subnets (list) -- [REQUIRED]

          The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.

          • (string) --
    • DataSplitConfig (dict) --

      The configuration for splitting the input training dataset.

      Type: AutoMLDataSplitConfig

      • ValidationFraction (float) --

        The validation fraction (optional) is a float that specifies the portion of the training dataset to be used for validation. The default value is 0.2, and values must be greater than 0 and less than 1. We recommend setting this value to be less than 0.5.

    • CandidateGenerationConfig (dict) --

      The configuration for generating a candidate for an AutoML job (optional).

      • FeatureSpecificationS3Uri (string) --

        A URL to the Amazon S3 data source containing selected features from the input data source to run an Autopilot job. You can input FeatureAttributeNames (optional) in JSON format as shown below:

        { "FeatureAttributeNames":["col1", "col2", ...] } .

        You can also specify the data type of the feature (optional) in the format shown below:

        { "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... } }

        Note

        These column keys may not include the target column.

        In ensembling mode, Autopilot only supports the following data types: numeric , categorical , text , and datetime . In HPO mode, Autopilot can support numeric , categorical , text , datetime , and sequence .

        If only FeatureDataTypes is provided, the column keys ( col1 , col2 ,..) should be a subset of the column names in the input data.

        If both FeatureDataTypes and FeatureAttributeNames are provided, then the column keys should be a subset of the column names provided in FeatureAttributeNames .

        The key name FeatureAttributeNames is fixed. The values listed in ["col1", "col2", ...] are case sensitive and should be a list of strings containing unique values that are a subset of the column names in the input data. The list of columns provided must not include the target column.

      • AlgorithmsConfig (list) --

        Stores the configuration information for the selection of algorithms used to train the model candidates.

        The list of available algorithms to choose from depends on the training mode set in AutoMLJobConfig.Mode.

        • AlgorithmsConfig should not be set in AUTO training mode.
        • When AlgorithmsConfig is provided, one AutoMLAlgorithms attribute must be set and one only. If the list of algorithms provided as values for AutoMLAlgorithms is empty, AutoMLCandidateGenerationConfig uses the full set of algorithms for the given training mode.
        • When AlgorithmsConfig is not provided, AutoMLCandidateGenerationConfig uses the full set of algorithms for the given training mode.

        For the list of all algorithms per training mode, see .

        For more information on each algorithm, see the Algorithm support section in Autopilot developer guide.

        • (dict) --

          The collection of algorithms run on a dataset for training the model candidates of an Autopilot job.

          • AutoMLAlgorithms (list) -- [REQUIRED]

            The selection of algorithms run on a dataset to train the model candidates of an Autopilot job.

            Note

            Selected algorithms must belong to the list corresponding to the training mode set in AutoMLJobConfig.Mode ( ENSEMBLING or HYPERPARAMETER_TUNING ). Choose a minimum of 1 algorithm.

            • In ENSEMBLING mode:
              • "catboost"
              • "extra-trees"
              • "fastai"
              • "lightgbm"
              • "linear-learner"
              • "nn-torch"
              • "randomforest"
              • "xgboost"
            • In HYPERPARAMETER_TUNING mode:
              • "linear-learner"
              • "mlp"
              • "xgboost"
            • (string) --
    • Mode (string) --

      The method that Autopilot uses to train the data. You can either specify the mode manually or let Autopilot choose for you based on the dataset size by selecting AUTO . In AUTO mode, Autopilot chooses ENSEMBLING for datasets smaller than 100 MB, and HYPERPARAMETER_TUNING for larger ones.

      The ENSEMBLING mode uses a multi-stack ensemble model to predict classification and regression tasks directly from your dataset. This machine learning mode combines several base models to produce an optimal predictive model. It then uses a stacking ensemble method to combine predictions from contributing members. A multi-stack ensemble model can provide better performance over a single model by combining the predictive capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING mode.

      The HYPERPARAMETER_TUNING (HPO) mode uses the best hyperparameters to train the best version of a model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO finds the best hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING mode.

  • RoleArn (string) --

    [REQUIRED]

    The ARN of the role that is used to access the data.

  • GenerateCandidateDefinitionsOnly (boolean) -- Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
  • Tags (list) --

    Each tag consists of a key and an optional value. Tag keys must be unique per resource.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

  • ModelDeployConfig (dict) --

    Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.

    • AutoGenerateEndpointName (boolean) --

      Set to True to automatically generate an endpoint name for a one-click Autopilot model deployment; set to False otherwise. The default value is False .

      Note

      If you set AutoGenerateEndpointName to True , do not specify the EndpointName ; otherwise a 400 error is thrown.

    • EndpointName (string) --

      Specifies the endpoint name to use for a one-click Autopilot model deployment if the endpoint name is not generated automatically.

      Note

      Specify the EndpointName if and only if you set AutoGenerateEndpointName to False ; otherwise a 400 error is thrown.

Return type

dict

Returns

Response Syntax

{
    'AutoMLJobArn': 'string'
}

Response Structure

  • (dict) --

    • AutoMLJobArn (string) --

      The unique ARN assigned to the AutoML job when it is created.

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceLimitExceeded
create_code_repository(**kwargs)

Creates a Git repository as a resource in your SageMaker account. You can associate the repository with notebook instances so that you can use Git source control for the notebooks you create. The Git repository is a resource in your SageMaker account, so it can be associated with more than one notebook instance, and it persists independently from the lifecycle of any notebook instances it is associated with.

The repository can be hosted either in Amazon Web Services CodeCommit or in any other Git repository.

See also: AWS API Documentation

Request Syntax

response = client.create_code_repository(
    CodeRepositoryName='string',
    GitConfig={
        'RepositoryUrl': 'string',
        'Branch': 'string',
        'SecretArn': 'string'
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • CodeRepositoryName (string) --

    [REQUIRED]

    The name of the Git repository. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).

  • GitConfig (dict) --

    [REQUIRED]

    Specifies details about the repository, including the URL where the repository is located, the default branch, and credentials to use to access the repository.

    • RepositoryUrl (string) -- [REQUIRED]

      The URL where the Git repository is located.

    • Branch (string) --

      The default branch for the Git repository.

    • SecretArn (string) --

      The Amazon Resource Name (ARN) of the Amazon Web Services Secrets Manager secret that contains the credentials used to access the git repository. The secret must have a staging label of AWSCURRENT and must be in the following format:

      {"username": UserName, "password": Password}
  • Tags (list) --

    An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'CodeRepositoryArn': 'string'
}

Response Structure

  • (dict) --

    • CodeRepositoryArn (string) --

      The Amazon Resource Name (ARN) of the new repository.

create_compilation_job(**kwargs)

Starts a model compilation job. After the model has been compiled, Amazon SageMaker saves the resulting model artifacts to an Amazon Simple Storage Service (Amazon S3) bucket that you specify.

If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts with Amazon Web Services IoT Greengrass. In that case, deploy them as an ML resource.

In the request body, you provide the following:

  • A name for the compilation job
  • Information about the input model artifacts
  • The output location for the compiled model and the device (target) that the model runs on
  • The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker assumes to perform the model compilation job.

You can also provide a Tag to track the model compilation job's resource use and costs. The response body contains the CompilationJobArn for the compiled job.

To stop a model compilation job, use StopCompilationJob. To get information about a particular model compilation job, use DescribeCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.

See also: AWS API Documentation

Request Syntax

response = client.create_compilation_job(
    CompilationJobName='string',
    RoleArn='string',
    ModelPackageVersionArn='string',
    InputConfig={
        'S3Uri': 'string',
        'DataInputConfig': 'string',
        'Framework': 'TENSORFLOW'|'KERAS'|'MXNET'|'ONNX'|'PYTORCH'|'XGBOOST'|'TFLITE'|'DARKNET'|'SKLEARN',
        'FrameworkVersion': 'string'
    },
    OutputConfig={
        'S3OutputLocation': 'string',
        'TargetDevice': 'lambda'|'ml_m4'|'ml_m5'|'ml_c4'|'ml_c5'|'ml_p2'|'ml_p3'|'ml_g4dn'|'ml_inf1'|'ml_eia2'|'jetson_tx1'|'jetson_tx2'|'jetson_nano'|'jetson_xavier'|'rasp3b'|'imx8qm'|'deeplens'|'rk3399'|'rk3288'|'aisage'|'sbe_c'|'qcs605'|'qcs603'|'sitara_am57x'|'amba_cv2'|'amba_cv22'|'amba_cv25'|'x86_win32'|'x86_win64'|'coreml'|'jacinto_tda4vm'|'imx8mplus',
        'TargetPlatform': {
            'Os': 'ANDROID'|'LINUX',
            'Arch': 'X86_64'|'X86'|'ARM64'|'ARM_EABI'|'ARM_EABIHF',
            'Accelerator': 'INTEL_GRAPHICS'|'MALI'|'NVIDIA'|'NNA'
        },
        'CompilerOptions': 'string',
        'KmsKeyId': 'string'
    },
    VpcConfig={
        'SecurityGroupIds': [
            'string',
        ],
        'Subnets': [
            'string',
        ]
    },
    StoppingCondition={
        'MaxRuntimeInSeconds': 123,
        'MaxWaitTimeInSeconds': 123
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • CompilationJobName (string) --

    [REQUIRED]

    A name for the model compilation job. The name must be unique within the Amazon Web Services Region and within your Amazon Web Services account.

  • RoleArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks on your behalf.

    During model compilation, Amazon SageMaker needs your permission to:

    • Read input data from an S3 bucket
    • Write model artifacts to an S3 bucket
    • Write logs to Amazon CloudWatch Logs
    • Publish metrics to Amazon CloudWatch

    You grant permissions for all of these tasks to an IAM role. To pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission. For more information, see Amazon SageMaker Roles.

  • ModelPackageVersionArn (string) -- The Amazon Resource Name (ARN) of a versioned model package. Provide either a ModelPackageVersionArn or an InputConfig object in the request syntax. The presence of both objects in the CreateCompilationJob request will return an exception.
  • InputConfig (dict) --

    Provides information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.

    • S3Uri (string) -- [REQUIRED]

      The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).

    • DataInputConfig (string) -- [REQUIRED]

      Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are InputConfig$Framework specific.

      • TensorFlow : You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.
        • Examples for one input:
          • If using the console, {"input":[1,1024,1024,3]}
          • If using the CLI, {\"input\":[1,1024,1024,3]}
        • Examples for two inputs:
          • If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}
          • If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
      • KERAS : You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format, DataInputConfig should be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different.
        • Examples for one input:
          • If using the console, {"input_1":[1,3,224,224]}
          • If using the CLI, {\"input_1\":[1,3,224,224]}
        • Examples for two inputs:
          • If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
          • If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
      • MXNET/ONNX/DARKNET : You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.
        • Examples for one input:
          • If using the console, {"data":[1,3,1024,1024]}
          • If using the CLI, {\"data\":[1,3,1024,1024]}
        • Examples for two inputs:
          • If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}
          • If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
      • PyTorch : You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.
        • Examples for one input in dictionary format:
          • If using the console, {"input0":[1,3,224,224]}
          • If using the CLI, {\"input0\":[1,3,224,224]}
        • Example for one input in list format: [[1,3,224,224]]
        • Examples for two inputs in dictionary format:
          • If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
          • If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
        • Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]
      • XGBOOST : input data name and shape are not needed.
      DataInputConfig supports the following parameters for CoreML OutputConfig$TargetDevice (ML Model format):
      • shape : Input shape, for example {"input_1": {"shape": [1,224,224,3]}} . In addition to static input shapes, CoreML converter supports Flexible input shapes:
        • Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific interval in that dimension, for example: {"input_1": {"shape": ["1..10", 224, 224, 3]}}
        • Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate all supported input shapes, for example: {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
      • default_shape : Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}
      • type : Input type. Allowed values: Image and Tensor . By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such as bias and scale .
      • bias : If the input type is an Image, you need to provide the bias vector.
      • scale : If the input type is an Image, you need to provide a scale factor.

      CoreML ClassifierConfig parameters can be specified using OutputConfig$CompilerOptions. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples:

      • Tensor type input:
        • "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}
      • Tensor type input without input name (PyTorch):
        • "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]
      • Image type input:
        • "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}
        • "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
      • Image type input without input name (PyTorch):
        • "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]
        • "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}

      Depending on the model format, DataInputConfig requires the following parameters for ml_eia2 OutputConfig:TargetDevice.

      • For TensorFlow models saved in the SavedModel format, specify the input names from signature_def_key and the input model shapes for DataInputConfig . Specify the signature_def_key in OutputConfig:CompilerOptions if the model does not use TensorFlow's default signature def key. For example:
        • "DataInputConfig": {"inputs": [1, 224, 224, 3]}
        • "CompilerOptions": {"signature_def_key": "serving_custom"}
      • For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in DataInputConfig and the output tensor names for output_names in OutputConfig:CompilerOptions. For example:
        • "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
        • "CompilerOptions": {"output_names": ["output_tensor:0"]}
    • Framework (string) -- [REQUIRED]

      Identifies the framework in which the model was trained. For example: TENSORFLOW.

    • FrameworkVersion (string) --

      Specifies the framework version to use. This API field is only supported for the MXNet, PyTorch, TensorFlow and TensorFlow Lite frameworks.

      For information about framework versions supported for cloud targets and edge devices, see Cloud Supported Instance Types and Frameworks and Edge Supported Frameworks.

  • OutputConfig (dict) --

    [REQUIRED]

    Provides information about the output location for the compiled model and the target device the model runs on.

    • S3OutputLocation (string) -- [REQUIRED]

      Identifies the S3 bucket where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix .

    • TargetDevice (string) --

      Identifies the target device or the machine learning instance that you want to run your model on after the compilation has completed. Alternatively, you can specify OS, architecture, and accelerator using TargetPlatform fields. It can be used instead of TargetPlatform .

    • TargetPlatform (dict) --

      Contains information about a target platform that you want your model to run on, such as OS, architecture, and accelerators. It is an alternative of TargetDevice .

      The following examples show how to configure the TargetPlatform and CompilerOptions JSON strings for popular target platforms:

      • Raspberry Pi 3 Model B+ "TargetPlatform": {"Os": "LINUX", "Arch": "ARM_EABIHF"}, "CompilerOptions": {'mattr': ['+neon']}
      • Jetson TX2 "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "NVIDIA"}, "CompilerOptions": {'gpu-code': 'sm_62', 'trt-ver': '6.0.1', 'cuda-ver': '10.0'}
      • EC2 m5.2xlarge instance OS "TargetPlatform": {"Os": "LINUX", "Arch": "X86_64", "Accelerator": "NVIDIA"}, "CompilerOptions": {'mcpu': 'skylake-avx512'}
      • RK3399 "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "MALI"}
      • ARMv7 phone (CPU) "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM_EABI"}, "CompilerOptions": {'ANDROID_PLATFORM': 25, 'mattr': ['+neon']}
      • ARMv8 phone (CPU) "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM64"}, "CompilerOptions": {'ANDROID_PLATFORM': 29}
      • Os (string) -- [REQUIRED]

        Specifies a target platform OS.

        • LINUX : Linux-based operating systems.
        • ANDROID : Android operating systems. Android API level can be specified using the ANDROID_PLATFORM compiler option. For example, "CompilerOptions": {'ANDROID_PLATFORM': 28}
      • Arch (string) -- [REQUIRED]

        Specifies a target platform architecture.

        • X86_64 : 64-bit version of the x86 instruction set.
        • X86 : 32-bit version of the x86 instruction set.
        • ARM64 : ARMv8 64-bit CPU.
        • ARM_EABIHF : ARMv7 32-bit, Hard Float.
        • ARM_EABI : ARMv7 32-bit, Soft Float. Used by Android 32-bit ARM platform.
      • Accelerator (string) --

        Specifies a target platform accelerator (optional).

        • NVIDIA : Nvidia graphics processing unit. It also requires gpu-code , trt-ver , cuda-ver compiler options
        • MALI : ARM Mali graphics processor
        • INTEL_GRAPHICS : Integrated Intel graphics
    • CompilerOptions (string) --

      Specifies additional parameters for compiler options in JSON format. The compiler options are TargetPlatform specific. It is required for NVIDIA accelerators and highly recommended for CPU compilations. For any other cases, it is optional to specify CompilerOptions.

      • DTYPE : Specifies the data type for the input. When compiling for ml_* (except for ml_inf ) instances using PyTorch framework, provide the data type (dtype) of the model's input. "float32" is used if "DTYPE" is not specified. Options for data type are:
        • float32: Use either "float" or "float32" .
        • int64: Use either "int64" or "long" .

      For example, {"dtype" : "float32"} .

      • CPU : Compilation for CPU supports the following compiler options.
        • mcpu : CPU micro-architecture. For example, {'mcpu': 'skylake-avx512'}
        • mattr : CPU flags. For example, {'mattr': ['+neon', '+vfpv4']}
      • ARM : Details of ARM CPU compilations.
        • NEON : NEON is an implementation of the Advanced SIMD extension used in ARMv7 processors. For example, add {'mattr': ['+neon']} to the compiler options if compiling for ARM 32-bit platform with the NEON support.
      • NVIDIA : Compilation for NVIDIA GPU supports the following compiler options.
        • gpu_code : Specifies the targeted architecture.
        • trt-ver : Specifies the TensorRT versions in x.y.z. format.
        • cuda-ver : Specifies the CUDA version in x.y format.

      For example, {'gpu-code': 'sm_72', 'trt-ver': '6.0.1', 'cuda-ver': '10.1'}

      • ANDROID : Compilation for the Android OS supports the following compiler options:
        • ANDROID_PLATFORM : Specifies the Android API levels. Available levels range from 21 to 29. For example, {'ANDROID_PLATFORM': 28} .
        • mattr : Add {'mattr': ['+neon']} to compiler options if compiling for ARM 32-bit platform with NEON support.
      • INFERENTIA : Compilation for target ml_inf1 uses compiler options passed in as a JSON string. For example, "CompilerOptions": "\"--verbose 1 --num-neuroncores 2 -O2\"" . For information about supported compiler options, see Neuron Compiler CLI.
      • CoreML : Compilation for the CoreML OutputConfig$TargetDevice supports the following compiler options:
        • class_labels : Specifies the classification labels file name inside input tar.gz file. For example, {"class_labels": "imagenet_labels_1000.txt"} . Labels inside the txt file should be separated by newlines.
      • EIA : Compilation for the Elastic Inference Accelerator supports the following compiler options:
        • precision_mode : Specifies the precision of compiled artifacts. Supported values are "FP16" and "FP32" . Default is "FP32" .
        • signature_def_key : Specifies the signature to use for models in SavedModel format. Defaults is TensorFlow's default signature def key.
        • output_names : Specifies a list of output tensor names for models in FrozenGraph format. Set at most one API field, either: signature_def_key or output_names .

      For example: {"precision_mode": "FP32", "output_names": ["output:0"]}

    • KmsKeyId (string) --

      The Amazon Web Services Key Management Service key (Amazon Web Services KMS) that Amazon SageMaker uses to encrypt your output models with Amazon S3 server-side encryption after compilation job. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

      The KmsKeyId can be any of the following formats:

      • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
      • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
      • Alias name: alias/ExampleAlias
      • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
  • VpcConfig (dict) --

    A VpcConfig object that specifies the VPC that you want your compilation job to connect to. Control access to your models by configuring the VPC. For more information, see Protect Compilation Jobs by Using an Amazon Virtual Private Cloud.

    • SecurityGroupIds (list) -- [REQUIRED]

      The VPC security group IDs. IDs have the form of sg-xxxxxxxx . Specify the security groups for the VPC that is specified in the Subnets field.

      • (string) --
    • Subnets (list) -- [REQUIRED]

      The ID of the subnets in the VPC that you want to connect the compilation job to for accessing the model in Amazon S3.

      • (string) --
  • StoppingCondition (dict) --

    [REQUIRED]

    Specifies a limit to how long a model compilation job can run. When the job reaches the time limit, Amazon SageMaker ends the compilation job. Use this API to cap model training costs.

    • MaxRuntimeInSeconds (integer) --

      The maximum length of time, in seconds, that a training or compilation job can run before it is stopped.

      For compilation jobs, if the job does not complete during this time, a TimeOut error is generated. We recommend starting with 900 seconds and increasing as necessary based on your model.

      For all other jobs, if the job does not complete during this time, SageMaker ends the job. When RetryStrategy is specified in the job request, MaxRuntimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt. The default value is 1 day. The maximum value is 28 days.

      The maximum time that a TrainingJob can run in total, including any time spent publishing metrics or archiving and uploading models after it has been stopped, is 30 days.

    • MaxWaitTimeInSeconds (integer) --

      The maximum length of time, in seconds, that a managed Spot training job has to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the job can run. It must be equal to or greater than MaxRuntimeInSeconds . If the job does not complete during this time, SageMaker ends the job.

      When RetryStrategy is specified in the job request, MaxWaitTimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt.

  • Tags (list) --

    An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'CompilationJobArn': 'string'
}

Response Structure

  • (dict) --

    • CompilationJobArn (string) --

      If the action is successful, the service sends back an HTTP 200 response. Amazon SageMaker returns the following data in JSON format:

      • CompilationJobArn : The Amazon Resource Name (ARN) of the compiled job.

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceLimitExceeded
create_context(**kwargs)

Creates a context . A context is a lineage tracking entity that represents a logical grouping of other tracking or experiment entities. Some examples are an endpoint and a model package. For more information, see Amazon SageMaker ML Lineage Tracking.

See also: AWS API Documentation

Request Syntax

response = client.create_context(
    ContextName='string',
    Source={
        'SourceUri': 'string',
        'SourceType': 'string',
        'SourceId': 'string'
    },
    ContextType='string',
    Description='string',
    Properties={
        'string': 'string'
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • ContextName (string) --

    [REQUIRED]

    The name of the context. Must be unique to your account in an Amazon Web Services Region.

  • Source (dict) --

    [REQUIRED]

    The source type, ID, and URI.

    • SourceUri (string) -- [REQUIRED]

      The URI of the source.

    • SourceType (string) --

      The type of the source.

    • SourceId (string) --

      The ID of the source.

  • ContextType (string) --

    [REQUIRED]

    The context type.

  • Description (string) -- The description of the context.
  • Properties (dict) --

    A list of properties to add to the context.

    • (string) --
      • (string) --
  • Tags (list) --

    A list of tags to apply to the context.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'ContextArn': 'string'
}

Response Structure

  • (dict) --

    • ContextArn (string) --

      The Amazon Resource Name (ARN) of the context.

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
create_data_quality_job_definition(**kwargs)

Creates a definition for a job that monitors data quality and drift. For information about model monitor, see Amazon SageMaker Model Monitor.

See also: AWS API Documentation

Request Syntax

response = client.create_data_quality_job_definition(
    JobDefinitionName='string',
    DataQualityBaselineConfig={
        'BaseliningJobName': 'string',
        'ConstraintsResource': {
            'S3Uri': 'string'
        },
        'StatisticsResource': {
            'S3Uri': 'string'
        }
    },
    DataQualityAppSpecification={
        'ImageUri': 'string',
        'ContainerEntrypoint': [
            'string',
        ],
        'ContainerArguments': [
            'string',
        ],
        'RecordPreprocessorSourceUri': 'string',
        'PostAnalyticsProcessorSourceUri': 'string',
        'Environment': {
            'string': 'string'
        }
    },
    DataQualityJobInput={
        'EndpointInput': {
            'EndpointName': 'string',
            'LocalPath': 'string',
            'S3InputMode': 'Pipe'|'File',
            'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
            'FeaturesAttribute': 'string',
            'InferenceAttribute': 'string',
            'ProbabilityAttribute': 'string',
            'ProbabilityThresholdAttribute': 123.0,
            'StartTimeOffset': 'string',
            'EndTimeOffset': 'string'
        },
        'BatchTransformInput': {
            'DataCapturedDestinationS3Uri': 'string',
            'DatasetFormat': {
                'Csv': {
                    'Header': True|False
                },
                'Json': {
                    'Line': True|False
                },
                'Parquet': {}

            },
            'LocalPath': 'string',
            'S3InputMode': 'Pipe'|'File',
            'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
            'FeaturesAttribute': 'string',
            'InferenceAttribute': 'string',
            'ProbabilityAttribute': 'string',
            'ProbabilityThresholdAttribute': 123.0,
            'StartTimeOffset': 'string',
            'EndTimeOffset': 'string'
        }
    },
    DataQualityJobOutputConfig={
        'MonitoringOutputs': [
            {
                'S3Output': {
                    'S3Uri': 'string',
                    'LocalPath': 'string',
                    'S3UploadMode': 'Continuous'|'EndOfJob'
                }
            },
        ],
        'KmsKeyId': 'string'
    },
    JobResources={
        'ClusterConfig': {
            'InstanceCount': 123,
            'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
            'VolumeSizeInGB': 123,
            'VolumeKmsKeyId': 'string'
        }
    },
    NetworkConfig={
        'EnableInterContainerTrafficEncryption': True|False,
        'EnableNetworkIsolation': True|False,
        'VpcConfig': {
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ]
        }
    },
    RoleArn='string',
    StoppingCondition={
        'MaxRuntimeInSeconds': 123
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • JobDefinitionName (string) --

    [REQUIRED]

    The name for the monitoring job definition.

  • DataQualityBaselineConfig (dict) --

    Configures the constraints and baselines for the monitoring job.

    • BaseliningJobName (string) --

      The name of the job that performs baselining for the data quality monitoring job.

    • ConstraintsResource (dict) --

      The constraints resource for a monitoring job.

      • S3Uri (string) --

        The Amazon S3 URI for the constraints resource.

    • StatisticsResource (dict) --

      The statistics resource for a monitoring job.

      • S3Uri (string) --

        The Amazon S3 URI for the statistics resource.

  • DataQualityAppSpecification (dict) --

    [REQUIRED]

    Specifies the container that runs the monitoring job.

    • ImageUri (string) -- [REQUIRED]

      The container image that the data quality monitoring job runs.

    • ContainerEntrypoint (list) --

      The entrypoint for a container used to run a monitoring job.

      • (string) --
    • ContainerArguments (list) --

      The arguments to send to the container that the monitoring job runs.

      • (string) --
    • RecordPreprocessorSourceUri (string) --

      An Amazon S3 URI to a script that is called per row prior to running analysis. It can base64 decode the payload and convert it into a flatted json so that the built-in container can use the converted data. Applicable only for the built-in (first party) containers.

    • PostAnalyticsProcessorSourceUri (string) --

      An Amazon S3 URI to a script that is called after analysis has been performed. Applicable only for the built-in (first party) containers.

    • Environment (dict) --

      Sets the environment variables in the container that the monitoring job runs.

      • (string) --
        • (string) --
  • DataQualityJobInput (dict) --

    [REQUIRED]

    A list of inputs for the monitoring job. Currently endpoints are supported as monitoring inputs.

    • EndpointInput (dict) --

      Input object for the endpoint

      • EndpointName (string) -- [REQUIRED]

        An endpoint in customer's account which has enabled DataCaptureConfig enabled.

      • LocalPath (string) -- [REQUIRED]

        Path to the filesystem where the endpoint data is available to the container.

      • S3InputMode (string) --

        Whether the Pipe or File is used as the input mode for transferring data for the monitoring job. Pipe mode is recommended for large datasets. File mode is useful for small files that fit in memory. Defaults to File .

      • S3DataDistributionType (string) --

        Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defaults to FullyReplicated

      • FeaturesAttribute (string) --

        The attributes of the input data that are the input features.

      • InferenceAttribute (string) --

        The attribute of the input data that represents the ground truth label.

      • ProbabilityAttribute (string) --

        In a classification problem, the attribute that represents the class probability.

      • ProbabilityThresholdAttribute (float) --

        The threshold for the class probability to be evaluated as a positive result.

      • StartTimeOffset (string) --

        If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

      • EndTimeOffset (string) --

        If specified, monitoring jobs substract this time from the end time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

    • BatchTransformInput (dict) --

      Input object for the batch transform job.

      • DataCapturedDestinationS3Uri (string) -- [REQUIRED]

        The Amazon S3 location being used to capture the data.

      • DatasetFormat (dict) -- [REQUIRED]

        The dataset format for your batch transform job.

        • Csv (dict) --

          The CSV dataset used in the monitoring job.

          • Header (boolean) --

            Indicates if the CSV data has a header.

        • Json (dict) --

          The JSON dataset used in the monitoring job

          • Line (boolean) --

            Indicates if the file should be read as a json object per line.

        • Parquet (dict) --

          The Parquet dataset used in the monitoring job

      • LocalPath (string) -- [REQUIRED]

        Path to the filesystem where the batch transform data is available to the container.

      • S3InputMode (string) --

        Whether the Pipe or File is used as the input mode for transferring data for the monitoring job. Pipe mode is recommended for large datasets. File mode is useful for small files that fit in memory. Defaults to File .

      • S3DataDistributionType (string) --

        Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defaults to FullyReplicated

      • FeaturesAttribute (string) --

        The attributes of the input data that are the input features.

      • InferenceAttribute (string) --

        The attribute of the input data that represents the ground truth label.

      • ProbabilityAttribute (string) --

        In a classification problem, the attribute that represents the class probability.

      • ProbabilityThresholdAttribute (float) --

        The threshold for the class probability to be evaluated as a positive result.

      • StartTimeOffset (string) --

        If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

      • EndTimeOffset (string) --

        If specified, monitoring jobs substract this time from the end time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

  • DataQualityJobOutputConfig (dict) --

    [REQUIRED]

    The output configuration for monitoring jobs.

    • MonitoringOutputs (list) -- [REQUIRED]

      Monitoring outputs for monitoring jobs. This is where the output of the periodic monitoring jobs is uploaded.

      • (dict) --

        The output object for a monitoring job.

        • S3Output (dict) -- [REQUIRED]

          The Amazon S3 storage location where the results of a monitoring job are saved.

          • S3Uri (string) -- [REQUIRED]

            A URI that identifies the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job.

          • LocalPath (string) -- [REQUIRED]

            The local path to the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job. LocalPath is an absolute path for the output data.

          • S3UploadMode (string) --

            Whether to upload the results of the monitoring job continuously or after the job completes.

    • KmsKeyId (string) --

      The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.

  • JobResources (dict) --

    [REQUIRED]

    Identifies the resources to deploy for a monitoring job.

    • ClusterConfig (dict) -- [REQUIRED]

      The configuration for the cluster resources used to run the processing job.

      • InstanceCount (integer) -- [REQUIRED]

        The number of ML compute instances to use in the model monitoring job. For distributed processing jobs, specify a value greater than 1. The default value is 1.

      • InstanceType (string) -- [REQUIRED]

        The ML compute instance type for the processing job.

      • VolumeSizeInGB (integer) -- [REQUIRED]

        The size of the ML storage volume, in gigabytes, that you want to provision. You must specify sufficient ML storage for your scenario.

      • VolumeKmsKeyId (string) --

        The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.

  • NetworkConfig (dict) --

    Specifies networking configuration for the monitoring job.

    • EnableInterContainerTrafficEncryption (boolean) --

      Whether to encrypt all communications between the instances used for the monitoring jobs. Choose True to encrypt communications. Encryption provides greater security for distributed jobs, but the processing might take longer.

    • EnableNetworkIsolation (boolean) --

      Whether to allow inbound and outbound network calls to and from the containers used for the monitoring job.

    • VpcConfig (dict) --

      Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud.

      • SecurityGroupIds (list) -- [REQUIRED]

        The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

        • (string) --
      • Subnets (list) -- [REQUIRED]

        The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.

        • (string) --
  • RoleArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.

  • StoppingCondition (dict) --

    A time limit for how long the monitoring job is allowed to run before stopping.

    • MaxRuntimeInSeconds (integer) -- [REQUIRED]

      The maximum runtime allowed in seconds.

      Note

      The MaxRuntimeInSeconds cannot exceed the frequency of the job. For data quality and model explainability, this can be up to 3600 seconds for an hourly schedule. For model bias and model quality hourly schedules, this can be up to 1800 seconds.

  • Tags (list) --

    (Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide .

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'JobDefinitionArn': 'string'
}

Response Structure

  • (dict) --

    • JobDefinitionArn (string) --

      The Amazon Resource Name (ARN) of the job definition.

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
  • SageMaker.Client.exceptions.ResourceInUse
create_device_fleet(**kwargs)

Creates a device fleet.

See also: AWS API Documentation

Request Syntax

response = client.create_device_fleet(
    DeviceFleetName='string',
    RoleArn='string',
    Description='string',
    OutputConfig={
        'S3OutputLocation': 'string',
        'KmsKeyId': 'string',
        'PresetDeploymentType': 'GreengrassV2Component',
        'PresetDeploymentConfig': 'string'
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    EnableIotRoleAlias=True|False
)
Parameters
  • DeviceFleetName (string) --

    [REQUIRED]

    The name of the fleet that the device belongs to.

  • RoleArn (string) -- The Amazon Resource Name (ARN) that has access to Amazon Web Services Internet of Things (IoT).
  • Description (string) -- A description of the fleet.
  • OutputConfig (dict) --

    [REQUIRED]

    The output configuration for storing sample data collected by the fleet.

    • S3OutputLocation (string) -- [REQUIRED]

      The Amazon Simple Storage (S3) bucker URI.

    • KmsKeyId (string) --

      The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume after compilation job. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account.

    • PresetDeploymentType (string) --

      The deployment type SageMaker Edge Manager will create. Currently only supports Amazon Web Services IoT Greengrass Version 2 components.

    • PresetDeploymentConfig (string) --

      The configuration used to create deployment artifacts. Specify configuration options with a JSON string. The available configuration options for each type are:

      • ComponentName (optional) - Name of the GreenGrass V2 component. If not specified, the default name generated consists of "SagemakerEdgeManager" and the name of your SageMaker Edge Manager packaging job.
      • ComponentDescription (optional) - Description of the component.
      • ComponentVersion (optional) - The version of the component.

      Note

      Amazon Web Services IoT Greengrass uses semantic versions for components. Semantic versions follow a*major.minor.patch* number system. For example, version 1.0.0 represents the first major release for a component. For more information, see the semantic version specification.

      • PlatformOS (optional) - The name of the operating system for the platform. Supported platforms include Windows and Linux.
      • PlatformArchitecture (optional) - The processor architecture for the platform. Supported architectures Windows include: Windows32_x86, Windows64_x64. Supported architectures for Linux include: Linux x86_64, Linux ARMV8.
  • Tags (list) --

    Creates tags for the specified fleet.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

  • EnableIotRoleAlias (boolean) --

    Whether to create an Amazon Web Services IoT Role Alias during device fleet creation. The name of the role alias generated will match this pattern: "SageMakerEdge-{DeviceFleetName}".

    For example, if your device fleet is called "demo-fleet", the name of the role alias will be "SageMakerEdge-demo-fleet".

Returns

None

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceLimitExceeded
create_domain(**kwargs)

Creates a Domain used by Amazon SageMaker Studio. A domain consists of an associated Amazon Elastic File System (EFS) volume, a list of authorized users, and a variety of security, application, policy, and Amazon Virtual Private Cloud (VPC) configurations. Users within a domain can share notebook files and other artifacts with each other.

EFS storage

When a domain is created, an EFS volume is created for use by all of the users within the domain. Each user receives a private home directory within the EFS volume for notebooks, Git repositories, and data files.

SageMaker uses the Amazon Web Services Key Management Service (Amazon Web Services KMS) to encrypt the EFS volume attached to the domain with an Amazon Web Services managed key by default. For more control, you can specify a customer managed key. For more information, see Protect Data at Rest Using Encryption.

VPC configuration

All SageMaker Studio traffic between the domain and the EFS volume is through the specified VPC and subnets. For other Studio traffic, you can specify the AppNetworkAccessType parameter. AppNetworkAccessType corresponds to the network access type that you choose when you onboard to Studio. The following options are available:

  • PublicInternetOnly - Non-EFS traffic goes through a VPC managed by Amazon SageMaker, which allows internet access. This is the default value.
  • VpcOnly - All Studio traffic is through the specified VPC and subnets. Internet access is disabled by default. To allow internet access, you must specify a NAT gateway. When internet access is disabled, you won't be able to run a Studio notebook or to train or host models unless your VPC has an interface endpoint to the SageMaker API and runtime or a NAT gateway and your security groups allow outbound connections.

Warning

NFS traffic over TCP on port 2049 needs to be allowed in both inbound and outbound rules in order to launch a SageMaker Studio app successfully.

For more information, see Connect SageMaker Studio Notebooks to Resources in a VPC.

See also: AWS API Documentation

Request Syntax

response = client.create_domain(
    DomainName='string',
    AuthMode='SSO'|'IAM',
    DefaultUserSettings={
        'ExecutionRole': 'string',
        'SecurityGroups': [
            'string',
        ],
        'SharingSettings': {
            'NotebookOutputOption': 'Allowed'|'Disabled',
            'S3OutputPath': 'string',
            'S3KmsKeyId': 'string'
        },
        'JupyterServerAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'LifecycleConfigArns': [
                'string',
            ],
            'CodeRepositories': [
                {
                    'RepositoryUrl': 'string'
                },
            ]
        },
        'KernelGatewayAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'CustomImages': [
                {
                    'ImageName': 'string',
                    'ImageVersionNumber': 123,
                    'AppImageConfigName': 'string'
                },
            ],
            'LifecycleConfigArns': [
                'string',
            ]
        },
        'TensorBoardAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            }
        },
        'RStudioServerProAppSettings': {
            'AccessStatus': 'ENABLED'|'DISABLED',
            'UserGroup': 'R_STUDIO_ADMIN'|'R_STUDIO_USER'
        },
        'RSessionAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'CustomImages': [
                {
                    'ImageName': 'string',
                    'ImageVersionNumber': 123,
                    'AppImageConfigName': 'string'
                },
            ]
        },
        'CanvasAppSettings': {
            'TimeSeriesForecastingSettings': {
                'Status': 'ENABLED'|'DISABLED',
                'AmazonForecastRoleArn': 'string'
            }
        }
    },
    SubnetIds=[
        'string',
    ],
    VpcId='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    AppNetworkAccessType='PublicInternetOnly'|'VpcOnly',
    HomeEfsFileSystemKmsKeyId='string',
    KmsKeyId='string',
    AppSecurityGroupManagement='Service'|'Customer',
    DomainSettings={
        'SecurityGroupIds': [
            'string',
        ],
        'RStudioServerProDomainSettings': {
            'DomainExecutionRoleArn': 'string',
            'RStudioConnectUrl': 'string',
            'RStudioPackageManagerUrl': 'string',
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            }
        },
        'ExecutionRoleIdentityConfig': 'USER_PROFILE_NAME'|'DISABLED'
    },
    DefaultSpaceSettings={
        'ExecutionRole': 'string',
        'SecurityGroups': [
            'string',
        ],
        'JupyterServerAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'LifecycleConfigArns': [
                'string',
            ],
            'CodeRepositories': [
                {
                    'RepositoryUrl': 'string'
                },
            ]
        },
        'KernelGatewayAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'CustomImages': [
                {
                    'ImageName': 'string',
                    'ImageVersionNumber': 123,
                    'AppImageConfigName': 'string'
                },
            ],
            'LifecycleConfigArns': [
                'string',
            ]
        }
    }
)
Parameters
  • DomainName (string) --

    [REQUIRED]

    A name for the domain.

  • AuthMode (string) --

    [REQUIRED]

    The mode of authentication that members use to access the domain.

  • DefaultUserSettings (dict) --

    [REQUIRED]

    The default settings to use to create a user profile when UserSettings isn't specified in the call to the CreateUserProfile API.

    SecurityGroups is aggregated when specified in both calls. For all other settings in UserSettings , the values specified in CreateUserProfile take precedence over those specified in CreateDomain .
    • ExecutionRole (string) --

      The execution role for the user.

    • SecurityGroups (list) --

      The security groups for the Amazon Virtual Private Cloud (VPC) that Studio uses for communication.

      Optional when the CreateDomain.AppNetworkAccessType parameter is set to PublicInternetOnly .

      Required when the CreateDomain.AppNetworkAccessType parameter is set to VpcOnly .

      Amazon SageMaker adds a security group to allow NFS traffic from SageMaker Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown.

      • (string) --
    • SharingSettings (dict) --

      Specifies options for sharing SageMaker Studio notebooks.

      • NotebookOutputOption (string) --

        Whether to include the notebook cell output when sharing the notebook. The default is Disabled .

      • S3OutputPath (string) --

        When NotebookOutputOption is Allowed , the Amazon S3 bucket used to store the shared notebook snapshots.

      • S3KmsKeyId (string) --

        When NotebookOutputOption is Allowed , the Amazon Web Services Key Management Service (KMS) encryption key ID used to encrypt the notebook cell output in the Amazon S3 bucket.

    • JupyterServerAppSettings (dict) --

      The Jupyter server's app settings.

      • DefaultResourceSpec (dict) --

        The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.

        • SageMakerImageArn (string) --

          The ARN of the SageMaker image that the image version belongs to.

        • SageMakerImageVersionArn (string) --

          The ARN of the image version created on the instance.

        • InstanceType (string) --

          The instance type that the image version runs on.

          Note

          JupyterServer apps only support the system value.

          For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

        • LifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

      • LifecycleConfigArns (list) --

        The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter is also required.

        Note

        To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.

        • (string) --
      • CodeRepositories (list) --

        A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.

        • (dict) --

          A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.

          • RepositoryUrl (string) -- [REQUIRED]

            The URL of the Git repository.

    • KernelGatewayAppSettings (dict) --

      The kernel gateway app settings.

      • DefaultResourceSpec (dict) --

        The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app.

        Note

        The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the Amazon Web Services Command Line Interface or Amazon Web Services CloudFormation and the instance type parameter value is not passed.

        • SageMakerImageArn (string) --

          The ARN of the SageMaker image that the image version belongs to.

        • SageMakerImageVersionArn (string) --

          The ARN of the image version created on the instance.

        • InstanceType (string) --

          The instance type that the image version runs on.

          Note

          JupyterServer apps only support the system value.

          For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

        • LifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

      • CustomImages (list) --

        A list of custom SageMaker images that are configured to run as a KernelGateway app.

        • (dict) --

          A custom SageMaker image. For more information, see Bring your own SageMaker image.

          • ImageName (string) -- [REQUIRED]

            The name of the CustomImage. Must be unique to your account.

          • ImageVersionNumber (integer) --

            The version number of the CustomImage.

          • AppImageConfigName (string) -- [REQUIRED]

            The name of the AppImageConfig.

      • LifecycleConfigArns (list) --

        The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.

        Note

        To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.

        • (string) --
    • TensorBoardAppSettings (dict) --

      The TensorBoard app settings.

      • DefaultResourceSpec (dict) --

        The default instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.

        • SageMakerImageArn (string) --

          The ARN of the SageMaker image that the image version belongs to.

        • SageMakerImageVersionArn (string) --

          The ARN of the image version created on the instance.

        • InstanceType (string) --

          The instance type that the image version runs on.

          Note

          JupyterServer apps only support the system value.

          For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

        • LifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

    • RStudioServerProAppSettings (dict) --

      A collection of settings that configure user interaction with the RStudioServerPro app.

      • AccessStatus (string) --

        Indicates whether the current user has access to the RStudioServerPro app.

      • UserGroup (string) --

        The level of permissions that the user has within the RStudioServerPro app. This value defaults to User. The Admin value allows the user access to the RStudio Administrative Dashboard.

    • RSessionAppSettings (dict) --

      A collection of settings that configure the RSessionGateway app.

      • DefaultResourceSpec (dict) --

        Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that the version runs on.

        • SageMakerImageArn (string) --

          The ARN of the SageMaker image that the image version belongs to.

        • SageMakerImageVersionArn (string) --

          The ARN of the image version created on the instance.

        • InstanceType (string) --

          The instance type that the image version runs on.

          Note

          JupyterServer apps only support the system value.

          For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

        • LifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

      • CustomImages (list) --

        A list of custom SageMaker images that are configured to run as a RSession app.

        • (dict) --

          A custom SageMaker image. For more information, see Bring your own SageMaker image.

          • ImageName (string) -- [REQUIRED]

            The name of the CustomImage. Must be unique to your account.

          • ImageVersionNumber (integer) --

            The version number of the CustomImage.

          • AppImageConfigName (string) -- [REQUIRED]

            The name of the AppImageConfig.

    • CanvasAppSettings (dict) --

      The Canvas app settings.

      • TimeSeriesForecastingSettings (dict) --

        Time series forecast settings for the Canvas app.

        • Status (string) --

          Describes whether time series forecasting is enabled or disabled in the Canvas app.

        • AmazonForecastRoleArn (string) --

          The IAM role that Canvas passes to Amazon Forecast for time series forecasting. By default, Canvas uses the execution role specified in the UserProfile that launches the Canvas app. If an execution role is not specified in the UserProfile , Canvas uses the execution role specified in the Domain that owns the UserProfile . To allow time series forecasting, this IAM role should have the AmazonSageMakerCanvasForecastAccess policy attached and forecast.amazonaws.com added in the trust relationship as a service principal.

  • SubnetIds (list) --

    [REQUIRED]

    The VPC subnets that Studio uses for communication.

    • (string) --
  • VpcId (string) --

    [REQUIRED]

    The ID of the Amazon Virtual Private Cloud (VPC) that Studio uses for communication.

  • Tags (list) --

    Tags to associated with the Domain. Each tag consists of a key and an optional value. Tag keys must be unique per resource. Tags are searchable using the Search API.

    Tags that you specify for the Domain are also added to all Apps that the Domain launches.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

  • AppNetworkAccessType (string) --

    Specifies the VPC used for non-EFS traffic. The default value is PublicInternetOnly .

    • PublicInternetOnly - Non-EFS traffic is through a VPC managed by Amazon SageMaker, which allows direct internet access
    • VpcOnly - All Studio traffic is through the specified VPC and subnets
  • HomeEfsFileSystemKmsKeyId (string) -- Use KmsKeyId .
  • KmsKeyId (string) -- SageMaker uses Amazon Web Services KMS to encrypt the EFS volume attached to the domain with an Amazon Web Services managed key by default. For more control, specify a customer managed key.
  • AppSecurityGroupManagement (string) -- The entity that creates and manages the required security groups for inter-app communication in VPCOnly mode. Required when CreateDomain.AppNetworkAccessType is VPCOnly and DomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn is provided.
  • DomainSettings (dict) --

    A collection of Domain settings.

    • SecurityGroupIds (list) --

      The security groups for the Amazon Virtual Private Cloud that the Domain uses for communication between Domain-level apps and user apps.

      • (string) --
    • RStudioServerProDomainSettings (dict) --

      A collection of settings that configure the RStudioServerPro Domain-level app.

      • DomainExecutionRoleArn (string) -- [REQUIRED]

        The ARN of the execution role for the RStudioServerPro Domain-level app.

      • RStudioConnectUrl (string) --

        A URL pointing to an RStudio Connect server.

      • RStudioPackageManagerUrl (string) --

        A URL pointing to an RStudio Package Manager server.

      • DefaultResourceSpec (dict) --

        Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that the version runs on.

        • SageMakerImageArn (string) --

          The ARN of the SageMaker image that the image version belongs to.

        • SageMakerImageVersionArn (string) --

          The ARN of the image version created on the instance.

        • InstanceType (string) --

          The instance type that the image version runs on.

          Note

          JupyterServer apps only support the system value.

          For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

        • LifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

    • ExecutionRoleIdentityConfig (string) --

      The configuration for attaching a SageMaker user profile name to the execution role as a sts:SourceIdentity key.

  • DefaultSpaceSettings (dict) --

    The default settings used to create a space.

    • ExecutionRole (string) --

      The execution role for the space.

    • SecurityGroups (list) --

      The security groups for the Amazon Virtual Private Cloud that the space uses for communication.

      • (string) --
    • JupyterServerAppSettings (dict) --

      The JupyterServer app settings.

      • DefaultResourceSpec (dict) --

        The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.

        • SageMakerImageArn (string) --

          The ARN of the SageMaker image that the image version belongs to.

        • SageMakerImageVersionArn (string) --

          The ARN of the image version created on the instance.

        • InstanceType (string) --

          The instance type that the image version runs on.

          Note

          JupyterServer apps only support the system value.

          For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

        • LifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

      • LifecycleConfigArns (list) --

        The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter is also required.

        Note

        To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.

        • (string) --
      • CodeRepositories (list) --

        A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.

        • (dict) --

          A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.

          • RepositoryUrl (string) -- [REQUIRED]

            The URL of the Git repository.

    • KernelGatewayAppSettings (dict) --

      The KernelGateway app settings.

      • DefaultResourceSpec (dict) --

        The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app.

        Note

        The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the Amazon Web Services Command Line Interface or Amazon Web Services CloudFormation and the instance type parameter value is not passed.

        • SageMakerImageArn (string) --

          The ARN of the SageMaker image that the image version belongs to.

        • SageMakerImageVersionArn (string) --

          The ARN of the image version created on the instance.

        • InstanceType (string) --

          The instance type that the image version runs on.

          Note

          JupyterServer apps only support the system value.

          For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

        • LifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

      • CustomImages (list) --

        A list of custom SageMaker images that are configured to run as a KernelGateway app.

        • (dict) --

          A custom SageMaker image. For more information, see Bring your own SageMaker image.

          • ImageName (string) -- [REQUIRED]

            The name of the CustomImage. Must be unique to your account.

          • ImageVersionNumber (integer) --

            The version number of the CustomImage.

          • AppImageConfigName (string) -- [REQUIRED]

            The name of the AppImageConfig.

      • LifecycleConfigArns (list) --

        The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.

        Note

        To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.

        • (string) --
Return type

dict

Returns

Response Syntax

{
    'DomainArn': 'string',
    'Url': 'string'
}

Response Structure

  • (dict) --

    • DomainArn (string) --

      The Amazon Resource Name (ARN) of the created domain.

    • Url (string) --

      The URL to the created domain.

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
  • SageMaker.Client.exceptions.ResourceInUse
create_edge_deployment_plan(**kwargs)

Creates an edge deployment plan, consisting of multiple stages. Each stage may have a different deployment configuration and devices.

See also: AWS API Documentation

Request Syntax

response = client.create_edge_deployment_plan(
    EdgeDeploymentPlanName='string',
    ModelConfigs=[
        {
            'ModelHandle': 'string',
            'EdgePackagingJobName': 'string'
        },
    ],
    DeviceFleetName='string',
    Stages=[
        {
            'StageName': 'string',
            'DeviceSelectionConfig': {
                'DeviceSubsetType': 'PERCENTAGE'|'SELECTION'|'NAMECONTAINS',
                'Percentage': 123,
                'DeviceNames': [
                    'string',
                ],
                'DeviceNameContains': 'string'
            },
            'DeploymentConfig': {
                'FailureHandlingPolicy': 'ROLLBACK_ON_FAILURE'|'DO_NOTHING'
            }
        },
    ],
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • EdgeDeploymentPlanName (string) --

    [REQUIRED]

    The name of the edge deployment plan.

  • ModelConfigs (list) --

    [REQUIRED]

    List of models associated with the edge deployment plan.

    • (dict) --

      Contains information about the configuration of a model in a deployment.

      • ModelHandle (string) -- [REQUIRED]

        The name the device application uses to reference this model.

      • EdgePackagingJobName (string) -- [REQUIRED]

        The edge packaging job associated with this deployment.

  • DeviceFleetName (string) --

    [REQUIRED]

    The device fleet used for this edge deployment plan.

  • Stages (list) --

    List of stages of the edge deployment plan. The number of stages is limited to 10 per deployment.

    • (dict) --

      Contains information about a stage in an edge deployment plan.

      • StageName (string) -- [REQUIRED]

        The name of the stage.

      • DeviceSelectionConfig (dict) -- [REQUIRED]

        Configuration of the devices in the stage.

        • DeviceSubsetType (string) -- [REQUIRED]

          Type of device subsets to deploy to the current stage.

        • Percentage (integer) --

          Percentage of devices in the fleet to deploy to the current stage.

        • DeviceNames (list) --

          List of devices chosen to deploy.

          • (string) --
        • DeviceNameContains (string) --

          A filter to select devices with names containing this name.

      • DeploymentConfig (dict) --

        Configuration of the deployment details.

        • FailureHandlingPolicy (string) -- [REQUIRED]

          Toggle that determines whether to rollback to previous configuration if the current deployment fails. By default this is turned on. You may turn this off if you want to investigate the errors yourself.

  • Tags (list) --

    List of tags with which to tag the edge deployment plan.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'EdgeDeploymentPlanArn': 'string'
}

Response Structure

  • (dict) --

    • EdgeDeploymentPlanArn (string) --

      The ARN of the edge deployment plan.

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
create_edge_deployment_stage(**kwargs)

Creates a new stage in an existing edge deployment plan.

See also: AWS API Documentation

Request Syntax

response = client.create_edge_deployment_stage(
    EdgeDeploymentPlanName='string',
    Stages=[
        {
            'StageName': 'string',
            'DeviceSelectionConfig': {
                'DeviceSubsetType': 'PERCENTAGE'|'SELECTION'|'NAMECONTAINS',
                'Percentage': 123,
                'DeviceNames': [
                    'string',
                ],
                'DeviceNameContains': 'string'
            },
            'DeploymentConfig': {
                'FailureHandlingPolicy': 'ROLLBACK_ON_FAILURE'|'DO_NOTHING'
            }
        },
    ]
)
Parameters
  • EdgeDeploymentPlanName (string) --

    [REQUIRED]

    The name of the edge deployment plan.

  • Stages (list) --

    [REQUIRED]

    List of stages to be added to the edge deployment plan.

    • (dict) --

      Contains information about a stage in an edge deployment plan.

      • StageName (string) -- [REQUIRED]

        The name of the stage.

      • DeviceSelectionConfig (dict) -- [REQUIRED]

        Configuration of the devices in the stage.

        • DeviceSubsetType (string) -- [REQUIRED]

          Type of device subsets to deploy to the current stage.

        • Percentage (integer) --

          Percentage of devices in the fleet to deploy to the current stage.

        • DeviceNames (list) --

          List of devices chosen to deploy.

          • (string) --
        • DeviceNameContains (string) --

          A filter to select devices with names containing this name.

      • DeploymentConfig (dict) --

        Configuration of the deployment details.

        • FailureHandlingPolicy (string) -- [REQUIRED]

          Toggle that determines whether to rollback to previous configuration if the current deployment fails. By default this is turned on. You may turn this off if you want to investigate the errors yourself.

Returns

None

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
create_edge_packaging_job(**kwargs)

Starts a SageMaker Edge Manager model packaging job. Edge Manager will use the model artifacts from the Amazon Simple Storage Service bucket that you specify. After the model has been packaged, Amazon SageMaker saves the resulting artifacts to an S3 bucket that you specify.

See also: AWS API Documentation

Request Syntax

response = client.create_edge_packaging_job(
    EdgePackagingJobName='string',
    CompilationJobName='string',
    ModelName='string',
    ModelVersion='string',
    RoleArn='string',
    OutputConfig={
        'S3OutputLocation': 'string',
        'KmsKeyId': 'string',
        'PresetDeploymentType': 'GreengrassV2Component',
        'PresetDeploymentConfig': 'string'
    },
    ResourceKey='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • EdgePackagingJobName (string) --

    [REQUIRED]

    The name of the edge packaging job.

  • CompilationJobName (string) --

    [REQUIRED]

    The name of the SageMaker Neo compilation job that will be used to locate model artifacts for packaging.

  • ModelName (string) --

    [REQUIRED]

    The name of the model.

  • ModelVersion (string) --

    [REQUIRED]

    The version of the model.

  • RoleArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to download and upload the model, and to contact SageMaker Neo.

  • OutputConfig (dict) --

    [REQUIRED]

    Provides information about the output location for the packaged model.

    • S3OutputLocation (string) -- [REQUIRED]

      The Amazon Simple Storage (S3) bucker URI.

    • KmsKeyId (string) --

      The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume after compilation job. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account.

    • PresetDeploymentType (string) --

      The deployment type SageMaker Edge Manager will create. Currently only supports Amazon Web Services IoT Greengrass Version 2 components.

    • PresetDeploymentConfig (string) --

      The configuration used to create deployment artifacts. Specify configuration options with a JSON string. The available configuration options for each type are:

      • ComponentName (optional) - Name of the GreenGrass V2 component. If not specified, the default name generated consists of "SagemakerEdgeManager" and the name of your SageMaker Edge Manager packaging job.
      • ComponentDescription (optional) - Description of the component.
      • ComponentVersion (optional) - The version of the component.

      Note

      Amazon Web Services IoT Greengrass uses semantic versions for components. Semantic versions follow a*major.minor.patch* number system. For example, version 1.0.0 represents the first major release for a component. For more information, see the semantic version specification.

      • PlatformOS (optional) - The name of the operating system for the platform. Supported platforms include Windows and Linux.
      • PlatformArchitecture (optional) - The processor architecture for the platform. Supported architectures Windows include: Windows32_x86, Windows64_x64. Supported architectures for Linux include: Linux x86_64, Linux ARMV8.
  • ResourceKey (string) -- The Amazon Web Services KMS key to use when encrypting the EBS volume the edge packaging job runs on.
  • Tags (list) --

    Creates tags for the packaging job.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Returns

None

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
create_endpoint(**kwargs)

Creates an endpoint using the endpoint configuration specified in the request. SageMaker uses the endpoint to provision resources and deploy models. You create the endpoint configuration with the CreateEndpointConfig API.

Use this API to deploy models using SageMaker hosting services.

For an example that calls this method when deploying a model to SageMaker hosting services, see the Create Endpoint example notebook.

Note

You must not delete an EndpointConfig that is in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. To update an endpoint, you must create a new EndpointConfig .

The endpoint name must be unique within an Amazon Web Services Region in your Amazon Web Services account.

When it receives the request, SageMaker creates the endpoint, launches the resources (ML compute instances), and deploys the model(s) on them.

Note

When you call CreateEndpoint, a load call is made to DynamoDB to verify that your endpoint configuration exists. When you read data from a DynamoDB table supporting Eventually Consistent Reads, the response might not reflect the results of a recently completed write operation. The response might include some stale data. If the dependent entities are not yet in DynamoDB, this causes a validation error. If you repeat your read request after a short time, the response should return the latest data. So retry logic is recommended to handle these possible issues. We also recommend that customers call DescribeEndpointConfig before calling CreateEndpoint to minimize the potential impact of a DynamoDB eventually consistent read.

When SageMaker receives the request, it sets the endpoint status to Creating . After it creates the endpoint, it sets the status to InService . SageMaker can then process incoming requests for inferences. To check the status of an endpoint, use the DescribeEndpoint API.

If any of the models hosted at this endpoint get model data from an Amazon S3 location, SageMaker uses Amazon Web Services Security Token Service to download model artifacts from the S3 path you provided. Amazon Web Services STS is activated in your Amazon Web Services account by default. If you previously deactivated Amazon Web Services STS for a region, you need to reactivate Amazon Web Services STS for that region. For more information, see Activating and Deactivating Amazon Web Services STS in an Amazon Web Services Region in the Amazon Web Services Identity and Access Management User Guide .

Note

To add the IAM role policies for using this API operation, go to the IAM console, and choose Roles in the left navigation pane. Search the IAM role that you want to grant access to use the CreateEndpoint and CreateEndpointConfig API operations, add the following policies to the role.

  • Option 1: For a full SageMaker access, search and attach the AmazonSageMakerFullAccess policy.
  • Option 2: For granting a limited access to an IAM role, paste the following Action elements manually into the JSON file of the IAM role: "Action": ["sagemaker:CreateEndpoint", "sagemaker:CreateEndpointConfig"] "Resource": [ "arn:aws:sagemaker:region:account-id:endpoint/endpointName" "arn:aws:sagemaker:region:account-id:endpoint-config/endpointConfigName" ] For more information, see SageMaker API Permissions: Actions, Permissions, and Resources Reference.

See also: AWS API Documentation

Request Syntax

response = client.create_endpoint(
    EndpointName='string',
    EndpointConfigName='string',
    DeploymentConfig={
        'BlueGreenUpdatePolicy': {
            'TrafficRoutingConfiguration': {
                'Type': 'ALL_AT_ONCE'|'CANARY'|'LINEAR',
                'WaitIntervalInSeconds': 123,
                'CanarySize': {
                    'Type': 'INSTANCE_COUNT'|'CAPACITY_PERCENT',
                    'Value': 123
                },
                'LinearStepSize': {
                    'Type': 'INSTANCE_COUNT'|'CAPACITY_PERCENT',
                    'Value': 123
                }
            },
            'TerminationWaitInSeconds': 123,
            'MaximumExecutionTimeoutInSeconds': 123
        },
        'AutoRollbackConfiguration': {
            'Alarms': [
                {
                    'AlarmName': 'string'
                },
            ]
        }
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • EndpointName (string) --

    [REQUIRED]

    The name of the endpoint.The name must be unique within an Amazon Web Services Region in your Amazon Web Services account. The name is case-insensitive in CreateEndpoint , but the case is preserved and must be matched in .

  • EndpointConfigName (string) --

    [REQUIRED]

    The name of an endpoint configuration. For more information, see CreateEndpointConfig.

  • DeploymentConfig (dict) --

    The deployment configuration for an endpoint, which contains the desired deployment strategy and rollback configurations.

    • BlueGreenUpdatePolicy (dict) -- [REQUIRED]

      Update policy for a blue/green deployment. If this update policy is specified, SageMaker creates a new fleet during the deployment while maintaining the old fleet. SageMaker flips traffic to the new fleet according to the specified traffic routing configuration. Only one update policy should be used in the deployment configuration. If no update policy is specified, SageMaker uses a blue/green deployment strategy with all at once traffic shifting by default.

      • TrafficRoutingConfiguration (dict) -- [REQUIRED]

        Defines the traffic routing strategy to shift traffic from the old fleet to the new fleet during an endpoint deployment.

        • Type (string) -- [REQUIRED]

          Traffic routing strategy type.

          • ALL_AT_ONCE : Endpoint traffic shifts to the new fleet in a single step.
          • CANARY : Endpoint traffic shifts to the new fleet in two steps. The first step is the canary, which is a small portion of the traffic. The second step is the remainder of the traffic.
          • LINEAR : Endpoint traffic shifts to the new fleet in n steps of a configurable size.
        • WaitIntervalInSeconds (integer) -- [REQUIRED]

          The waiting time (in seconds) between incremental steps to turn on traffic on the new endpoint fleet.

        • CanarySize (dict) --

          Batch size for the first step to turn on traffic on the new endpoint fleet. Value must be less than or equal to 50% of the variant's total instance count.

          • Type (string) -- [REQUIRED]

            Specifies the endpoint capacity type.

            • INSTANCE_COUNT : The endpoint activates based on the number of instances.
            • CAPACITY_PERCENT : The endpoint activates based on the specified percentage of capacity.
          • Value (integer) -- [REQUIRED]

            Defines the capacity size, either as a number of instances or a capacity percentage.

        • LinearStepSize (dict) --

          Batch size for each step to turn on traffic on the new endpoint fleet. Value must be 10-50% of the variant's total instance count.

          • Type (string) -- [REQUIRED]

            Specifies the endpoint capacity type.

            • INSTANCE_COUNT : The endpoint activates based on the number of instances.
            • CAPACITY_PERCENT : The endpoint activates based on the specified percentage of capacity.
          • Value (integer) -- [REQUIRED]

            Defines the capacity size, either as a number of instances or a capacity percentage.

      • TerminationWaitInSeconds (integer) --

        Additional waiting time in seconds after the completion of an endpoint deployment before terminating the old endpoint fleet. Default is 0.

      • MaximumExecutionTimeoutInSeconds (integer) --

        Maximum execution timeout for the deployment. Note that the timeout value should be larger than the total waiting time specified in TerminationWaitInSeconds and WaitIntervalInSeconds .

    • AutoRollbackConfiguration (dict) --

      Automatic rollback configuration for handling endpoint deployment failures and recovery.

      • Alarms (list) --

        List of CloudWatch alarms in your account that are configured to monitor metrics on an endpoint. If any alarms are tripped during a deployment, SageMaker rolls back the deployment.

        • (dict) --

          An Amazon CloudWatch alarm configured to monitor metrics on an endpoint.

          • AlarmName (string) --

            The name of a CloudWatch alarm in your account.

  • Tags (list) --

    An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'EndpointArn': 'string'
}

Response Structure

  • (dict) --

    • EndpointArn (string) --

      The Amazon Resource Name (ARN) of the endpoint.

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
create_endpoint_config(**kwargs)

Creates an endpoint configuration that SageMaker hosting services uses to deploy models. In the configuration, you identify one or more models, created using the CreateModel API, to deploy and the resources that you want SageMaker to provision. Then you call the CreateEndpoint API.

Note

Use this API if you want to use SageMaker hosting services to deploy models into production.

In the request, you define a ProductionVariant , for each model that you want to deploy. Each ProductionVariant parameter also describes the resources that you want SageMaker to provision. This includes the number and type of ML compute instances to deploy.

If you are hosting multiple models, you also assign a VariantWeight to specify how much traffic you want to allocate to each model. For example, suppose that you want to host two models, A and B, and you assign traffic weight 2 for model A and 1 for model B. SageMaker distributes two-thirds of the traffic to Model A, and one-third to model B.

Note

When you call CreateEndpoint, a load call is made to DynamoDB to verify that your endpoint configuration exists. When you read data from a DynamoDB table supporting Eventually Consistent Reads, the response might not reflect the results of a recently completed write operation. The response might include some stale data. If the dependent entities are not yet in DynamoDB, this causes a validation error. If you repeat your read request after a short time, the response should return the latest data. So retry logic is recommended to handle these possible issues. We also recommend that customers call DescribeEndpointConfig before calling CreateEndpoint to minimize the potential impact of a DynamoDB eventually consistent read.

See also: AWS API Documentation

Request Syntax

response = client.create_endpoint_config(
    EndpointConfigName='string',
    ProductionVariants=[
        {
            'VariantName': 'string',
            'ModelName': 'string',
            'InitialInstanceCount': 123,
            'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge',
            'InitialVariantWeight': ...,
            'AcceleratorType': 'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge',
            'CoreDumpConfig': {
                'DestinationS3Uri': 'string',
                'KmsKeyId': 'string'
            },
            'ServerlessConfig': {
                'MemorySizeInMB': 123,
                'MaxConcurrency': 123
            },
            'VolumeSizeInGB': 123,
            'ModelDataDownloadTimeoutInSeconds': 123,
            'ContainerStartupHealthCheckTimeoutInSeconds': 123
        },
    ],
    DataCaptureConfig={
        'EnableCapture': True|False,
        'InitialSamplingPercentage': 123,
        'DestinationS3Uri': 'string',
        'KmsKeyId': 'string',
        'CaptureOptions': [
            {
                'CaptureMode': 'Input'|'Output'
            },
        ],
        'CaptureContentTypeHeader': {
            'CsvContentTypes': [
                'string',
            ],
            'JsonContentTypes': [
                'string',
            ]
        }
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    KmsKeyId='string',
    AsyncInferenceConfig={
        'ClientConfig': {
            'MaxConcurrentInvocationsPerInstance': 123
        },
        'OutputConfig': {
            'KmsKeyId': 'string',
            'S3OutputPath': 'string',
            'NotificationConfig': {
                'SuccessTopic': 'string',
                'ErrorTopic': 'string'
            }
        }
    },
    ExplainerConfig={
        'ClarifyExplainerConfig': {
            'EnableExplanations': 'string',
            'InferenceConfig': {
                'FeaturesAttribute': 'string',
                'ContentTemplate': 'string',
                'MaxRecordCount': 123,
                'MaxPayloadInMB': 123,
                'ProbabilityIndex': 123,
                'LabelIndex': 123,
                'ProbabilityAttribute': 'string',
                'LabelAttribute': 'string',
                'LabelHeaders': [
                    'string',
                ],
                'FeatureHeaders': [
                    'string',
                ],
                'FeatureTypes': [
                    'numerical'|'categorical'|'text',
                ]
            },
            'ShapConfig': {
                'ShapBaselineConfig': {
                    'MimeType': 'string',
                    'ShapBaseline': 'string',
                    'ShapBaselineUri': 'string'
                },
                'NumberOfSamples': 123,
                'UseLogit': True|False,
                'Seed': 123,
                'TextConfig': {
                    'Language': 'af'|'sq'|'ar'|'hy'|'eu'|'bn'|'bg'|'ca'|'zh'|'hr'|'cs'|'da'|'nl'|'en'|'et'|'fi'|'fr'|'de'|'el'|'gu'|'he'|'hi'|'hu'|'is'|'id'|'ga'|'it'|'kn'|'ky'|'lv'|'lt'|'lb'|'mk'|'ml'|'mr'|'ne'|'nb'|'fa'|'pl'|'pt'|'ro'|'ru'|'sa'|'sr'|'tn'|'si'|'sk'|'sl'|'es'|'sv'|'tl'|'ta'|'tt'|'te'|'tr'|'uk'|'ur'|'yo'|'lij'|'xx',
                    'Granularity': 'token'|'sentence'|'paragraph'
                }
            }
        }
    },
    ShadowProductionVariants=[
        {
            'VariantName': 'string',
            'ModelName': 'string',
            'InitialInstanceCount': 123,
            'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge',
            'InitialVariantWeight': ...,
            'AcceleratorType': 'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge',
            'CoreDumpConfig': {
                'DestinationS3Uri': 'string',
                'KmsKeyId': 'string'
            },
            'ServerlessConfig': {
                'MemorySizeInMB': 123,
                'MaxConcurrency': 123
            },
            'VolumeSizeInGB': 123,
            'ModelDataDownloadTimeoutInSeconds': 123,
            'ContainerStartupHealthCheckTimeoutInSeconds': 123
        },
    ]
)
Parameters
  • EndpointConfigName (string) --

    [REQUIRED]

    The name of the endpoint configuration. You specify this name in a CreateEndpoint request.

  • ProductionVariants (list) --

    [REQUIRED]

    An array of ProductionVariant objects, one for each model that you want to host at this endpoint.

    • (dict) --

      Identifies a model that you want to host and the resources chosen to deploy for hosting it. If you are deploying multiple models, tell SageMaker how to distribute traffic among the models by specifying variant weights.

      • VariantName (string) -- [REQUIRED]

        The name of the production variant.

      • ModelName (string) -- [REQUIRED]

        The name of the model that you want to host. This is the name that you specified when creating the model.

      • InitialInstanceCount (integer) --

        Number of instances to launch initially.

      • InstanceType (string) --

        The ML compute instance type.

      • InitialVariantWeight (float) --

        Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of the VariantWeight to the sum of all VariantWeight values across all ProductionVariants. If unspecified, it defaults to 1.0.

      • AcceleratorType (string) --

        The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker.

      • CoreDumpConfig (dict) --

        Specifies configuration for a core dump from the model container when the process crashes.

        • DestinationS3Uri (string) -- [REQUIRED]

          The Amazon S3 bucket to send the core dump to.

        • KmsKeyId (string) --

          The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the core dump data at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

          • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
          • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
          • // KMS Key Alias "alias/ExampleAlias"
          • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

          If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

          The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint and UpdateEndpoint requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .

      • ServerlessConfig (dict) --

        The serverless configuration for an endpoint. Specifies a serverless endpoint configuration instead of an instance-based endpoint configuration.

        • MemorySizeInMB (integer) -- [REQUIRED]

          The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

        • MaxConcurrency (integer) -- [REQUIRED]

          The maximum number of concurrent invocations your serverless endpoint can process.

      • VolumeSizeInGB (integer) --

        The size, in GB, of the ML storage volume attached to individual inference instance associated with the production variant. Currently only Amazon EBS gp2 storage volumes are supported.

      • ModelDataDownloadTimeoutInSeconds (integer) --

        The timeout value, in seconds, to download and extract the model that you want to host from Amazon S3 to the individual inference instance associated with this production variant.

      • ContainerStartupHealthCheckTimeoutInSeconds (integer) --

        The timeout value, in seconds, for your inference container to pass health check by SageMaker Hosting. For more information about health check, see How Your Container Should Respond to Health Check (Ping) Requests.

  • DataCaptureConfig (dict) --

    Configuration to control how SageMaker captures inference data.

    • EnableCapture (boolean) --

      Whether data capture should be enabled or disabled (defaults to enabled).

    • InitialSamplingPercentage (integer) -- [REQUIRED]

      The percentage of requests SageMaker will capture. A lower value is recommended for Endpoints with high traffic.

    • DestinationS3Uri (string) -- [REQUIRED]

      The Amazon S3 location used to capture the data.

    • KmsKeyId (string) --

      The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker uses to encrypt the captured data at rest using Amazon S3 server-side encryption.

      The KmsKeyId can be any of the following formats:

      • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
      • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
      • Alias name: alias/ExampleAlias
      • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
    • CaptureOptions (list) -- [REQUIRED]

      Specifies data Model Monitor will capture. You can configure whether to collect only input, only output, or both

      • (dict) --

        Specifies data Model Monitor will capture.

        • CaptureMode (string) -- [REQUIRED]

          Specify the boundary of data to capture.

    • CaptureContentTypeHeader (dict) --

      Configuration specifying how to treat different headers. If no headers are specified SageMaker will by default base64 encode when capturing the data.

      • CsvContentTypes (list) --

        The list of all content type headers that SageMaker will treat as CSV and capture accordingly.

        • (string) --
      • JsonContentTypes (list) --

        The list of all content type headers that SageMaker will treat as JSON and capture accordingly.

        • (string) --
  • Tags (list) --

    An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

  • KmsKeyId (string) --

    The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint.

    The KmsKeyId can be any of the following formats:

    • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
    • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
    • Alias name: alias/ExampleAlias
    • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

    The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint , UpdateEndpoint requests. For more information, refer to the Amazon Web Services Key Management Service section Using Key Policies in Amazon Web Services KMS

    Note

    Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a KmsKeyId when using an instance type with local storage. If any of the models that you specify in the ProductionVariants parameter use nitro-based instances with local storage, do not specify a value for the KmsKeyId parameter. If you specify a value for KmsKeyId when using any nitro-based instances with local storage, the call to CreateEndpointConfig fails.

    For a list of instance types that support local instance storage, see Instance Store Volumes.

    For more information about local instance storage encryption, see SSD Instance Store Volumes.

  • AsyncInferenceConfig (dict) --

    Specifies configuration for how an endpoint performs asynchronous inference. This is a required field in order for your Endpoint to be invoked using InvokeEndpointAsync.

    • ClientConfig (dict) --

      Configures the behavior of the client used by SageMaker to interact with the model container during asynchronous inference.

      • MaxConcurrentInvocationsPerInstance (integer) --

        The maximum number of concurrent requests sent by the SageMaker client to the model container. If no value is provided, SageMaker chooses an optimal value.

    • OutputConfig (dict) -- [REQUIRED]

      Specifies the configuration for asynchronous inference invocation outputs.

      • KmsKeyId (string) --

        The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the asynchronous inference output in Amazon S3.

      • S3OutputPath (string) -- [REQUIRED]

        The Amazon S3 location to upload inference responses to.

      • NotificationConfig (dict) --

        Specifies the configuration for notifications of inference results for asynchronous inference.

        • SuccessTopic (string) --

          Amazon SNS topic to post a notification to when inference completes successfully. If no topic is provided, no notification is sent on success.

        • ErrorTopic (string) --

          Amazon SNS topic to post a notification to when inference fails. If no topic is provided, no notification is sent on failure.

  • ExplainerConfig (dict) --

    A member of CreateEndpointConfig that enables explainers.

    • ClarifyExplainerConfig (dict) --

      A member of ExplainerConfig that contains configuration parameters for the SageMaker Clarify explainer.

      • EnableExplanations (string) --

        A JMESPath boolean expression used to filter which records to explain. Explanations are activated by default. See EnableExplanations for additional information.

      • InferenceConfig (dict) --

        The inference configuration parameter for the model container.

        • FeaturesAttribute (string) --

          Provides the JMESPath expression to extract the features from a model container input in JSON Lines format. For example, if FeaturesAttribute is the JMESPath expression 'myfeatures' , it extracts a list of features [1,2,3] from request data '{"myfeatures":[1,2,3]}' .

        • ContentTemplate (string) --

          A template string used to format a JSON record into an acceptable model container input. For example, a ContentTemplate string '{"myfeatures":$features}' will format a list of features [1,2,3] into the record string '{"myfeatures":[1,2,3]}' . Required only when the model container input is in JSON Lines format.

        • MaxRecordCount (integer) --

          The maximum number of records in a request that the model container can process when querying the model container for the predictions of a synthetic dataset. A record is a unit of input data that inference can be made on, for example, a single line in CSV data. If MaxRecordCount is 1 , the model container expects one record per request. A value of 2 or greater means that the model expects batch requests, which can reduce overhead and speed up the inferencing process. If this parameter is not provided, the explainer will tune the record count per request according to the model container's capacity at runtime.

        • MaxPayloadInMB (integer) --

          The maximum payload size (MB) allowed of a request from the explainer to the model container. Defaults to 6 MB.

        • ProbabilityIndex (integer) --

          A zero-based index used to extract a probability value (score) or list from model container output in CSV format. If this value is not provided, the entire model container output will be treated as a probability value (score) or list.

          Example for a single class model: If the model container output consists of a string-formatted prediction label followed by its probability: '1,0.6' , set ProbabilityIndex to 1 to select the probability value 0.6 .

          Example for a multiclass model: If the model container output consists of a string-formatted prediction label followed by its probability: '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"' , set ProbabilityIndex to 1 to select the probability values [0.1,0.6,0.3] .

        • LabelIndex (integer) --

          A zero-based index used to extract a label header or list of label headers from model container output in CSV format.

          Example for a multiclass model: If the model container output consists of label headers followed by probabilities: '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"' , set LabelIndex to 0 to select the label headers ['cat','dog','fish'] .
        • ProbabilityAttribute (string) --

          A JMESPath expression used to extract the probability (or score) from the model container output if the model container is in JSON Lines format.

          Example : If the model container output of a single request is '{"predicted_label":1,"probability":0.6}' , then set ProbabilityAttribute to 'probability' .
        • LabelAttribute (string) --

          A JMESPath expression used to locate the list of label headers in the model container output.

          Example : If the model container output of a batch request is '{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}' , then set LabelAttribute to 'labels' to extract the list of label headers ["cat","dog","fish"]
        • LabelHeaders (list) --

          For multiclass classification problems, the label headers are the names of the classes. Otherwise, the label header is the name of the predicted label. These are used to help readability for the output of the InvokeEndpoint API. See the response section under Invoke the endpoint in the Developer Guide for more information. If there are no label headers in the model container output, provide them manually using this parameter.

          • (string) --
        • FeatureHeaders (list) --

          The names of the features. If provided, these are included in the endpoint response payload to help readability of the InvokeEndpoint output. See the Response section under Invoke the endpoint in the Developer Guide for more information.

          • (string) --
        • FeatureTypes (list) --

          A list of data types of the features (optional). Applicable only to NLP explainability. If provided, FeatureTypes must have at least one 'text' string (for example, ['text'] ). If FeatureTypes is not provided, the explainer infers the feature types based on the baseline data. The feature types are included in the endpoint response payload. For additional information see the response section under Invoke the endpoint in the Developer Guide for more information.

          • (string) --
      • ShapConfig (dict) -- [REQUIRED]

        The configuration for SHAP analysis.

        • ShapBaselineConfig (dict) -- [REQUIRED]

          The configuration for the SHAP baseline of the Kernal SHAP algorithm.

          • MimeType (string) --

            The MIME type of the baseline data. Choose from 'text/csv' or 'application/jsonlines' . Defaults to 'text/csv' .

          • ShapBaseline (string) --

            The inline SHAP baseline data in string format. ShapBaseline can have one or multiple records to be used as the baseline dataset. The format of the SHAP baseline file should be the same format as the training dataset. For example, if the training dataset is in CSV format and each record contains four features, and all features are numerical, then the format of the baseline data should also share these characteristics. For natural language processing (NLP) of text columns, the baseline value should be the value used to replace the unit of text specified by the Granularity of the TextConfig parameter. The size limit for ShapBasline is 4 KB. Use the ShapBaselineUri parameter if you want to provide more than 4 KB of baseline data.

          • ShapBaselineUri (string) --

            The uniform resource identifier (URI) of the S3 bucket where the SHAP baseline file is stored. The format of the SHAP baseline file should be the same format as the format of the training dataset. For example, if the training dataset is in CSV format, and each record in the training dataset has four features, and all features are numerical, then the baseline file should also have this same format. Each record should contain only the features. If you are using a virtual private cloud (VPC), the ShapBaselineUri should be accessible to the VPC. For more information about setting up endpoints with Amazon Virtual Private Cloud, see Give SageMaker access to Resources in your Amazon Virtual Private Cloud.

        • NumberOfSamples (integer) --

          The number of samples to be used for analysis by the Kernal SHAP algorithm.

          Note

          The number of samples determines the size of the synthetic dataset, which has an impact on latency of explainability requests. For more information, see the Synthetic data of Configure and create an endpoint.

        • UseLogit (boolean) --

          A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for model predictions. Defaults to false.

        • Seed (integer) --

          The starting value used to initialize the random number generator in the explainer. Provide a value for this parameter to obtain a deterministic SHAP result.

        • TextConfig (dict) --

          A parameter that indicates if text features are treated as text and explanations are provided for individual units of text. Required for natural language processing (NLP) explainability only.

          • Language (string) -- [REQUIRED]

            Specifies the language of the text features in ISO 639-1 or ISO 639-3 code of a supported language.

            Note

            For a mix of multiple languages, use code 'xx' .

          • Granularity (string) -- [REQUIRED]

            The unit of granularity for the analysis of text features. For example, if the unit is 'token' , then each token (like a word in English) of the text is treated as a feature. SHAP values are computed for each unit/feature.

  • ShadowProductionVariants (list) --

    An array of ProductionVariant objects, one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants . If you use this field, you can only specify one variant for ProductionVariants and one variant for ShadowProductionVariants .

    • (dict) --

      Identifies a model that you want to host and the resources chosen to deploy for hosting it. If you are deploying multiple models, tell SageMaker how to distribute traffic among the models by specifying variant weights.

      • VariantName (string) -- [REQUIRED]

        The name of the production variant.

      • ModelName (string) -- [REQUIRED]

        The name of the model that you want to host. This is the name that you specified when creating the model.

      • InitialInstanceCount (integer) --

        Number of instances to launch initially.

      • InstanceType (string) --

        The ML compute instance type.

      • InitialVariantWeight (float) --

        Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of the VariantWeight to the sum of all VariantWeight values across all ProductionVariants. If unspecified, it defaults to 1.0.

      • AcceleratorType (string) --

        The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker.

      • CoreDumpConfig (dict) --

        Specifies configuration for a core dump from the model container when the process crashes.

        • DestinationS3Uri (string) -- [REQUIRED]

          The Amazon S3 bucket to send the core dump to.

        • KmsKeyId (string) --

          The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the core dump data at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

          • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
          • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
          • // KMS Key Alias "alias/ExampleAlias"
          • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

          If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

          The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint and UpdateEndpoint requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .

      • ServerlessConfig (dict) --

        The serverless configuration for an endpoint. Specifies a serverless endpoint configuration instead of an instance-based endpoint configuration.

        • MemorySizeInMB (integer) -- [REQUIRED]

          The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

        • MaxConcurrency (integer) -- [REQUIRED]

          The maximum number of concurrent invocations your serverless endpoint can process.

      • VolumeSizeInGB (integer) --

        The size, in GB, of the ML storage volume attached to individual inference instance associated with the production variant. Currently only Amazon EBS gp2 storage volumes are supported.

      • ModelDataDownloadTimeoutInSeconds (integer) --

        The timeout value, in seconds, to download and extract the model that you want to host from Amazon S3 to the individual inference instance associated with this production variant.

      • ContainerStartupHealthCheckTimeoutInSeconds (integer) --

        The timeout value, in seconds, for your inference container to pass health check by SageMaker Hosting. For more information about health check, see How Your Container Should Respond to Health Check (Ping) Requests.

Return type

dict

Returns

Response Syntax

{
    'EndpointConfigArn': 'string'
}

Response Structure

  • (dict) --

    • EndpointConfigArn (string) --

      The Amazon Resource Name (ARN) of the endpoint configuration.

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
create_experiment(**kwargs)

Creates a SageMaker experiment . An experiment is a collection of trials that are observed, compared and evaluated as a group. A trial is a set of steps, called trial components , that produce a machine learning model.

Note

In the Studio UI, trials are referred to as run groups and trial components are referred to as runs .

The goal of an experiment is to determine the components that produce the best model. Multiple trials are performed, each one isolating and measuring the impact of a change to one or more inputs, while keeping the remaining inputs constant.

When you use SageMaker Studio or the SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the Amazon Web Services SDK for Python (Boto), you must use the logging APIs provided by the SDK.

You can add tags to experiments, trials, trial components and then use the Search API to search for the tags.

To add a description to an experiment, specify the optional Description parameter. To add a description later, or to change the description, call the UpdateExperiment API.

To get a list of all your experiments, call the ListExperiments API. To view an experiment's properties, call the DescribeExperiment API. To get a list of all the trials associated with an experiment, call the ListTrials API. To create a trial call the CreateTrial API.

See also: AWS API Documentation

Request Syntax

response = client.create_experiment(
    ExperimentName='string',
    DisplayName='string',
    Description='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • ExperimentName (string) --

    [REQUIRED]

    The name of the experiment. The name must be unique in your Amazon Web Services account and is not case-sensitive.

  • DisplayName (string) -- The name of the experiment as displayed. The name doesn't need to be unique. If you don't specify DisplayName , the value in ExperimentName is displayed.
  • Description (string) -- The description of the experiment.
  • Tags (list) --

    A list of tags to associate with the experiment. You can use Search API to search on the tags.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'ExperimentArn': 'string'
}

Response Structure

  • (dict) --

    • ExperimentArn (string) --

      The Amazon Resource Name (ARN) of the experiment.

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
create_feature_group(**kwargs)

Create a new FeatureGroup . A FeatureGroup is a group of Features defined in the FeatureStore to describe a Record .

The FeatureGroup defines the schema and features contained in the FeatureGroup. A FeatureGroup definition is composed of a list of Features , a RecordIdentifierFeatureName , an EventTimeFeatureName and configurations for its OnlineStore and OfflineStore . Check Amazon Web Services service quotas to see the FeatureGroup s quota for your Amazon Web Services account.

Warning

You must include at least one of OnlineStoreConfig and OfflineStoreConfig to create a FeatureGroup .

See also: AWS API Documentation

Request Syntax

response = client.create_feature_group(
    FeatureGroupName='string',
    RecordIdentifierFeatureName='string',
    EventTimeFeatureName='string',
    FeatureDefinitions=[
        {
            'FeatureName': 'string',
            'FeatureType': 'Integral'|'Fractional'|'String'
        },
    ],
    OnlineStoreConfig={
        'SecurityConfig': {
            'KmsKeyId': 'string'
        },
        'EnableOnlineStore': True|False
    },
    OfflineStoreConfig={
        'S3StorageConfig': {
            'S3Uri': 'string',
            'KmsKeyId': 'string',
            'ResolvedOutputS3Uri': 'string'
        },
        'DisableGlueTableCreation': True|False,
        'DataCatalogConfig': {
            'TableName': 'string',
            'Catalog': 'string',
            'Database': 'string'
        },
        'TableFormat': 'Glue'|'Iceberg'
    },
    RoleArn='string',
    Description='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • FeatureGroupName (string) --

    [REQUIRED]

    The name of the FeatureGroup . The name must be unique within an Amazon Web Services Region in an Amazon Web Services account. The name:

    • Must start and end with an alphanumeric character.
    • Can only contain alphanumeric character and hyphens. Spaces are not allowed.
  • RecordIdentifierFeatureName (string) --

    [REQUIRED]

    The name of the Feature whose value uniquely identifies a Record defined in the FeatureStore . Only the latest record per identifier value will be stored in the OnlineStore . RecordIdentifierFeatureName must be one of feature definitions' names.

    You use the RecordIdentifierFeatureName to access data in a FeatureStore .

    This name:

    • Must start and end with an alphanumeric character.
    • Can only contains alphanumeric characters, hyphens, underscores. Spaces are not allowed.
  • EventTimeFeatureName (string) --

    [REQUIRED]

    The name of the feature that stores the EventTime of a Record in a FeatureGroup .

    An EventTime is a point in time when a new event occurs that corresponds to the creation or update of a Record in a FeatureGroup . All Records in the FeatureGroup must have a corresponding EventTime .

    An EventTime can be a String or Fractional .

    • Fractional : EventTime feature values must be a Unix timestamp in seconds.
    • String : EventTime feature values must be an ISO-8601 string in the format. The following formats are supported yyyy-MM-dd'T'HH:mm:ssZ and yyyy-MM-dd'T'HH:mm:ss.SSSZ where yyyy , MM , and dd represent the year, month, and day respectively and HH , mm , ss , and if applicable, SSS represent the hour, month, second and milliseconds respsectively. 'T' and Z are constants.
  • FeatureDefinitions (list) --

    [REQUIRED]

    A list of Feature names and types. Name and Type is compulsory per Feature .

    Valid feature FeatureType s are Integral , Fractional and String .

    FeatureName s cannot be any of the following: is_deleted , write_time , api_invocation_time

    You can create up to 2,500 FeatureDefinition s per FeatureGroup .

    • (dict) --

      A list of features. You must include FeatureName and FeatureType . Valid feature FeatureType s are Integral , Fractional and String .

      • FeatureName (string) --

        The name of a feature. The type must be a string. FeatureName cannot be any of the following: is_deleted , write_time , api_invocation_time .

      • FeatureType (string) --

        The value type of a feature. Valid values are Integral, Fractional, or String.

  • OnlineStoreConfig (dict) --

    You can turn the OnlineStore on or off by specifying True for the EnableOnlineStore flag in OnlineStoreConfig ; the default value is False .

    You can also include an Amazon Web Services KMS key ID ( KMSKeyId ) for at-rest encryption of the OnlineStore .

    • SecurityConfig (dict) --

      Use to specify KMS Key ID ( KMSKeyId ) for at-rest encryption of your OnlineStore .

      • KmsKeyId (string) --

        The ID of the Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker Feature Store uses to encrypt the Amazon S3 objects at rest using Amazon S3 server-side encryption.

        The caller (either IAM user or IAM role) of CreateFeatureGroup must have below permissions to the OnlineStore KmsKeyId :

        • "kms:Encrypt"
        • "kms:Decrypt"
        • "kms:DescribeKey"
        • "kms:CreateGrant"
        • "kms:RetireGrant"
        • "kms:ReEncryptFrom"
        • "kms:ReEncryptTo"
        • "kms:GenerateDataKey"
        • "kms:ListAliases"
        • "kms:ListGrants"
        • "kms:RevokeGrant"

        The caller (either user or IAM role) to all DataPlane operations ( PutRecord , GetRecord , DeleteRecord ) must have the following permissions to the KmsKeyId :

        • "kms:Decrypt"
    • EnableOnlineStore (boolean) --

      Turn OnlineStore off by specifying False for the EnableOnlineStore flag. Turn OnlineStore on by specifying True for the EnableOnlineStore flag.

      The default value is False .

  • OfflineStoreConfig (dict) --

    Use this to configure an OfflineFeatureStore . This parameter allows you to specify:

    • The Amazon Simple Storage Service (Amazon S3) location of an OfflineStore .
    • A configuration for an Amazon Web Services Glue or Amazon Web Services Hive data catalog.
    • An KMS encryption key to encrypt the Amazon S3 location used for OfflineStore . If KMS encryption key is not specified, by default we encrypt all data at rest using Amazon Web Services KMS key. By defining your bucket-level key for SSE, you can reduce Amazon Web Services KMS requests costs by up to 99 percent.
    • Format for the offline store table. Supported formats are Glue (Default) and Apache Iceberg.

    To learn more about this parameter, see OfflineStoreConfig.

    • S3StorageConfig (dict) -- [REQUIRED]

      The Amazon Simple Storage (Amazon S3) location of OfflineStore .

      • S3Uri (string) -- [REQUIRED]

        The S3 URI, or location in Amazon S3, of OfflineStore .

        S3 URIs have a format similar to the following: s3://example-bucket/prefix/ .

      • KmsKeyId (string) --

        The Amazon Web Services Key Management Service (KMS) key ID of the key used to encrypt any objects written into the OfflineStore S3 location.

        The IAM roleARN that is passed as a parameter to CreateFeatureGroup must have below permissions to the KmsKeyId :

        • "kms:GenerateDataKey"
      • ResolvedOutputS3Uri (string) --

        The S3 path where offline records are written.

    • DisableGlueTableCreation (boolean) --

      Set to True to disable the automatic creation of an Amazon Web Services Glue table when configuring an OfflineStore .

    • DataCatalogConfig (dict) --

      The meta data of the Glue table that is autogenerated when an OfflineStore is created.

      • TableName (string) -- [REQUIRED]

        The name of the Glue table.

      • Catalog (string) -- [REQUIRED]

        The name of the Glue table catalog.

      • Database (string) -- [REQUIRED]

        The name of the Glue table database.

    • TableFormat (string) --

      Format for the offline store table. Supported formats are Glue (Default) and Apache Iceberg.

  • RoleArn (string) -- The Amazon Resource Name (ARN) of the IAM execution role used to persist data into the OfflineStore if an OfflineStoreConfig is provided.
  • Description (string) -- A free-form description of a FeatureGroup .
  • Tags (list) --

    Tags used to identify Features in each FeatureGroup .

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'FeatureGroupArn': 'string'
}

Response Structure

  • (dict) --

    • FeatureGroupArn (string) --

      The Amazon Resource Name (ARN) of the FeatureGroup . This is a unique identifier for the feature group.

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceLimitExceeded
create_flow_definition(**kwargs)

Creates a flow definition.

See also: AWS API Documentation

Request Syntax

response = client.create_flow_definition(
    FlowDefinitionName='string',
    HumanLoopRequestSource={
        'AwsManagedHumanLoopRequestSource': 'AWS/Rekognition/DetectModerationLabels/Image/V3'|'AWS/Textract/AnalyzeDocument/Forms/V1'
    },
    HumanLoopActivationConfig={
        'HumanLoopActivationConditionsConfig': {
            'HumanLoopActivationConditions': 'string'
        }
    },
    HumanLoopConfig={
        'WorkteamArn': 'string',
        'HumanTaskUiArn': 'string',
        'TaskTitle': 'string',
        'TaskDescription': 'string',
        'TaskCount': 123,
        'TaskAvailabilityLifetimeInSeconds': 123,
        'TaskTimeLimitInSeconds': 123,
        'TaskKeywords': [
            'string',
        ],
        'PublicWorkforceTaskPrice': {
            'AmountInUsd': {
                'Dollars': 123,
                'Cents': 123,
                'TenthFractionsOfACent': 123
            }
        }
    },
    OutputConfig={
        'S3OutputPath': 'string',
        'KmsKeyId': 'string'
    },
    RoleArn='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • FlowDefinitionName (string) --

    [REQUIRED]

    The name of your flow definition.

  • HumanLoopRequestSource (dict) --

    Container for configuring the source of human task requests. Use to specify if Amazon Rekognition or Amazon Textract is used as an integration source.

    • AwsManagedHumanLoopRequestSource (string) -- [REQUIRED]

      Specifies whether Amazon Rekognition or Amazon Textract are used as the integration source. The default field settings and JSON parsing rules are different based on the integration source. Valid values:

  • HumanLoopActivationConfig (dict) --

    An object containing information about the events that trigger a human workflow.

    • HumanLoopActivationConditionsConfig (dict) -- [REQUIRED]

      Container structure for defining under what conditions SageMaker creates a human loop.

      • HumanLoopActivationConditions (string) -- [REQUIRED]

        JSON expressing use-case specific conditions declaratively. If any condition is matched, atomic tasks are created against the configured work team. The set of conditions is different for Rekognition and Textract. For more information about how to structure the JSON, see JSON Schema for Human Loop Activation Conditions in Amazon Augmented AI in the Amazon SageMaker Developer Guide .

  • HumanLoopConfig (dict) --

    [REQUIRED]

    An object containing information about the tasks the human reviewers will perform.

    • WorkteamArn (string) -- [REQUIRED]

      Amazon Resource Name (ARN) of a team of workers. To learn more about the types of workforces and work teams you can create and use with Amazon A2I, see Create and Manage Workforces.

    • HumanTaskUiArn (string) -- [REQUIRED]

      The Amazon Resource Name (ARN) of the human task user interface.

      You can use standard HTML and Crowd HTML Elements to create a custom worker task template. You use this template to create a human task UI.

      To learn how to create a custom HTML template, see Create Custom Worker Task Template.

      To learn how to create a human task UI, which is a worker task template that can be used in a flow definition, see Create and Delete a Worker Task Templates.

    • TaskTitle (string) -- [REQUIRED]

      A title for the human worker task.

    • TaskDescription (string) -- [REQUIRED]

      A description for the human worker task.

    • TaskCount (integer) -- [REQUIRED]

      The number of distinct workers who will perform the same task on each object. For example, if TaskCount is set to 3 for an image classification labeling job, three workers will classify each input image. Increasing TaskCount can improve label accuracy.

    • TaskAvailabilityLifetimeInSeconds (integer) --

      The length of time that a task remains available for review by human workers.

    • TaskTimeLimitInSeconds (integer) --

      The amount of time that a worker has to complete a task. The default value is 3,600 seconds (1 hour).

    • TaskKeywords (list) --

      Keywords used to describe the task so that workers can discover the task.

      • (string) --
    • PublicWorkforceTaskPrice (dict) --

      Defines the amount of money paid to an Amazon Mechanical Turk worker for each task performed.

      Use one of the following prices for bounding box tasks. Prices are in US dollars and should be based on the complexity of the task; the longer it takes in your initial testing, the more you should offer.

      • 0.036
      • 0.048
      • 0.060
      • 0.072
      • 0.120
      • 0.240
      • 0.360
      • 0.480
      • 0.600
      • 0.720
      • 0.840
      • 0.960
      • 1.080
      • 1.200

      Use one of the following prices for image classification, text classification, and custom tasks. Prices are in US dollars.

      • 0.012
      • 0.024
      • 0.036
      • 0.048
      • 0.060
      • 0.072
      • 0.120
      • 0.240
      • 0.360
      • 0.480
      • 0.600
      • 0.720
      • 0.840
      • 0.960
      • 1.080
      • 1.200

      Use one of the following prices for semantic segmentation tasks. Prices are in US dollars.

      • 0.840
      • 0.960
      • 1.080
      • 1.200

      Use one of the following prices for Textract AnalyzeDocument Important Form Key Amazon Augmented AI review tasks. Prices are in US dollars.

      • 2.400
      • 2.280
      • 2.160
      • 2.040
      • 1.920
      • 1.800
      • 1.680
      • 1.560
      • 1.440
      • 1.320
      • 1.200
      • 1.080
      • 0.960
      • 0.840
      • 0.720
      • 0.600
      • 0.480
      • 0.360
      • 0.240
      • 0.120
      • 0.072
      • 0.060
      • 0.048
      • 0.036
      • 0.024
      • 0.012

      Use one of the following prices for Rekognition DetectModerationLabels Amazon Augmented AI review tasks. Prices are in US dollars.

      • 1.200
      • 1.080
      • 0.960
      • 0.840
      • 0.720
      • 0.600
      • 0.480
      • 0.360
      • 0.240
      • 0.120
      • 0.072
      • 0.060
      • 0.048
      • 0.036
      • 0.024
      • 0.012

      Use one of the following prices for Amazon Augmented AI custom human review tasks. Prices are in US dollars.

      • 1.200
      • 1.080
      • 0.960
      • 0.840
      • 0.720
      • 0.600
      • 0.480
      • 0.360
      • 0.240
      • 0.120
      • 0.072
      • 0.060
      • 0.048
      • 0.036
      • 0.024
      • 0.012
      • AmountInUsd (dict) --

        Defines the amount of money paid to an Amazon Mechanical Turk worker in United States dollars.

        • Dollars (integer) --

          The whole number of dollars in the amount.

        • Cents (integer) --

          The fractional portion, in cents, of the amount.

        • TenthFractionsOfACent (integer) --

          Fractions of a cent, in tenths.

  • OutputConfig (dict) --

    [REQUIRED]

    An object containing information about where the human review results will be uploaded.

    • S3OutputPath (string) -- [REQUIRED]

      The Amazon S3 path where the object containing human output will be made available.

      To learn more about the format of Amazon A2I output data, see Amazon A2I Output Data.

    • KmsKeyId (string) --

      The Amazon Key Management Service (KMS) key ID for server-side encryption.

  • RoleArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of the role needed to call other services on your behalf. For example, arn:aws:iam::1234567890:role/service-role/AmazonSageMaker-ExecutionRole-20180111T151298 .

  • Tags (list) --

    An array of key-value pairs that contain metadata to help you categorize and organize a flow definition. Each tag consists of a key and a value, both of which you define.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'FlowDefinitionArn': 'string'
}

Response Structure

  • (dict) --

    • FlowDefinitionArn (string) --

      The Amazon Resource Name (ARN) of the flow definition you create.

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
  • SageMaker.Client.exceptions.ResourceInUse
create_hub(**kwargs)

Create a hub.

Note

Hub APIs are only callable through SageMaker Studio.

See also: AWS API Documentation

Request Syntax

response = client.create_hub(
    HubName='string',
    HubDescription='string',
    HubDisplayName='string',
    HubSearchKeywords=[
        'string',
    ],
    S3StorageConfig={
        'S3OutputPath': 'string'
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • HubName (string) --

    [REQUIRED]

    The name of the hub to create.

  • HubDescription (string) --

    [REQUIRED]

    A description of the hub.

  • HubDisplayName (string) -- The display name of the hub.
  • HubSearchKeywords (list) --

    The searchable keywords for the hub.

    • (string) --
  • S3StorageConfig (dict) --

    The Amazon S3 storage configuration for the hub.

    • S3OutputPath (string) --

      The Amazon S3 bucket prefix for hosting hub content.

  • Tags (list) --

    Any tags to associate with the hub.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'HubArn': 'string'
}

Response Structure

  • (dict) --

    • HubArn (string) --

      The Amazon Resource Name (ARN) of the hub.

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceLimitExceeded
create_human_task_ui(**kwargs)

Defines the settings you will use for the human review workflow user interface. Reviewers will see a three-panel interface with an instruction area, the item to review, and an input area.

See also: AWS API Documentation

Request Syntax

response = client.create_human_task_ui(
    HumanTaskUiName='string',
    UiTemplate={
        'Content': 'string'
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • HumanTaskUiName (string) --

    [REQUIRED]

    The name of the user interface you are creating.

  • UiTemplate (dict) --

    [REQUIRED]

    The Liquid template for the worker user interface.

    • Content (string) -- [REQUIRED]

      The content of the Liquid template for the worker user interface.

  • Tags (list) --

    An array of key-value pairs that contain metadata to help you categorize and organize a human review workflow user interface. Each tag consists of a key and a value, both of which you define.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'HumanTaskUiArn': 'string'
}

Response Structure

  • (dict) --

    • HumanTaskUiArn (string) --

      The Amazon Resource Name (ARN) of the human review workflow user interface you create.

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
  • SageMaker.Client.exceptions.ResourceInUse
create_hyper_parameter_tuning_job(**kwargs)

Starts a hyperparameter tuning job. A hyperparameter tuning job finds the best version of a model by running many training jobs on your dataset using the algorithm you choose and values for hyperparameters within ranges that you specify. It then chooses the hyperparameter values that result in a model that performs the best, as measured by an objective metric that you choose.

A hyperparameter tuning job automatically creates Amazon SageMaker experiments, trials, and trial components for each training job that it runs. You can view these entities in Amazon SageMaker Studio. For more information, see View Experiments, Trials, and Trial Components.

Warning

Do not include any security-sensitive information including account access IDs, secrets or tokens in any hyperparameter field. If the use of security-sensitive credentials are detected, SageMaker will reject your training job request and return an exception error.

See also: AWS API Documentation

Request Syntax

response = client.create_hyper_parameter_tuning_job(
    HyperParameterTuningJobName='string',
    HyperParameterTuningJobConfig={
        'Strategy': 'Bayesian'|'Random'|'Hyperband'|'Grid',
        'StrategyConfig': {
            'HyperbandStrategyConfig': {
                'MinResource': 123,
                'MaxResource': 123
            }
        },
        'HyperParameterTuningJobObjective': {
            'Type': 'Maximize'|'Minimize',
            'MetricName': 'string'
        },
        'ResourceLimits': {
            'MaxNumberOfTrainingJobs': 123,
            'MaxParallelTrainingJobs': 123,
            'MaxRuntimeInSeconds': 123
        },
        'ParameterRanges': {
            'IntegerParameterRanges': [
                {
                    'Name': 'string',
                    'MinValue': 'string',
                    'MaxValue': 'string',
                    'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                },
            ],
            'ContinuousParameterRanges': [
                {
                    'Name': 'string',
                    'MinValue': 'string',
                    'MaxValue': 'string',
                    'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                },
            ],
            'CategoricalParameterRanges': [
                {
                    'Name': 'string',
                    'Values': [
                        'string',
                    ]
                },
            ]
        },
        'TrainingJobEarlyStoppingType': 'Off'|'Auto',
        'TuningJobCompletionCriteria': {
            'TargetObjectiveMetricValue': ...,
            'BestObjectiveNotImproving': {
                'MaxNumberOfTrainingJobsNotImproving': 123
            },
            'ConvergenceDetected': {
                'CompleteOnConvergence': 'Disabled'|'Enabled'
            }
        },
        'RandomSeed': 123
    },
    TrainingJobDefinition={
        'DefinitionName': 'string',
        'TuningObjective': {
            'Type': 'Maximize'|'Minimize',
            'MetricName': 'string'
        },
        'HyperParameterRanges': {
            'IntegerParameterRanges': [
                {
                    'Name': 'string',
                    'MinValue': 'string',
                    'MaxValue': 'string',
                    'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                },
            ],
            'ContinuousParameterRanges': [
                {
                    'Name': 'string',
                    'MinValue': 'string',
                    'MaxValue': 'string',
                    'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                },
            ],
            'CategoricalParameterRanges': [
                {
                    'Name': 'string',
                    'Values': [
                        'string',
                    ]
                },
            ]
        },
        'StaticHyperParameters': {
            'string': 'string'
        },
        'AlgorithmSpecification': {
            'TrainingImage': 'string',
            'TrainingInputMode': 'Pipe'|'File'|'FastFile',
            'AlgorithmName': 'string',
            'MetricDefinitions': [
                {
                    'Name': 'string',
                    'Regex': 'string'
                },
            ]
        },
        'RoleArn': 'string',
        'InputDataConfig': [
            {
                'ChannelName': 'string',
                'DataSource': {
                    'S3DataSource': {
                        'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                        'S3Uri': 'string',
                        'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                        'AttributeNames': [
                            'string',
                        ],
                        'InstanceGroupNames': [
                            'string',
                        ]
                    },
                    'FileSystemDataSource': {
                        'FileSystemId': 'string',
                        'FileSystemAccessMode': 'rw'|'ro',
                        'FileSystemType': 'EFS'|'FSxLustre',
                        'DirectoryPath': 'string'
                    }
                },
                'ContentType': 'string',
                'CompressionType': 'None'|'Gzip',
                'RecordWrapperType': 'None'|'RecordIO',
                'InputMode': 'Pipe'|'File'|'FastFile',
                'ShuffleConfig': {
                    'Seed': 123
                }
            },
        ],
        'VpcConfig': {
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ]
        },
        'OutputDataConfig': {
            'KmsKeyId': 'string',
            'S3OutputPath': 'string'
        },
        'ResourceConfig': {
            'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge',
            'InstanceCount': 123,
            'VolumeSizeInGB': 123,
            'VolumeKmsKeyId': 'string',
            'InstanceGroups': [
                {
                    'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge',
                    'InstanceCount': 123,
                    'InstanceGroupName': 'string'
                },
            ],
            'KeepAlivePeriodInSeconds': 123
        },
        'StoppingCondition': {
            'MaxRuntimeInSeconds': 123,
            'MaxWaitTimeInSeconds': 123
        },
        'EnableNetworkIsolation': True|False,
        'EnableInterContainerTrafficEncryption': True|False,
        'EnableManagedSpotTraining': True|False,
        'CheckpointConfig': {
            'S3Uri': 'string',
            'LocalPath': 'string'
        },
        'RetryStrategy': {
            'MaximumRetryAttempts': 123
        },
        'HyperParameterTuningResourceConfig': {
            'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge',
            'InstanceCount': 123,
            'VolumeSizeInGB': 123,
            'VolumeKmsKeyId': 'string',
            'AllocationStrategy': 'Prioritized',
            'InstanceConfigs': [
                {
                    'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge',
                    'InstanceCount': 123,
                    'VolumeSizeInGB': 123
                },
            ]
        },
        'Environment': {
            'string': 'string'
        }
    },
    TrainingJobDefinitions=[
        {
            'DefinitionName': 'string',
            'TuningObjective': {
                'Type': 'Maximize'|'Minimize',
                'MetricName': 'string'
            },
            'HyperParameterRanges': {
                'IntegerParameterRanges': [
                    {
                        'Name': 'string',
                        'MinValue': 'string',
                        'MaxValue': 'string',
                        'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                    },
                ],
                'ContinuousParameterRanges': [
                    {
                        'Name': 'string',
                        'MinValue': 'string',
                        'MaxValue': 'string',
                        'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                    },
                ],
                'CategoricalParameterRanges': [
                    {
                        'Name': 'string',
                        'Values': [
                            'string',
                        ]
                    },
                ]
            },
            'StaticHyperParameters': {
                'string': 'string'
            },
            'AlgorithmSpecification': {
                'TrainingImage': 'string',
                'TrainingInputMode': 'Pipe'|'File'|'FastFile',
                'AlgorithmName': 'string',
                'MetricDefinitions': [
                    {
                        'Name': 'string',
                        'Regex': 'string'
                    },
                ]
            },
            'RoleArn': 'string',
            'InputDataConfig': [
                {
                    'ChannelName': 'string',
                    'DataSource': {
                        'S3DataSource': {
                            'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                            'S3Uri': 'string',
                            'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                            'AttributeNames': [
                                'string',
                            ],
                            'InstanceGroupNames': [
                                'string',
                            ]
                        },
                        'FileSystemDataSource': {
                            'FileSystemId': 'string',
                            'FileSystemAccessMode': 'rw'|'ro',
                            'FileSystemType': 'EFS'|'FSxLustre',
                            'DirectoryPath': 'string'
                        }
                    },
                    'ContentType': 'string',
                    'CompressionType': 'None'|'Gzip',
                    'RecordWrapperType': 'None'|'RecordIO',
                    'InputMode': 'Pipe'|'File'|'FastFile',
                    'ShuffleConfig': {
                        'Seed': 123
                    }
                },
            ],
            'VpcConfig': {
                'SecurityGroupIds': [
                    'string',
                ],
                'Subnets': [
                    'string',
                ]
            },
            'OutputDataConfig': {
                'KmsKeyId': 'string',
                'S3OutputPath': 'string'
            },
            'ResourceConfig': {
                'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge',
                'InstanceCount': 123,
                'VolumeSizeInGB': 123,
                'VolumeKmsKeyId': 'string',
                'InstanceGroups': [
                    {
                        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge',
                        'InstanceCount': 123,
                        'InstanceGroupName': 'string'
                    },
                ],
                'KeepAlivePeriodInSeconds': 123
            },
            'StoppingCondition': {
                'MaxRuntimeInSeconds': 123,
                'MaxWaitTimeInSeconds': 123
            },
            'EnableNetworkIsolation': True|False,
            'EnableInterContainerTrafficEncryption': True|False,
            'EnableManagedSpotTraining': True|False,
            'CheckpointConfig': {
                'S3Uri': 'string',
                'LocalPath': 'string'
            },
            'RetryStrategy': {
                'MaximumRetryAttempts': 123
            },
            'HyperParameterTuningResourceConfig': {
                'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge',
                'InstanceCount': 123,
                'VolumeSizeInGB': 123,
                'VolumeKmsKeyId': 'string',
                'AllocationStrategy': 'Prioritized',
                'InstanceConfigs': [
                    {
                        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge',
                        'InstanceCount': 123,
                        'VolumeSizeInGB': 123
                    },
                ]
            },
            'Environment': {
                'string': 'string'
            }
        },
    ],
    WarmStartConfig={
        'ParentHyperParameterTuningJobs': [
            {
                'HyperParameterTuningJobName': 'string'
            },
        ],
        'WarmStartType': 'IdenticalDataAndAlgorithm'|'TransferLearning'
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • HyperParameterTuningJobName (string) --

    [REQUIRED]

    The name of the tuning job. This name is the prefix for the names of all training jobs that this tuning job launches. The name must be unique within the same Amazon Web Services account and Amazon Web Services Region. The name must have 1 to 32 characters. Valid characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The name is not case sensitive.

  • HyperParameterTuningJobConfig (dict) --

    [REQUIRED]

    The HyperParameterTuningJobConfig object that describes the tuning job, including the search strategy, the objective metric used to evaluate training jobs, ranges of parameters to search, and resource limits for the tuning job. For more information, see How Hyperparameter Tuning Works.

    • Strategy (string) -- [REQUIRED]

      Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. For information about search strategies, see How Hyperparameter Tuning Works.

    • StrategyConfig (dict) --

      The configuration for the Hyperband optimization strategy. This parameter should be provided only if Hyperband is selected as the strategy for HyperParameterTuningJobConfig .

      • HyperbandStrategyConfig (dict) --

        The configuration for the object that specifies the Hyperband strategy. This parameter is only supported for the Hyperband selection for Strategy within the HyperParameterTuningJobConfig API.

        • MinResource (integer) --

          The minimum number of resources (such as epochs) that can be used by a training job launched by a hyperparameter tuning job. If the value for MinResource has not been reached, the training job is not stopped by Hyperband .

        • MaxResource (integer) --

          The maximum number of resources (such as epochs) that can be used by a training job launched by a hyperparameter tuning job. Once a job reaches the MaxResource value, it is stopped. If a value for MaxResource is not provided, and Hyperband is selected as the hyperparameter tuning strategy, HyperbandTrainingJ attempts to infer MaxResource from the following keys (if present) in StaticsHyperParameters:

          • epochs
          • numepochs
          • n-epochs
          • n_epochs
          • num_epochs

          If HyperbandStrategyConfig is unable to infer a value for MaxResource , it generates a validation error. The maximum value is 20,000 epochs. All metrics that correspond to an objective metric are used to derive early stopping decisions. For distributive training jobs, ensure that duplicate metrics are not printed in the logs across the individual nodes in a training job. If multiple nodes are publishing duplicate or incorrect metrics, training jobs may make an incorrect stopping decision and stop the job prematurely.

    • HyperParameterTuningJobObjective (dict) --

      The HyperParameterTuningJobObjective specifies the objective metric used to evaluate the performance of training jobs launched by this tuning job.

      • Type (string) -- [REQUIRED]

        Whether to minimize or maximize the objective metric.

      • MetricName (string) -- [REQUIRED]

        The name of the metric to use for the objective metric.

    • ResourceLimits (dict) -- [REQUIRED]

      The ResourceLimits object that specifies the maximum number of training and parallel training jobs that can be used for this hyperparameter tuning job.

      • MaxNumberOfTrainingJobs (integer) --

        The maximum number of training jobs that a hyperparameter tuning job can launch.

      • MaxParallelTrainingJobs (integer) -- [REQUIRED]

        The maximum number of concurrent training jobs that a hyperparameter tuning job can launch.

      • MaxRuntimeInSeconds (integer) --

        The maximum time in seconds that a training job launched by a hyperparameter tuning job can run.

    • ParameterRanges (dict) --

      The ParameterRanges object that specifies the ranges of hyperparameters that this tuning job searches over to find the optimal configuration for the highest model performance against your chosen objective metric.

      • IntegerParameterRanges (list) --

        The array of IntegerParameterRange objects that specify ranges of integer hyperparameters that a hyperparameter tuning job searches.

        • (dict) --

          For a hyperparameter of the integer type, specifies the range that a hyperparameter tuning job searches.

          • Name (string) -- [REQUIRED]

            The name of the hyperparameter to search.

          • MinValue (string) -- [REQUIRED]

            The minimum value of the hyperparameter to search.

          • MaxValue (string) -- [REQUIRED]

            The maximum value of the hyperparameter to search.

          • ScalingType (string) --

            The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

            Auto

            SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.

            Linear

            Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

            Logarithmic

            Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

            Logarithmic scaling works only for ranges that have only values greater than 0.

      • ContinuousParameterRanges (list) --

        The array of ContinuousParameterRange objects that specify ranges of continuous hyperparameters that a hyperparameter tuning job searches.

        • (dict) --

          A list of continuous hyperparameters to tune.

          • Name (string) -- [REQUIRED]

            The name of the continuous hyperparameter to tune.

          • MinValue (string) -- [REQUIRED]

            The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and MaxValue for tuning.

          • MaxValue (string) -- [REQUIRED]

            The maximum value for the hyperparameter. The tuning job uses floating-point values between MinValue value and this value for tuning.

          • ScalingType (string) --

            The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

            Auto

            SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.

            Linear

            Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

            Logarithmic

            Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

            Logarithmic scaling works only for ranges that have only values greater than 0.

            ReverseLogarithmic

            Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale.

            Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0.

      • CategoricalParameterRanges (list) --

        The array of CategoricalParameterRange objects that specify ranges of categorical hyperparameters that a hyperparameter tuning job searches.

        • (dict) --

          A list of categorical hyperparameters to tune.

          • Name (string) -- [REQUIRED]

            The name of the categorical hyperparameter to tune.

          • Values (list) -- [REQUIRED]

            A list of the categories for the hyperparameter.

            • (string) --
    • TrainingJobEarlyStoppingType (string) --

      Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. Because the Hyperband strategy has its own advanced internal early stopping mechanism, TrainingJobEarlyStoppingType must be OFF to use Hyperband . This parameter can take on one of the following values (the default value is OFF ):

      OFF

      Training jobs launched by the hyperparameter tuning job do not use early stopping.

      AUTO

      SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see Stop Training Jobs Early.

    • TuningJobCompletionCriteria (dict) --

      The tuning job's completion criteria.

      • TargetObjectiveMetricValue (float) --

        The value of the objective metric.

      • BestObjectiveNotImproving (dict) --

        A flag to stop your hyperparameter tuning job if model performance fails to improve as evaluated against an objective function.

        • MaxNumberOfTrainingJobsNotImproving (integer) --

          The number of training jobs that have failed to improve model performance by 1% or greater over prior training jobs as evaluated against an objective function.

      • ConvergenceDetected (dict) --

        A flag to top your hyperparameter tuning job if automatic model tuning (AMT) has detected that your model has converged as evaluated against your objective function.

        • CompleteOnConvergence (string) --

          A flag to stop a tuning job once AMT has detected that the job has converged.

    • RandomSeed (integer) --

      A value used to initialize a pseudo-random number generator. Setting a random seed and using the same seed later for the same tuning job will allow hyperparameter optimization to find more a consistent hyperparameter configuration between the two runs.

  • TrainingJobDefinition (dict) --

    The HyperParameterTrainingJobDefinition object that describes the training jobs that this tuning job launches, including static hyperparameters, input data configuration, output data configuration, resource configuration, and stopping condition.

    • DefinitionName (string) --

      The job definition name.

    • TuningObjective (dict) --

      Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the Type parameter.

      • Type (string) -- [REQUIRED]

        Whether to minimize or maximize the objective metric.

      • MetricName (string) -- [REQUIRED]

        The name of the metric to use for the objective metric.

    • HyperParameterRanges (dict) --

      Specifies ranges of integer, continuous, and categorical hyperparameters that a hyperparameter tuning job searches. The hyperparameter tuning job launches training jobs with hyperparameter values within these ranges to find the combination of values that result in the training job with the best performance as measured by the objective metric of the hyperparameter tuning job.

      Note

      The maximum number of items specified for Array Members refers to the maximum number of hyperparameters for each range and also the maximum for the hyperparameter tuning job itself. That is, the sum of the number of hyperparameters for all the ranges can't exceed the maximum number specified.

      • IntegerParameterRanges (list) --

        The array of IntegerParameterRange objects that specify ranges of integer hyperparameters that a hyperparameter tuning job searches.

        • (dict) --

          For a hyperparameter of the integer type, specifies the range that a hyperparameter tuning job searches.

          • Name (string) -- [REQUIRED]

            The name of the hyperparameter to search.

          • MinValue (string) -- [REQUIRED]

            The minimum value of the hyperparameter to search.

          • MaxValue (string) -- [REQUIRED]

            The maximum value of the hyperparameter to search.

          • ScalingType (string) --

            The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

            Auto

            SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.

            Linear

            Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

            Logarithmic

            Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

            Logarithmic scaling works only for ranges that have only values greater than 0.

      • ContinuousParameterRanges (list) --

        The array of ContinuousParameterRange objects that specify ranges of continuous hyperparameters that a hyperparameter tuning job searches.

        • (dict) --

          A list of continuous hyperparameters to tune.

          • Name (string) -- [REQUIRED]

            The name of the continuous hyperparameter to tune.

          • MinValue (string) -- [REQUIRED]

            The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and MaxValue for tuning.

          • MaxValue (string) -- [REQUIRED]

            The maximum value for the hyperparameter. The tuning job uses floating-point values between MinValue value and this value for tuning.

          • ScalingType (string) --

            The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

            Auto

            SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.

            Linear

            Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

            Logarithmic

            Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

            Logarithmic scaling works only for ranges that have only values greater than 0.

            ReverseLogarithmic

            Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale.

            Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0.

      • CategoricalParameterRanges (list) --

        The array of CategoricalParameterRange objects that specify ranges of categorical hyperparameters that a hyperparameter tuning job searches.

        • (dict) --

          A list of categorical hyperparameters to tune.

          • Name (string) -- [REQUIRED]

            The name of the categorical hyperparameter to tune.

          • Values (list) -- [REQUIRED]

            A list of the categories for the hyperparameter.

            • (string) --
    • StaticHyperParameters (dict) --

      Specifies the values of hyperparameters that do not change for the tuning job.

      • (string) --
        • (string) --
    • AlgorithmSpecification (dict) -- [REQUIRED]

      The HyperParameterAlgorithmSpecification object that specifies the resource algorithm to use for the training jobs that the tuning job launches.

      • TrainingImage (string) --

        The registry path of the Docker image that contains the training algorithm. For information about Docker registry paths for built-in algorithms, see Algorithms Provided by Amazon SageMaker: Common Parameters. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

      • TrainingInputMode (string) -- [REQUIRED]

        The training input mode that the algorithm supports. For more information about input modes, see Algorithms.

        Pipe mode

        If an algorithm supports Pipe mode, Amazon SageMaker streams data directly from Amazon S3 to the container.

        File mode

        If an algorithm supports File mode, SageMaker downloads the training data from S3 to the provisioned ML storage volume, and mounts the directory to the Docker volume for the training container.

        You must provision the ML storage volume with sufficient capacity to accommodate the data downloaded from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container uses the ML storage volume to also store intermediate information, if any.

        For distributed algorithms, training data is distributed uniformly. Your training duration is predictable if the input data objects sizes are approximately the same. SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed when one host in a training cluster is overloaded, thus becoming a bottleneck in training.

        FastFile mode

        If an algorithm supports FastFile mode, SageMaker streams data directly from S3 to the container with no code changes, and provides file system access to the data. Users can author their training script to interact with these files as if they were stored on disk.

        FastFile mode works best when the data is read sequentially. Augmented manifest files aren't supported. The startup time is lower when there are fewer files in the S3 bucket provided.
      • AlgorithmName (string) --

        The name of the resource algorithm to use for the hyperparameter tuning job. If you specify a value for this parameter, do not specify a value for TrainingImage .

      • MetricDefinitions (list) --

        An array of MetricDefinition objects that specify the metrics that the algorithm emits.

        • (dict) --

          Specifies a metric that the training algorithm writes to stderr or stdout . SageMakerhyperparameter tuning captures all defined metrics. You specify one metric that a hyperparameter tuning job uses as its objective metric to choose the best training job.

          • Name (string) -- [REQUIRED]

            The name of the metric.

          • Regex (string) -- [REQUIRED]

            A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining Objective Metrics.

    • RoleArn (string) -- [REQUIRED]

      The Amazon Resource Name (ARN) of the IAM role associated with the training jobs that the tuning job launches.

    • InputDataConfig (list) --

      An array of Channel objects that specify the input for the training jobs that the tuning job launches.

      • (dict) --

        A channel is a named input source that training algorithms can consume.

        • ChannelName (string) -- [REQUIRED]

          The name of the channel.

        • DataSource (dict) -- [REQUIRED]

          The location of the channel data.

          • S3DataSource (dict) --

            The S3 location of the data source that is associated with a channel.

            • S3DataType (string) -- [REQUIRED]

              If you choose S3Prefix , S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix for model training.

              If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want SageMaker to use for model training.

              If you choose AugmentedManifestFile , S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel's input mode is Pipe .

            • S3Uri (string) -- [REQUIRED]

              Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

              • A key name prefix might look like this: s3://bucketname/exampleprefix
              • A manifest might look like this: s3://bucketname/example.manifest A manifest is an S3 object which is a JSON file consisting of an array of elements. The first element is a prefix which is followed by one or more suffixes. SageMaker appends the suffix elements to the prefix to get a full set of S3Uri . Note that the prefix must be a valid non-empty S3Uri that precludes users from specifying a manifest whose individual S3Uri is sourced from different S3 buckets. The following code example shows a valid manifest format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] This JSON is equivalent to the following S3Uri list: s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uri in this manifest is the input data for the channel for this data source. The object that each S3Uri points to must be readable by the IAM role that SageMaker uses to perform tasks on your behalf.
            • S3DataDistributionType (string) --

              If you want SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated .

              If you want SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key . If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.

              Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.

              In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key . If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File ), this copies 1/n of the number of objects.

            • AttributeNames (list) --

              A list of one or more attribute names to use that are found in a specified augmented manifest file.

              • (string) --
            • InstanceGroupNames (list) --

              A list of names of instance groups that get data from the S3 data source.

              • (string) --
          • FileSystemDataSource (dict) --

            The file system that is associated with a channel.

            • FileSystemId (string) -- [REQUIRED]

              The file system id.

            • FileSystemAccessMode (string) -- [REQUIRED]

              The access mode of the mount of the directory associated with the channel. A directory can be mounted either in ro (read-only) or rw (read-write) mode.

            • FileSystemType (string) -- [REQUIRED]

              The file system type.

            • DirectoryPath (string) -- [REQUIRED]

              The full path to the directory to associate with the channel.

        • ContentType (string) --

          The MIME type of the data.

        • CompressionType (string) --

          If training data is compressed, the compression type. The default value is None . CompressionType is used only in Pipe input mode. In File mode, leave this field unset or set it to None.

        • RecordWrapperType (string) --

          Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.

          In File mode, leave this field unset or set it to None.

        • InputMode (string) --

          (Optional) The input mode to use for the data channel in a training job. If you don't set a value for InputMode , SageMaker uses the value set for TrainingInputMode . Use this parameter to override the TrainingInputMode setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use File input mode. To stream data directly from Amazon S3 to the container, choose Pipe input mode.

          To use a model for incremental training, choose File input model.

        • ShuffleConfig (dict) --

          A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType , this shuffles the results of the S3 key prefix matches. If you use ManifestFile , the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile , the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value.

          For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key , the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.

          • Seed (integer) -- [REQUIRED]

            Determines the shuffling order in ShuffleConfig value.

    • VpcConfig (dict) --

      The VpcConfig object that specifies the VPC that you want the training jobs that this hyperparameter tuning job launches to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.

      • SecurityGroupIds (list) -- [REQUIRED]

        The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

        • (string) --
      • Subnets (list) -- [REQUIRED]

        The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.

        • (string) --
    • OutputDataConfig (dict) -- [REQUIRED]

      Specifies the path to the Amazon S3 bucket where you store model artifacts from the training jobs that the tuning job launches.

      • KmsKeyId (string) --

        The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

        • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
        • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
        • // KMS Key Alias "alias/ExampleAlias"
        • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

        If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

        The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob , CreateTransformJob , or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .

      • S3OutputPath (string) -- [REQUIRED]

        Identifies the S3 path where you want SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix .

    • ResourceConfig (dict) --

      The resources, including the compute instances and storage volumes, to use for the training jobs that the tuning job launches.

      Storage volumes store model artifacts and incremental states. Training algorithms might also use storage volumes for scratch space. If you want SageMaker to use the storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.

      Note

      If you want to use hyperparameter optimization with instance type flexibility, use HyperParameterTuningResourceConfig instead.

      • InstanceType (string) --

        The ML compute instance type.

        Note

        SageMaker Training on Amazon Elastic Compute Cloud (EC2) P4de instances is in preview release starting December 9th, 2022.

        Amazon EC2 P4de instances (currently in preview) are powered by 8 NVIDIA A100 GPUs with 80GB high-performance HBM2e GPU memory, which accelerate the speed of training ML models that need to be trained on large datasets of high-resolution data. In this preview release, Amazon SageMaker supports ML training jobs on P4de instances ( ml.p4de.24xlarge ) to reduce model training time. The ml.p4de.24xlarge instances are available in the following Amazon Web Services Regions.
        • US East (N. Virginia) (us-east-1)
        • US West (Oregon) (us-west-2)

        To request quota limit increase and start using P4de instances, contact the SageMaker Training service team through your account team.

      • InstanceCount (integer) --

        The number of ML compute instances to use. For distributed training, provide a value greater than 1.

      • VolumeSizeInGB (integer) -- [REQUIRED]

        The size of the ML storage volume that you want to provision.

        ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.

        When using an ML instance with NVMe SSD volumes, SageMaker doesn't provision Amazon EBS General Purpose SSD (gp2) storage. Available storage is fixed to the NVMe-type instance's storage capacity. SageMaker configures storage paths for training datasets, checkpoints, model artifacts, and outputs to use the entire capacity of the instance storage. For example, ML instance families with the NVMe-type instance storage include ml.p4d , ml.g4dn , and ml.g5 .

        When using an ML instance with the EBS-only storage option and without instance storage, you must define the size of EBS volume through VolumeSizeInGB in the ResourceConfig API. For example, ML instance families that use EBS volumes include ml.c5 and ml.p2 .

        To look up instance types and their instance storage types and volumes, see Amazon EC2 Instance Types.

        To find the default local paths defined by the SageMaker training platform, see Amazon SageMaker Training Storage Folders for Training Datasets, Checkpoints, Model Artifacts, and Outputs.

      • VolumeKmsKeyId (string) --

        The Amazon Web Services KMS key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.

        Note

        Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

        For a list of instance types that support local instance storage, see Instance Store Volumes.

        For more information about local instance storage encryption, see SSD Instance Store Volumes.

        The VolumeKmsKeyId can be in any of the following formats:

        • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
        • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
      • InstanceGroups (list) --

        The configuration of a heterogeneous cluster in JSON format.

        • (dict) --

          Defines an instance group for heterogeneous cluster training. When requesting a training job using the CreateTrainingJob API, you can configure multiple instance groups .

          • InstanceType (string) -- [REQUIRED]

            Specifies the instance type of the instance group.

          • InstanceCount (integer) -- [REQUIRED]

            Specifies the number of instances of the instance group.

          • InstanceGroupName (string) -- [REQUIRED]

            Specifies the name of the instance group.

      • KeepAlivePeriodInSeconds (integer) --

        The duration of time in seconds to retain configured resources in a warm pool for subsequent training jobs.

    • StoppingCondition (dict) -- [REQUIRED]

      Specifies a limit to how long a model hyperparameter training job can run. It also specifies how long a managed spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.

      • MaxRuntimeInSeconds (integer) --

        The maximum length of time, in seconds, that a training or compilation job can run before it is stopped.

        For compilation jobs, if the job does not complete during this time, a TimeOut error is generated. We recommend starting with 900 seconds and increasing as necessary based on your model.

        For all other jobs, if the job does not complete during this time, SageMaker ends the job. When RetryStrategy is specified in the job request, MaxRuntimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt. The default value is 1 day. The maximum value is 28 days.

        The maximum time that a TrainingJob can run in total, including any time spent publishing metrics or archiving and uploading models after it has been stopped, is 30 days.

      • MaxWaitTimeInSeconds (integer) --

        The maximum length of time, in seconds, that a managed Spot training job has to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the job can run. It must be equal to or greater than MaxRuntimeInSeconds . If the job does not complete during this time, SageMaker ends the job.

        When RetryStrategy is specified in the job request, MaxWaitTimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt.

    • EnableNetworkIsolation (boolean) --

      Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If network isolation is used for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.

    • EnableInterContainerTrafficEncryption (boolean) --

      To encrypt all communications between ML compute instances in distributed training, choose True . Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.

    • EnableManagedSpotTraining (boolean) --

      A Boolean indicating whether managed spot training is enabled ( True ) or not ( False ).

    • CheckpointConfig (dict) --

      Contains information about the output location for managed spot training checkpoint data.

      • S3Uri (string) -- [REQUIRED]

        Identifies the S3 path where you want SageMaker to store checkpoints. For example, s3://bucket-name/key-name-prefix .

      • LocalPath (string) --

        (Optional) The local directory where checkpoints are written. The default directory is /opt/ml/checkpoints/ .

    • RetryStrategy (dict) --

      The number of times to retry the job when the job fails due to an InternalServerError .

      • MaximumRetryAttempts (integer) -- [REQUIRED]

        The number of times to retry the job. When the job is retried, it's SecondaryStatus is changed to STARTING .

    • HyperParameterTuningResourceConfig (dict) --

      The configuration for the hyperparameter tuning resources, including the compute instances and storage volumes, used for training jobs launched by the tuning job. By default, storage volumes hold model artifacts and incremental states. Choose File for TrainingInputMode in the AlgorithmSpecification parameter to additionally store training data in the storage volume (optional).

      • InstanceType (string) --

        The instance type used to run hyperparameter optimization tuning jobs. See descriptions of instance types for more information.

      • InstanceCount (integer) --

        The number of compute instances of type InstanceType to use. For distributed training, select a value greater than 1.

      • VolumeSizeInGB (integer) --

        The volume size in GB for the storage volume to be used in processing hyperparameter optimization jobs (optional). These volumes store model artifacts, incremental states and optionally, scratch space for training algorithms. Do not provide a value for this parameter if a value for InstanceConfigs is also specified.

        Some instance types have a fixed total local storage size. If you select one of these instances for training, VolumeSizeInGB cannot be greater than this total size. For a list of instance types with local instance storage and their sizes, see instance store volumes.

        Note

        SageMaker supports only the General Purpose SSD (gp2) storage volume type.

      • VolumeKmsKeyId (string) --

        A key used by Amazon Web Services Key Management Service to encrypt data on the storage volume attached to the compute instances used to run the training job. You can use either of the following formats to specify a key.

        KMS Key ID:

        "1234abcd-12ab-34cd-56ef-1234567890ab"

        Amazon Resource Name (ARN) of a KMS key:

        "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

        Some instances use local storage, which use a hardware module to encrypt storage volumes. If you choose one of these instance types, you cannot request a VolumeKmsKeyId . For a list of instance types that use local storage, see instance store volumes. For more information about Amazon Web Services Key Management Service, see KMS encryption for more information.

      • AllocationStrategy (string) --

        The strategy that determines the order of preference for resources specified in InstanceConfigs used in hyperparameter optimization.

      • InstanceConfigs (list) --

        A list containing the configuration(s) for one or more resources for processing hyperparameter jobs. These resources include compute instances and storage volumes to use in model training jobs launched by hyperparameter tuning jobs. The AllocationStrategy controls the order in which multiple configurations provided in InstanceConfigs are used.

        Note

        If you only want to use a single instance configuration inside the HyperParameterTuningResourceConfig API, do not provide a value for InstanceConfigs . Instead, use InstanceType , VolumeSizeInGB and InstanceCount . If you use InstanceConfigs , do not provide values for InstanceType , VolumeSizeInGB or InstanceCount .

        • (dict) --

          The configuration for hyperparameter tuning resources for use in training jobs launched by the tuning job. These resources include compute instances and storage volumes. Specify one or more compute instance configurations and allocation strategies to select resources (optional).

          • InstanceType (string) -- [REQUIRED]

            The instance type used for processing of hyperparameter optimization jobs. Choose from general purpose (no GPUs) instance types: ml.m5.xlarge, ml.m5.2xlarge, and ml.m5.4xlarge or compute optimized (no GPUs) instance types: ml.c5.xlarge and ml.c5.2xlarge. For more information about instance types, see instance type descriptions.

          • InstanceCount (integer) -- [REQUIRED]

            The number of instances of the type specified by InstanceType . Choose an instance count larger than 1 for distributed training algorithms. See SageMaker distributed training jobs for more information.

          • VolumeSizeInGB (integer) -- [REQUIRED]

            The volume size in GB of the data to be processed for hyperparameter optimization (optional).

    • Environment (dict) --

      An environment variable that you can pass into the SageMaker CreateTrainingJob API. You can use an existing environment variable from the training container or use your own. See Define metrics and variables for more information.

      Note

      The maximum number of items specified for Map Entries refers to the maximum number of environment variables for each TrainingJobDefinition and also the maximum for the hyperparameter tuning job itself. That is, the sum of the number of environment variables for all the training job definitions can't exceed the maximum number specified.

      • (string) --
        • (string) --
  • TrainingJobDefinitions (list) --

    A list of the HyperParameterTrainingJobDefinition objects launched for this tuning job.

    • (dict) --

      Defines the training jobs launched by a hyperparameter tuning job.

      • DefinitionName (string) --

        The job definition name.

      • TuningObjective (dict) --

        Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the Type parameter.

        • Type (string) -- [REQUIRED]

          Whether to minimize or maximize the objective metric.

        • MetricName (string) -- [REQUIRED]

          The name of the metric to use for the objective metric.

      • HyperParameterRanges (dict) --

        Specifies ranges of integer, continuous, and categorical hyperparameters that a hyperparameter tuning job searches. The hyperparameter tuning job launches training jobs with hyperparameter values within these ranges to find the combination of values that result in the training job with the best performance as measured by the objective metric of the hyperparameter tuning job.

        Note

        The maximum number of items specified for Array Members refers to the maximum number of hyperparameters for each range and also the maximum for the hyperparameter tuning job itself. That is, the sum of the number of hyperparameters for all the ranges can't exceed the maximum number specified.

        • IntegerParameterRanges (list) --

          The array of IntegerParameterRange objects that specify ranges of integer hyperparameters that a hyperparameter tuning job searches.

          • (dict) --

            For a hyperparameter of the integer type, specifies the range that a hyperparameter tuning job searches.

            • Name (string) -- [REQUIRED]

              The name of the hyperparameter to search.

            • MinValue (string) -- [REQUIRED]

              The minimum value of the hyperparameter to search.

            • MaxValue (string) -- [REQUIRED]

              The maximum value of the hyperparameter to search.

            • ScalingType (string) --

              The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

              Auto

              SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.

              Linear

              Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

              Logarithmic

              Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

              Logarithmic scaling works only for ranges that have only values greater than 0.

        • ContinuousParameterRanges (list) --

          The array of ContinuousParameterRange objects that specify ranges of continuous hyperparameters that a hyperparameter tuning job searches.

          • (dict) --

            A list of continuous hyperparameters to tune.

            • Name (string) -- [REQUIRED]

              The name of the continuous hyperparameter to tune.

            • MinValue (string) -- [REQUIRED]

              The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and MaxValue for tuning.

            • MaxValue (string) -- [REQUIRED]

              The maximum value for the hyperparameter. The tuning job uses floating-point values between MinValue value and this value for tuning.

            • ScalingType (string) --

              The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

              Auto

              SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.

              Linear

              Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

              Logarithmic

              Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

              Logarithmic scaling works only for ranges that have only values greater than 0.

              ReverseLogarithmic

              Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale.

              Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0.

        • CategoricalParameterRanges (list) --

          The array of CategoricalParameterRange objects that specify ranges of categorical hyperparameters that a hyperparameter tuning job searches.

          • (dict) --

            A list of categorical hyperparameters to tune.

            • Name (string) -- [REQUIRED]

              The name of the categorical hyperparameter to tune.

            • Values (list) -- [REQUIRED]

              A list of the categories for the hyperparameter.

              • (string) --
      • StaticHyperParameters (dict) --

        Specifies the values of hyperparameters that do not change for the tuning job.

        • (string) --
          • (string) --
      • AlgorithmSpecification (dict) -- [REQUIRED]

        The HyperParameterAlgorithmSpecification object that specifies the resource algorithm to use for the training jobs that the tuning job launches.

        • TrainingImage (string) --

          The registry path of the Docker image that contains the training algorithm. For information about Docker registry paths for built-in algorithms, see Algorithms Provided by Amazon SageMaker: Common Parameters. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

        • TrainingInputMode (string) -- [REQUIRED]

          The training input mode that the algorithm supports. For more information about input modes, see Algorithms.

          Pipe mode

          If an algorithm supports Pipe mode, Amazon SageMaker streams data directly from Amazon S3 to the container.

          File mode

          If an algorithm supports File mode, SageMaker downloads the training data from S3 to the provisioned ML storage volume, and mounts the directory to the Docker volume for the training container.

          You must provision the ML storage volume with sufficient capacity to accommodate the data downloaded from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container uses the ML storage volume to also store intermediate information, if any.

          For distributed algorithms, training data is distributed uniformly. Your training duration is predictable if the input data objects sizes are approximately the same. SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed when one host in a training cluster is overloaded, thus becoming a bottleneck in training.

          FastFile mode

          If an algorithm supports FastFile mode, SageMaker streams data directly from S3 to the container with no code changes, and provides file system access to the data. Users can author their training script to interact with these files as if they were stored on disk.

          FastFile mode works best when the data is read sequentially. Augmented manifest files aren't supported. The startup time is lower when there are fewer files in the S3 bucket provided.
        • AlgorithmName (string) --

          The name of the resource algorithm to use for the hyperparameter tuning job. If you specify a value for this parameter, do not specify a value for TrainingImage .

        • MetricDefinitions (list) --

          An array of MetricDefinition objects that specify the metrics that the algorithm emits.

          • (dict) --

            Specifies a metric that the training algorithm writes to stderr or stdout . SageMakerhyperparameter tuning captures all defined metrics. You specify one metric that a hyperparameter tuning job uses as its objective metric to choose the best training job.

            • Name (string) -- [REQUIRED]

              The name of the metric.

            • Regex (string) -- [REQUIRED]

              A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining Objective Metrics.

      • RoleArn (string) -- [REQUIRED]

        The Amazon Resource Name (ARN) of the IAM role associated with the training jobs that the tuning job launches.

      • InputDataConfig (list) --

        An array of Channel objects that specify the input for the training jobs that the tuning job launches.

        • (dict) --

          A channel is a named input source that training algorithms can consume.

          • ChannelName (string) -- [REQUIRED]

            The name of the channel.

          • DataSource (dict) -- [REQUIRED]

            The location of the channel data.

            • S3DataSource (dict) --

              The S3 location of the data source that is associated with a channel.

              • S3DataType (string) -- [REQUIRED]

                If you choose S3Prefix , S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix for model training.

                If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want SageMaker to use for model training.

                If you choose AugmentedManifestFile , S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel's input mode is Pipe .

              • S3Uri (string) -- [REQUIRED]

                Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

                • A key name prefix might look like this: s3://bucketname/exampleprefix
                • A manifest might look like this: s3://bucketname/example.manifest A manifest is an S3 object which is a JSON file consisting of an array of elements. The first element is a prefix which is followed by one or more suffixes. SageMaker appends the suffix elements to the prefix to get a full set of S3Uri . Note that the prefix must be a valid non-empty S3Uri that precludes users from specifying a manifest whose individual S3Uri is sourced from different S3 buckets. The following code example shows a valid manifest format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] This JSON is equivalent to the following S3Uri list: s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uri in this manifest is the input data for the channel for this data source. The object that each S3Uri points to must be readable by the IAM role that SageMaker uses to perform tasks on your behalf.
              • S3DataDistributionType (string) --

                If you want SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated .

                If you want SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key . If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.

                Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.

                In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key . If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File ), this copies 1/n of the number of objects.

              • AttributeNames (list) --

                A list of one or more attribute names to use that are found in a specified augmented manifest file.

                • (string) --
              • InstanceGroupNames (list) --

                A list of names of instance groups that get data from the S3 data source.

                • (string) --
            • FileSystemDataSource (dict) --

              The file system that is associated with a channel.

              • FileSystemId (string) -- [REQUIRED]

                The file system id.

              • FileSystemAccessMode (string) -- [REQUIRED]

                The access mode of the mount of the directory associated with the channel. A directory can be mounted either in ro (read-only) or rw (read-write) mode.

              • FileSystemType (string) -- [REQUIRED]

                The file system type.

              • DirectoryPath (string) -- [REQUIRED]

                The full path to the directory to associate with the channel.

          • ContentType (string) --

            The MIME type of the data.

          • CompressionType (string) --

            If training data is compressed, the compression type. The default value is None . CompressionType is used only in Pipe input mode. In File mode, leave this field unset or set it to None.

          • RecordWrapperType (string) --

            Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.

            In File mode, leave this field unset or set it to None.

          • InputMode (string) --

            (Optional) The input mode to use for the data channel in a training job. If you don't set a value for InputMode , SageMaker uses the value set for TrainingInputMode . Use this parameter to override the TrainingInputMode setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use File input mode. To stream data directly from Amazon S3 to the container, choose Pipe input mode.

            To use a model for incremental training, choose File input model.

          • ShuffleConfig (dict) --

            A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType , this shuffles the results of the S3 key prefix matches. If you use ManifestFile , the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile , the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value.

            For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key , the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.

            • Seed (integer) -- [REQUIRED]

              Determines the shuffling order in ShuffleConfig value.

      • VpcConfig (dict) --

        The VpcConfig object that specifies the VPC that you want the training jobs that this hyperparameter tuning job launches to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.

        • SecurityGroupIds (list) -- [REQUIRED]

          The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

          • (string) --
        • Subnets (list) -- [REQUIRED]

          The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.

          • (string) --
      • OutputDataConfig (dict) -- [REQUIRED]

        Specifies the path to the Amazon S3 bucket where you store model artifacts from the training jobs that the tuning job launches.

        • KmsKeyId (string) --

          The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

          • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
          • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
          • // KMS Key Alias "alias/ExampleAlias"
          • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

          If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

          The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob , CreateTransformJob , or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .

        • S3OutputPath (string) -- [REQUIRED]

          Identifies the S3 path where you want SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix .

      • ResourceConfig (dict) --

        The resources, including the compute instances and storage volumes, to use for the training jobs that the tuning job launches.

        Storage volumes store model artifacts and incremental states. Training algorithms might also use storage volumes for scratch space. If you want SageMaker to use the storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.

        Note

        If you want to use hyperparameter optimization with instance type flexibility, use HyperParameterTuningResourceConfig instead.

        • InstanceType (string) --

          The ML compute instance type.

          Note

          SageMaker Training on Amazon Elastic Compute Cloud (EC2) P4de instances is in preview release starting December 9th, 2022.

          Amazon EC2 P4de instances (currently in preview) are powered by 8 NVIDIA A100 GPUs with 80GB high-performance HBM2e GPU memory, which accelerate the speed of training ML models that need to be trained on large datasets of high-resolution data. In this preview release, Amazon SageMaker supports ML training jobs on P4de instances ( ml.p4de.24xlarge ) to reduce model training time. The ml.p4de.24xlarge instances are available in the following Amazon Web Services Regions.
          • US East (N. Virginia) (us-east-1)
          • US West (Oregon) (us-west-2)

          To request quota limit increase and start using P4de instances, contact the SageMaker Training service team through your account team.

        • InstanceCount (integer) --

          The number of ML compute instances to use. For distributed training, provide a value greater than 1.

        • VolumeSizeInGB (integer) -- [REQUIRED]

          The size of the ML storage volume that you want to provision.

          ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.

          When using an ML instance with NVMe SSD volumes, SageMaker doesn't provision Amazon EBS General Purpose SSD (gp2) storage. Available storage is fixed to the NVMe-type instance's storage capacity. SageMaker configures storage paths for training datasets, checkpoints, model artifacts, and outputs to use the entire capacity of the instance storage. For example, ML instance families with the NVMe-type instance storage include ml.p4d , ml.g4dn , and ml.g5 .

          When using an ML instance with the EBS-only storage option and without instance storage, you must define the size of EBS volume through VolumeSizeInGB in the ResourceConfig API. For example, ML instance families that use EBS volumes include ml.c5 and ml.p2 .

          To look up instance types and their instance storage types and volumes, see Amazon EC2 Instance Types.

          To find the default local paths defined by the SageMaker training platform, see Amazon SageMaker Training Storage Folders for Training Datasets, Checkpoints, Model Artifacts, and Outputs.

        • VolumeKmsKeyId (string) --

          The Amazon Web Services KMS key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.

          Note

          Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

          For a list of instance types that support local instance storage, see Instance Store Volumes.

          For more information about local instance storage encryption, see SSD Instance Store Volumes.

          The VolumeKmsKeyId can be in any of the following formats:

          • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
          • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
        • InstanceGroups (list) --

          The configuration of a heterogeneous cluster in JSON format.

          • (dict) --

            Defines an instance group for heterogeneous cluster training. When requesting a training job using the CreateTrainingJob API, you can configure multiple instance groups .

            • InstanceType (string) -- [REQUIRED]

              Specifies the instance type of the instance group.

            • InstanceCount (integer) -- [REQUIRED]

              Specifies the number of instances of the instance group.

            • InstanceGroupName (string) -- [REQUIRED]

              Specifies the name of the instance group.

        • KeepAlivePeriodInSeconds (integer) --

          The duration of time in seconds to retain configured resources in a warm pool for subsequent training jobs.

      • StoppingCondition (dict) -- [REQUIRED]

        Specifies a limit to how long a model hyperparameter training job can run. It also specifies how long a managed spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.

        • MaxRuntimeInSeconds (integer) --

          The maximum length of time, in seconds, that a training or compilation job can run before it is stopped.

          For compilation jobs, if the job does not complete during this time, a TimeOut error is generated. We recommend starting with 900 seconds and increasing as necessary based on your model.

          For all other jobs, if the job does not complete during this time, SageMaker ends the job. When RetryStrategy is specified in the job request, MaxRuntimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt. The default value is 1 day. The maximum value is 28 days.

          The maximum time that a TrainingJob can run in total, including any time spent publishing metrics or archiving and uploading models after it has been stopped, is 30 days.

        • MaxWaitTimeInSeconds (integer) --

          The maximum length of time, in seconds, that a managed Spot training job has to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the job can run. It must be equal to or greater than MaxRuntimeInSeconds . If the job does not complete during this time, SageMaker ends the job.

          When RetryStrategy is specified in the job request, MaxWaitTimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt.

      • EnableNetworkIsolation (boolean) --

        Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If network isolation is used for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.

      • EnableInterContainerTrafficEncryption (boolean) --

        To encrypt all communications between ML compute instances in distributed training, choose True . Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.

      • EnableManagedSpotTraining (boolean) --

        A Boolean indicating whether managed spot training is enabled ( True ) or not ( False ).

      • CheckpointConfig (dict) --

        Contains information about the output location for managed spot training checkpoint data.

        • S3Uri (string) -- [REQUIRED]

          Identifies the S3 path where you want SageMaker to store checkpoints. For example, s3://bucket-name/key-name-prefix .

        • LocalPath (string) --

          (Optional) The local directory where checkpoints are written. The default directory is /opt/ml/checkpoints/ .

      • RetryStrategy (dict) --

        The number of times to retry the job when the job fails due to an InternalServerError .

        • MaximumRetryAttempts (integer) -- [REQUIRED]

          The number of times to retry the job. When the job is retried, it's SecondaryStatus is changed to STARTING .

      • HyperParameterTuningResourceConfig (dict) --

        The configuration for the hyperparameter tuning resources, including the compute instances and storage volumes, used for training jobs launched by the tuning job. By default, storage volumes hold model artifacts and incremental states. Choose File for TrainingInputMode in the AlgorithmSpecification parameter to additionally store training data in the storage volume (optional).

        • InstanceType (string) --

          The instance type used to run hyperparameter optimization tuning jobs. See descriptions of instance types for more information.

        • InstanceCount (integer) --

          The number of compute instances of type InstanceType to use. For distributed training, select a value greater than 1.

        • VolumeSizeInGB (integer) --

          The volume size in GB for the storage volume to be used in processing hyperparameter optimization jobs (optional). These volumes store model artifacts, incremental states and optionally, scratch space for training algorithms. Do not provide a value for this parameter if a value for InstanceConfigs is also specified.

          Some instance types have a fixed total local storage size. If you select one of these instances for training, VolumeSizeInGB cannot be greater than this total size. For a list of instance types with local instance storage and their sizes, see instance store volumes.

          Note

          SageMaker supports only the General Purpose SSD (gp2) storage volume type.

        • VolumeKmsKeyId (string) --

          A key used by Amazon Web Services Key Management Service to encrypt data on the storage volume attached to the compute instances used to run the training job. You can use either of the following formats to specify a key.

          KMS Key ID:

          "1234abcd-12ab-34cd-56ef-1234567890ab"

          Amazon Resource Name (ARN) of a KMS key:

          "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

          Some instances use local storage, which use a hardware module to encrypt storage volumes. If you choose one of these instance types, you cannot request a VolumeKmsKeyId . For a list of instance types that use local storage, see instance store volumes. For more information about Amazon Web Services Key Management Service, see KMS encryption for more information.

        • AllocationStrategy (string) --

          The strategy that determines the order of preference for resources specified in InstanceConfigs used in hyperparameter optimization.

        • InstanceConfigs (list) --

          A list containing the configuration(s) for one or more resources for processing hyperparameter jobs. These resources include compute instances and storage volumes to use in model training jobs launched by hyperparameter tuning jobs. The AllocationStrategy controls the order in which multiple configurations provided in InstanceConfigs are used.

          Note

          If you only want to use a single instance configuration inside the HyperParameterTuningResourceConfig API, do not provide a value for InstanceConfigs . Instead, use InstanceType , VolumeSizeInGB and InstanceCount . If you use InstanceConfigs , do not provide values for InstanceType , VolumeSizeInGB or InstanceCount .

          • (dict) --

            The configuration for hyperparameter tuning resources for use in training jobs launched by the tuning job. These resources include compute instances and storage volumes. Specify one or more compute instance configurations and allocation strategies to select resources (optional).

            • InstanceType (string) -- [REQUIRED]

              The instance type used for processing of hyperparameter optimization jobs. Choose from general purpose (no GPUs) instance types: ml.m5.xlarge, ml.m5.2xlarge, and ml.m5.4xlarge or compute optimized (no GPUs) instance types: ml.c5.xlarge and ml.c5.2xlarge. For more information about instance types, see instance type descriptions.

            • InstanceCount (integer) -- [REQUIRED]

              The number of instances of the type specified by InstanceType . Choose an instance count larger than 1 for distributed training algorithms. See SageMaker distributed training jobs for more information.

            • VolumeSizeInGB (integer) -- [REQUIRED]

              The volume size in GB of the data to be processed for hyperparameter optimization (optional).

      • Environment (dict) --

        An environment variable that you can pass into the SageMaker CreateTrainingJob API. You can use an existing environment variable from the training container or use your own. See Define metrics and variables for more information.

        Note

        The maximum number of items specified for Map Entries refers to the maximum number of environment variables for each TrainingJobDefinition and also the maximum for the hyperparameter tuning job itself. That is, the sum of the number of environment variables for all the training job definitions can't exceed the maximum number specified.

        • (string) --
          • (string) --
  • WarmStartConfig (dict) --

    Specifies the configuration for starting the hyperparameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.

    All training jobs launched by the new hyperparameter tuning job are evaluated by using the objective metric. If you specify IDENTICAL_DATA_AND_ALGORITHM as the WarmStartType value for the warm start configuration, the training job that performs the best in the new tuning job is compared to the best training jobs from the parent tuning jobs. From these, the training job that performs the best as measured by the objective metric is returned as the overall best training job.

    Note

    All training jobs launched by parent hyperparameter tuning jobs and the new hyperparameter tuning jobs count against the limit of training jobs for the tuning job.

    • ParentHyperParameterTuningJobs (list) -- [REQUIRED]

      An array of hyperparameter tuning jobs that are used as the starting point for the new hyperparameter tuning job. For more information about warm starting a hyperparameter tuning job, see Using a Previous Hyperparameter Tuning Job as a Starting Point.

      Hyperparameter tuning jobs created before October 1, 2018 cannot be used as parent jobs for warm start tuning jobs.

      • (dict) --

        A previously completed or stopped hyperparameter tuning job to be used as a starting point for a new hyperparameter tuning job.

        • HyperParameterTuningJobName (string) --

          The name of the hyperparameter tuning job to be used as a starting point for a new hyperparameter tuning job.

    • WarmStartType (string) -- [REQUIRED]

      Specifies one of the following:

      IDENTICAL_DATA_AND_ALGORITHM

      The new hyperparameter tuning job uses the same input data and training image as the parent tuning jobs. You can change the hyperparameter ranges to search and the maximum number of training jobs that the hyperparameter tuning job launches. You cannot use a new version of the training algorithm, unless the changes in the new version do not affect the algorithm itself. For example, changes that improve logging or adding support for a different data format are allowed. You can also change hyperparameters from tunable to static, and from static to tunable, but the total number of static plus tunable hyperparameters must remain the same as it is in all parent jobs. The objective metric for the new tuning job must be the same as for all parent jobs.

      TRANSFER_LEARNING

      The new hyperparameter tuning job can include input data, hyperparameter ranges, maximum number of concurrent training jobs, and maximum number of training jobs that are different than those of its parent hyperparameter tuning jobs. The training image can also be a different version from the version used in the parent hyperparameter tuning job. You can also change hyperparameters from tunable to static, and from static to tunable, but the total number of static plus tunable hyperparameters must remain the same as it is in all parent jobs. The objective metric for the new tuning job must be the same as for all parent jobs.

  • Tags (list) --

    An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

    Tags that you specify for the tuning job are also added to all training jobs that the tuning job launches.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'HyperParameterTuningJobArn': 'string'
}

Response Structure

  • (dict) --

    • HyperParameterTuningJobArn (string) --

      The Amazon Resource Name (ARN) of the tuning job. SageMaker assigns an ARN to a hyperparameter tuning job when you create it.

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceLimitExceeded
create_image(**kwargs)

Creates a custom SageMaker image. A SageMaker image is a set of image versions. Each image version represents a container image stored in Amazon Elastic Container Registry (ECR). For more information, see Bring your own SageMaker image.

See also: AWS API Documentation

Request Syntax

response = client.create_image(
    Description='string',
    DisplayName='string',
    ImageName='string',
    RoleArn='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • Description (string) -- The description of the image.
  • DisplayName (string) -- The display name of the image. If not provided, ImageName is displayed.
  • ImageName (string) --

    [REQUIRED]

    The name of the image. Must be unique to your account.

  • RoleArn (string) --

    [REQUIRED]

    The ARN of an IAM role that enables Amazon SageMaker to perform tasks on your behalf.

  • Tags (list) --

    A list of tags to apply to the image.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'ImageArn': 'string'
}

Response Structure

  • (dict) --

    • ImageArn (string) --

      The ARN of the image.

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceLimitExceeded
create_image_version(**kwargs)

Creates a version of the SageMaker image specified by ImageName . The version represents the Amazon Elastic Container Registry (ECR) container image specified by BaseImage .

See also: AWS API Documentation

Request Syntax

response = client.create_image_version(
    BaseImage='string',
    ClientToken='string',
    ImageName='string',
    Aliases=[
        'string',
    ],
    VendorGuidance='NOT_PROVIDED'|'STABLE'|'TO_BE_ARCHIVED'|'ARCHIVED',
    JobType='TRAINING'|'INFERENCE'|'NOTEBOOK_KERNEL',
    MLFramework='string',
    ProgrammingLang='string',
    Processor='CPU'|'GPU',
    Horovod=True|False,
    ReleaseNotes='string'
)
Parameters
  • BaseImage (string) --

    [REQUIRED]

    The registry path of the container image to use as the starting point for this version. The path is an Amazon Elastic Container Registry (ECR) URI in the following format:

    <acct-id>.dkr.ecr.<region>.amazonaws.com/<repo-name[:tag] or [@digest]>
  • ClientToken (string) --

    [REQUIRED]

    A unique ID. If not specified, the Amazon Web Services CLI and Amazon Web Services SDKs, such as the SDK for Python (Boto3), add a unique value to the call.

    This field is autopopulated if not provided.

  • ImageName (string) --

    [REQUIRED]

    The ImageName of the Image to create a version of.

  • Aliases (list) --

    A list of aliases created with the image version.

    • (string) --
  • VendorGuidance (string) --

    The stability of the image version, specified by the maintainer.

    • NOT_PROVIDED : The maintainers did not provide a status for image version stability.
    • STABLE : The image version is stable.
    • TO_BE_ARCHIVED : The image version is set to be archived. Custom image versions that are set to be archived are automatically archived after three months.
    • ARCHIVED : The image version is archived. Archived image versions are not searchable and are no longer actively supported.
  • JobType (string) --

    Indicates SageMaker job type compatibility.

    • TRAINING : The image version is compatible with SageMaker training jobs.
    • INFERENCE : The image version is compatible with SageMaker inference jobs.
    • NOTEBOOK_KERNEL : The image version is compatible with SageMaker notebook kernels.
  • MLFramework (string) -- The machine learning framework vended in the image version.
  • ProgrammingLang (string) -- The supported programming language and its version.
  • Processor (string) --

    Indicates CPU or GPU compatibility.

    • CPU : The image version is compatible with CPU.
    • GPU : The image version is compatible with GPU.
  • Horovod (boolean) -- Indicates Horovod compatibility.
  • ReleaseNotes (string) -- The maintainer description of the image version.
Return type

dict

Returns

Response Syntax

{
    'ImageVersionArn': 'string'
}

Response Structure

  • (dict) --

    • ImageVersionArn (string) --

      The ARN of the image version.

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceLimitExceeded
  • SageMaker.Client.exceptions.ResourceNotFound
create_inference_experiment(**kwargs)

Creates an inference experiment using the configurations specified in the request.

Use this API to setup and schedule an experiment to compare model variants on a Amazon SageMaker inference endpoint. For more information about inference experiments, see Shadow tests.

Amazon SageMaker begins your experiment at the scheduled time and routes traffic to your endpoint's model variants based on your specified configuration.

While the experiment is in progress or after it has concluded, you can view metrics that compare your model variants. For more information, see View, monitor, and edit shadow tests.

See also: AWS API Documentation

Request Syntax

response = client.create_inference_experiment(
    Name='string',
    Type='ShadowMode',
    Schedule={
        'StartTime': datetime(2015, 1, 1),
        'EndTime': datetime(2015, 1, 1)
    },
    Description='string',
    RoleArn='string',
    EndpointName='string',
    ModelVariants=[
        {
            'ModelName': 'string',
            'VariantName': 'string',
            'InfrastructureConfig': {
                'InfrastructureType': 'RealTimeInference',
                'RealTimeInferenceConfig': {
                    'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                    'InstanceCount': 123
                }
            }
        },
    ],
    DataStorageConfig={
        'Destination': 'string',
        'KmsKey': 'string',
        'ContentType': {
            'CsvContentTypes': [
                'string',
            ],
            'JsonContentTypes': [
                'string',
            ]
        }
    },
    ShadowModeConfig={
        'SourceModelVariantName': 'string',
        'ShadowModelVariants': [
            {
                'ShadowModelVariantName': 'string',
                'SamplingPercentage': 123
            },
        ]
    },
    KmsKey='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • Name (string) --

    [REQUIRED]

    The name for the inference experiment.

  • Type (string) --

    [REQUIRED]

    The type of the inference experiment that you want to run. The following types of experiments are possible:

    • ShadowMode : You can use this type to validate a shadow variant. For more information, see Shadow tests.
  • Schedule (dict) --

    The duration for which you want the inference experiment to run. If you don't specify this field, the experiment automatically starts immediately upon creation and concludes after 7 days.

    • StartTime (datetime) --

      The timestamp at which the inference experiment started or will start.

    • EndTime (datetime) --

      The timestamp at which the inference experiment ended or will end.

  • Description (string) -- A description for the inference experiment.
  • RoleArn (string) --

    [REQUIRED]

    The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images, and manage Amazon SageMaker Inference endpoints for model deployment.

  • EndpointName (string) --

    [REQUIRED]

    The name of the Amazon SageMaker endpoint on which you want to run the inference experiment.

  • ModelVariants (list) --

    [REQUIRED]

    An array of ModelVariantConfig objects. There is one for each variant in the inference experiment. Each ModelVariantConfig object in the array describes the infrastructure configuration for the corresponding variant.

    • (dict) --

      Contains information about the deployment options of a model.

      • ModelName (string) -- [REQUIRED]

        The name of the Amazon SageMaker Model entity.

      • VariantName (string) -- [REQUIRED]

        The name of the variant.

      • InfrastructureConfig (dict) -- [REQUIRED]

        The configuration for the infrastructure that the model will be deployed to.

        • InfrastructureType (string) -- [REQUIRED]

          The inference option to which to deploy your model. Possible values are the following:

          • RealTime : Deploy to real-time inference.
        • RealTimeInferenceConfig (dict) -- [REQUIRED]

          The infrastructure configuration for deploying the model to real-time inference.

          • InstanceType (string) -- [REQUIRED]

            The instance type the model is deployed to.

          • InstanceCount (integer) -- [REQUIRED]

            The number of instances of the type specified by InstanceType .

  • DataStorageConfig (dict) --

    The Amazon S3 location and configuration for storing inference request and response data.

    This is an optional parameter that you can use for data capture. For more information, see Capture data.

    • Destination (string) -- [REQUIRED]

      The Amazon S3 bucket where the inference request and response data is stored.

    • KmsKey (string) --

      The Amazon Web Services Key Management Service key that Amazon SageMaker uses to encrypt captured data at rest using Amazon S3 server-side encryption.

    • ContentType (dict) --

      Configuration specifying how to treat different headers. If no headers are specified SageMaker will by default base64 encode when capturing the data.

      • CsvContentTypes (list) --

        The list of all content type headers that SageMaker will treat as CSV and capture accordingly.

        • (string) --
      • JsonContentTypes (list) --

        The list of all content type headers that SageMaker will treat as JSON and capture accordingly.

        • (string) --
  • ShadowModeConfig (dict) --

    [REQUIRED]

    The configuration of ShadowMode inference experiment type. Use this field to specify a production variant which takes all the inference requests, and a shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. For the shadow variant also specify the percentage of requests that Amazon SageMaker replicates.

    • SourceModelVariantName (string) -- [REQUIRED]

      The name of the production variant, which takes all the inference requests.

    • ShadowModelVariants (list) -- [REQUIRED]

      List of shadow variant configurations.

      • (dict) --

        The name and sampling percentage of a shadow variant.

        • ShadowModelVariantName (string) -- [REQUIRED]

          The name of the shadow variant.

        • SamplingPercentage (integer) -- [REQUIRED]

          The percentage of inference requests that Amazon SageMaker replicates from the production variant to the shadow variant.

  • KmsKey (string) --

    The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. The KmsKey can be any of the following formats:

    • KMS key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
    • Amazon Resource Name (ARN) of a KMS key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
    • KMS key Alias "alias/ExampleAlias"
    • Amazon Resource Name (ARN) of a KMS key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

    If you use a KMS key ID or an alias of your KMS key, the Amazon SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

    The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint and UpdateEndpoint requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .

  • Tags (list) --

    Array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging your Amazon Web Services Resources.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'InferenceExperimentArn': 'string'
}

Response Structure

  • (dict) --

    • InferenceExperimentArn (string) --

      The ARN for your inference experiment.

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceLimitExceeded
create_inference_recommendations_job(**kwargs)

Starts a recommendation job. You can create either an instance recommendation or load test job.

See also: AWS API Documentation

Request Syntax

response = client.create_inference_recommendations_job(
    JobName='string',
    JobType='Default'|'Advanced',
    RoleArn='string',
    InputConfig={
        'ModelPackageVersionArn': 'string',
        'JobDurationInSeconds': 123,
        'TrafficPattern': {
            'TrafficType': 'PHASES',
            'Phases': [
                {
                    'InitialNumberOfUsers': 123,
                    'SpawnRate': 123,
                    'DurationInSeconds': 123
                },
            ]
        },
        'ResourceLimit': {
            'MaxNumberOfTests': 123,
            'MaxParallelOfTests': 123
        },
        'EndpointConfigurations': [
            {
                'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge',
                'InferenceSpecificationName': 'string',
                'EnvironmentParameterRanges': {
                    'CategoricalParameterRanges': [
                        {
                            'Name': 'string',
                            'Value': [
                                'string',
                            ]
                        },
                    ]
                }
            },
        ],
        'VolumeKmsKeyId': 'string',
        'ContainerConfig': {
            'Domain': 'string',
            'Task': 'string',
            'Framework': 'string',
            'FrameworkVersion': 'string',
            'PayloadConfig': {
                'SamplePayloadUrl': 'string',
                'SupportedContentTypes': [
                    'string',
                ]
            },
            'NearestModelName': 'string',
            'SupportedInstanceTypes': [
                'string',
            ],
            'DataInputConfig': 'string'
        },
        'Endpoints': [
            {
                'EndpointName': 'string'
            },
        ],
        'VpcConfig': {
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ]
        },
        'ModelName': 'string'
    },
    JobDescription='string',
    StoppingConditions={
        'MaxInvocations': 123,
        'ModelLatencyThresholds': [
            {
                'Percentile': 'string',
                'ValueInMilliseconds': 123
            },
        ]
    },
    OutputConfig={
        'KmsKeyId': 'string',
        'CompiledOutputConfig': {
            'S3OutputUri': 'string'
        }
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • JobName (string) --

    [REQUIRED]

    A name for the recommendation job. The name must be unique within the Amazon Web Services Region and within your Amazon Web Services account.

  • JobType (string) --

    [REQUIRED]

    Defines the type of recommendation job. Specify Default to initiate an instance recommendation and Advanced to initiate a load test. If left unspecified, Amazon SageMaker Inference Recommender will run an instance recommendation ( DEFAULT ) job.

  • RoleArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks on your behalf.

  • InputConfig (dict) --

    [REQUIRED]

    Provides information about the versioned model package Amazon Resource Name (ARN), the traffic pattern, and endpoint configurations.

    • ModelPackageVersionArn (string) --

      The Amazon Resource Name (ARN) of a versioned model package.

    • JobDurationInSeconds (integer) --

      Specifies the maximum duration of the job, in seconds.>

    • TrafficPattern (dict) --

      Specifies the traffic pattern of the job.

      • TrafficType (string) --

        Defines the traffic patterns.

      • Phases (list) --

        Defines the phases traffic specification.

        • (dict) --

          Defines the traffic pattern.

          • InitialNumberOfUsers (integer) --

            Specifies how many concurrent users to start with.

          • SpawnRate (integer) --

            Specified how many new users to spawn in a minute.

          • DurationInSeconds (integer) --

            Specifies how long traffic phase should be.

    • ResourceLimit (dict) --

      Defines the resource limit of the job.

      • MaxNumberOfTests (integer) --

        Defines the maximum number of load tests.

      • MaxParallelOfTests (integer) --

        Defines the maximum number of parallel load tests.

    • EndpointConfigurations (list) --

      Specifies the endpoint configuration to use for a job.

      • (dict) --

        The endpoint configuration for the load test.

        • InstanceType (string) -- [REQUIRED]

          The instance types to use for the load test.

        • InferenceSpecificationName (string) --

          The inference specification name in the model package version.

        • EnvironmentParameterRanges (dict) --

          The parameter you want to benchmark against.

          • CategoricalParameterRanges (list) --

            Specified a list of parameters for each category.

            • (dict) --

              Environment parameters you want to benchmark your load test against.

              • Name (string) -- [REQUIRED]

                The Name of the environment variable.

              • Value (list) -- [REQUIRED]

                The list of values you can pass.

                • (string) --
    • VolumeKmsKeyId (string) --

      The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. This key will be passed to SageMaker Hosting for endpoint creation.

      The SageMaker execution role must have kms:CreateGrant permission in order to encrypt data on the storage volume of the endpoints created for inference recommendation. The inference recommendation job will fail asynchronously during endpoint configuration creation if the role passed does not have kms:CreateGrant permission.

      The KmsKeyId can be any of the following formats:

      • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
      • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:<region>:<account>:key/<key-id-12ab-34cd-56ef-1234567890ab>"
      • // KMS Key Alias "alias/ExampleAlias"
      • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:<region>:<account>:alias/<ExampleAlias>"

      For more information about key identifiers, see Key identifiers (KeyID) in the Amazon Web Services Key Management Service (Amazon Web Services KMS) documentation.

    • ContainerConfig (dict) --

      Specifies mandatory fields for running an Inference Recommender job. The fields specified in ContainerConfig override the corresponding fields in the model package.

      • Domain (string) --

        The machine learning domain of the model and its components.

        Valid Values: COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING | MACHINE_LEARNING

      • Task (string) --

        The machine learning task that the model accomplishes.

        Valid Values: IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION | IMAGE_SEGMENTATION | FILL_MASK | CLASSIFICATION | REGRESSION | OTHER

      • Framework (string) --

        The machine learning framework of the container image.

        Valid Values: TENSORFLOW | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN

      • FrameworkVersion (string) --

        The framework version of the container image.

      • PayloadConfig (dict) --

        Specifies the SamplePayloadUrl and all other sample payload-related fields.

        • SamplePayloadUrl (string) --

          The Amazon Simple Storage Service (Amazon S3) path where the sample payload is stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).

        • SupportedContentTypes (list) --

          The supported MIME types for the input data.

          • (string) --
      • NearestModelName (string) --

        The name of a pre-trained machine learning model benchmarked by Amazon SageMaker Inference Recommender that matches your model.

        Valid Values: efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge | vgg16 | inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon | resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased | xceptionV1-keras | resnet50 | retinanet

      • SupportedInstanceTypes (list) --

        A list of the instance types that are used to generate inferences in real-time.

        • (string) --
      • DataInputConfig (string) --

        Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. This field is used for optimizing your model using SageMaker Neo. For more information, see DataInputConfig.

    • Endpoints (list) --

      Existing customer endpoints on which to run an Inference Recommender job.

      • (dict) --

        Details about a customer endpoint that was compared in an Inference Recommender job.

        • EndpointName (string) -- [REQUIRED]

          The name of a customer's endpoint.

    • VpcConfig (dict) --

      Inference Recommender provisions SageMaker endpoints with access to VPC in the inference recommendation job.

      • SecurityGroupIds (list) -- [REQUIRED]

        The VPC security group IDs. IDs have the form of sg-xxxxxxxx . Specify the security groups for the VPC that is specified in the Subnets field.

        • (string) --
      • Subnets (list) -- [REQUIRED]

        The ID of the subnets in the VPC to which you want to connect your model.

        • (string) --
    • ModelName (string) --

      The name of the created model.

  • JobDescription (string) -- Description of the recommendation job.
  • StoppingConditions (dict) --

    A set of conditions for stopping a recommendation job. If any of the conditions are met, the job is automatically stopped.

    • MaxInvocations (integer) --

      The maximum number of requests per minute expected for the endpoint.

    • ModelLatencyThresholds (list) --

      The interval of time taken by a model to respond as viewed from SageMaker. The interval includes the local communication time taken to send the request and to fetch the response from the container of a model and the time taken to complete the inference in the container.

      • (dict) --

        The model latency threshold.

        • Percentile (string) --

          The model latency percentile threshold.

        • ValueInMilliseconds (integer) --

          The model latency percentile value in milliseconds.

  • OutputConfig (dict) --

    Provides information about the output artifacts and the KMS key to use for Amazon S3 server-side encryption.

    • KmsKeyId (string) --

      The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt your output artifacts with Amazon S3 server-side encryption. The SageMaker execution role must have kms:GenerateDataKey permission.

      The KmsKeyId can be any of the following formats:

      • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
      • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:<region>:<account>:key/<key-id-12ab-34cd-56ef-1234567890ab>"
      • // KMS Key Alias "alias/ExampleAlias"
      • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:<region>:<account>:alias/<ExampleAlias>"

      For more information about key identifiers, see Key identifiers (KeyID) in the Amazon Web Services Key Management Service (Amazon Web Services KMS) documentation.

    • CompiledOutputConfig (dict) --

      Provides information about the output configuration for the compiled model.

      • S3OutputUri (string) --

        Identifies the Amazon S3 bucket where you want SageMaker to store the compiled model artifacts.

  • Tags (list) --

    The metadata that you apply to Amazon Web Services resources to help you categorize and organize them. Each tag consists of a key and a value, both of which you define. For more information, see Tagging Amazon Web Services Resources in the Amazon Web Services General Reference.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'JobArn': 'string'
}

Response Structure

  • (dict) --

    • JobArn (string) --

      The Amazon Resource Name (ARN) of the recommendation job.

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceLimitExceeded
create_labeling_job(**kwargs)

Creates a job that uses workers to label the data objects in your input dataset. You can use the labeled data to train machine learning models.

You can select your workforce from one of three providers:

  • A private workforce that you create. It can include employees, contractors, and outside experts. Use a private workforce when want the data to stay within your organization or when a specific set of skills is required.
  • One or more vendors that you select from the Amazon Web Services Marketplace. Vendors provide expertise in specific areas.
  • The Amazon Mechanical Turk workforce. This is the largest workforce, but it should only be used for public data or data that has been stripped of any personally identifiable information.

You can also use automated data labeling to reduce the number of data objects that need to be labeled by a human. Automated data labeling uses active learning to determine if a data object can be labeled by machine or if it needs to be sent to a human worker. For more information, see Using Automated Data Labeling.

The data objects to be labeled are contained in an Amazon S3 bucket. You create a manifest file that describes the location of each object. For more information, see Using Input and Output Data.

The output can be used as the manifest file for another labeling job or as training data for your machine learning models.

You can use this operation to create a static labeling job or a streaming labeling job. A static labeling job stops if all data objects in the input manifest file identified in ManifestS3Uri have been labeled. A streaming labeling job runs perpetually until it is manually stopped, or remains idle for 10 days. You can send new data objects to an active ( InProgress ) streaming labeling job in real time. To learn how to create a static labeling job, see Create a Labeling Job (API) in the Amazon SageMaker Developer Guide. To learn how to create a streaming labeling job, see Create a Streaming Labeling Job.

See also: AWS API Documentation

Request Syntax

response = client.create_labeling_job(
    LabelingJobName='string',
    LabelAttributeName='string',
    InputConfig={
        'DataSource': {
            'S3DataSource': {
                'ManifestS3Uri': 'string'
            },
            'SnsDataSource': {
                'SnsTopicArn': 'string'
            }
        },
        'DataAttributes': {
            'ContentClassifiers': [
                'FreeOfPersonallyIdentifiableInformation'|'FreeOfAdultContent',
            ]
        }
    },
    OutputConfig={
        'S3OutputPath': 'string',
        'KmsKeyId': 'string',
        'SnsTopicArn': 'string'
    },
    RoleArn='string',
    LabelCategoryConfigS3Uri='string',
    StoppingConditions={
        'MaxHumanLabeledObjectCount': 123,
        'MaxPercentageOfInputDatasetLabeled': 123
    },
    LabelingJobAlgorithmsConfig={
        'LabelingJobAlgorithmSpecificationArn': 'string',
        'InitialActiveLearningModelArn': 'string',
        'LabelingJobResourceConfig': {
            'VolumeKmsKeyId': 'string',
            'VpcConfig': {
                'SecurityGroupIds': [
                    'string',
                ],
                'Subnets': [
                    'string',
                ]
            }
        }
    },
    HumanTaskConfig={
        'WorkteamArn': 'string',
        'UiConfig': {
            'UiTemplateS3Uri': 'string',
            'HumanTaskUiArn': 'string'
        },
        'PreHumanTaskLambdaArn': 'string',
        'TaskKeywords': [
            'string',
        ],
        'TaskTitle': 'string',
        'TaskDescription': 'string',
        'NumberOfHumanWorkersPerDataObject': 123,
        'TaskTimeLimitInSeconds': 123,
        'TaskAvailabilityLifetimeInSeconds': 123,
        'MaxConcurrentTaskCount': 123,
        'AnnotationConsolidationConfig': {
            'AnnotationConsolidationLambdaArn': 'string'
        },
        'PublicWorkforceTaskPrice': {
            'AmountInUsd': {
                'Dollars': 123,
                'Cents': 123,
                'TenthFractionsOfACent': 123
            }
        }
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • LabelingJobName (string) --

    [REQUIRED]

    The name of the labeling job. This name is used to identify the job in a list of labeling jobs. Labeling job names must be unique within an Amazon Web Services account and region. LabelingJobName is not case sensitive. For example, Example-job and example-job are considered the same labeling job name by Ground Truth.

  • LabelAttributeName (string) --

    [REQUIRED]

    The attribute name to use for the label in the output manifest file. This is the key for the key/value pair formed with the label that a worker assigns to the object. The LabelAttributeName must meet the following requirements.

    • The name can't end with "-metadata".
    • If you are using one of the following built-in task types, the attribute name must end with "-ref". If the task type you are using is not listed below, the attribute name must not end with "-ref".
      • Image semantic segmentation ( SemanticSegmentation) , and adjustment ( AdjustmentSemanticSegmentation ) and verification ( VerificationSemanticSegmentation ) labeling jobs for this task type.
      • Video frame object detection ( VideoObjectDetection ), and adjustment and verification ( AdjustmentVideoObjectDetection ) labeling jobs for this task type.
      • Video frame object tracking ( VideoObjectTracking ), and adjustment and verification ( AdjustmentVideoObjectTracking ) labeling jobs for this task type.
      • 3D point cloud semantic segmentation ( 3DPointCloudSemanticSegmentation ), and adjustment and verification ( Adjustment3DPointCloudSemanticSegmentation ) labeling jobs for this task type.
      • 3D point cloud object tracking ( 3DPointCloudObjectTracking ), and adjustment and verification ( Adjustment3DPointCloudObjectTracking ) labeling jobs for this task type.

    Warning

    If you are creating an adjustment or verification labeling job, you must use a different LabelAttributeName than the one used in the original labeling job. The original labeling job is the Ground Truth labeling job that produced the labels that you want verified or adjusted. To learn more about adjustment and verification labeling jobs, see Verify and Adjust Labels.

  • InputConfig (dict) --

    [REQUIRED]

    Input data for the labeling job, such as the Amazon S3 location of the data objects and the location of the manifest file that describes the data objects.

    You must specify at least one of the following: S3DataSource or SnsDataSource .

    • Use SnsDataSource to specify an SNS input topic for a streaming labeling job. If you do not specify and SNS input topic ARN, Ground Truth will create a one-time labeling job that stops after all data objects in the input manifest file have been labeled.
    • Use S3DataSource to specify an input manifest file for both streaming and one-time labeling jobs. Adding an S3DataSource is optional if you use SnsDataSource to create a streaming labeling job.

    If you use the Amazon Mechanical Turk workforce, your input data should not include confidential information, personal information or protected health information. Use ContentClassifiers to specify that your data is free of personally identifiable information and adult content.

    • DataSource (dict) -- [REQUIRED]

      The location of the input data.

      • S3DataSource (dict) --

        The Amazon S3 location of the input data objects.

        • ManifestS3Uri (string) -- [REQUIRED]

          The Amazon S3 location of the manifest file that describes the input data objects.

          The input manifest file referenced in ManifestS3Uri must contain one of the following keys: source-ref or source . The value of the keys are interpreted as follows:

          • source-ref : The source of the object is the Amazon S3 object specified in the value. Use this value when the object is a binary object, such as an image.
          • source : The source of the object is the value. Use this value when the object is a text value.

          If you are a new user of Ground Truth, it is recommended you review Use an Input Manifest File in the Amazon SageMaker Developer Guide to learn how to create an input manifest file.

      • SnsDataSource (dict) --

        An Amazon SNS data source used for streaming labeling jobs. To learn more, see Send Data to a Streaming Labeling Job.

        • SnsTopicArn (string) -- [REQUIRED]

          The Amazon SNS input topic Amazon Resource Name (ARN). Specify the ARN of the input topic you will use to send new data objects to a streaming labeling job.

    • DataAttributes (dict) --

      Attributes of the data specified by the customer.

      • ContentClassifiers (list) --

        Declares that your content is free of personally identifiable information or adult content. SageMaker may restrict the Amazon Mechanical Turk workers that can view your task based on this information.

        • (string) --
  • OutputConfig (dict) --

    [REQUIRED]

    The location of the output data and the Amazon Web Services Key Management Service key ID for the key used to encrypt the output data, if any.

    • S3OutputPath (string) -- [REQUIRED]

      The Amazon S3 location to write output data.

    • KmsKeyId (string) --

      The Amazon Web Services Key Management Service ID of the key used to encrypt the output data, if any.

      If you provide your own KMS key ID, you must add the required permissions to your KMS key described in Encrypt Output Data and Storage Volume with Amazon Web Services KMS.

      If you don't provide a KMS key ID, Amazon SageMaker uses the default Amazon Web Services KMS key for Amazon S3 for your role's account to encrypt your output data.

      If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

    • SnsTopicArn (string) --

      An Amazon Simple Notification Service (Amazon SNS) output topic ARN. Provide a SnsTopicArn if you want to do real time chaining to another streaming job and receive an Amazon SNS notifications each time a data object is submitted by a worker.

      If you provide an SnsTopicArn in OutputConfig , when workers complete labeling tasks, Ground Truth will send labeling task output data to the SNS output topic you specify here.

      To learn more, see Receive Output Data from a Streaming Labeling Job.

  • RoleArn (string) --

    [REQUIRED]

    The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during data labeling. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete data labeling.

  • LabelCategoryConfigS3Uri (string) --

    The S3 URI of the file, referred to as a label category configuration file , that defines the categories used to label the data objects.

    For 3D point cloud and video frame task types, you can add label category attributes and frame attributes to your label category configuration file. To learn how, see Create a Labeling Category Configuration File for 3D Point Cloud Labeling Jobs.

    For named entity recognition jobs, in addition to "labels" , you must provide worker instructions in the label category configuration file using the "instructions" parameter: "instructions": {"shortInstruction":"<h1>Add header</h1><p>Add Instructions</p>", "fullInstruction":"<p>Add additional instructions.</p>"} . For details and an example, see Create a Named Entity Recognition Labeling Job (API).

    For all other built-in task types and custom tasks, your label category configuration file must be a JSON file in the following format. Identify the labels you want to use by replacing label_1 , label_2 , ... , label_n with your label categories.

    {

    "document-version": "2018-11-28",

    "labels": [{"label": "label_1"},{"label": "label_2"},...{"label": "label_n"}]

    }

    Note the following about the label category configuration file:

    • For image classification and text classification (single and multi-label) you must specify at least two label categories. For all other task types, the minimum number of label categories required is one.
    • Each label category must be unique, you cannot specify duplicate label categories.
    • If you create a 3D point cloud or video frame adjustment or verification labeling job, you must include auditLabelAttributeName in the label category configuration. Use this parameter to enter the LabelAttributeName of the labeling job you want to adjust or verify annotations of.
  • StoppingConditions (dict) --

    A set of conditions for stopping the labeling job. If any of the conditions are met, the job is automatically stopped. You can use these conditions to control the cost of data labeling.

    • MaxHumanLabeledObjectCount (integer) --

      The maximum number of objects that can be labeled by human workers.

    • MaxPercentageOfInputDatasetLabeled (integer) --

      The maximum number of input data objects that should be labeled.

  • LabelingJobAlgorithmsConfig (dict) --

    Configures the information required to perform automated data labeling.

    • LabelingJobAlgorithmSpecificationArn (string) -- [REQUIRED]

      Specifies the Amazon Resource Name (ARN) of the algorithm used for auto-labeling. You must select one of the following ARNs:

      • Image classification arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/image-classification
      • Text classification arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/text-classification
      • Object detection arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/object-detection
      • Semantic Segmentation arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/semantic-segmentation
    • InitialActiveLearningModelArn (string) --

      At the end of an auto-label job Ground Truth sends the Amazon Resource Name (ARN) of the final model used for auto-labeling. You can use this model as the starting point for subsequent similar jobs by providing the ARN of the model here.

    • LabelingJobResourceConfig (dict) --

      Provides configuration information for a labeling job.

      • VolumeKmsKeyId (string) --

        The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training and inference jobs used for automated data labeling.

        You can only specify a VolumeKmsKeyId when you create a labeling job with automated data labeling enabled using the API operation CreateLabelingJob . You cannot specify an Amazon Web Services KMS key to encrypt the storage volume used for automated data labeling model training and inference when you create a labeling job using the console. To learn more, see Output Data and Storage Volume Encryption.

        The VolumeKmsKeyId can be any of the following formats:

        • KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
        • Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
      • VpcConfig (dict) --

        Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud.

        • SecurityGroupIds (list) -- [REQUIRED]

          The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

          • (string) --
        • Subnets (list) -- [REQUIRED]

          The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.

          • (string) --
  • HumanTaskConfig (dict) --

    [REQUIRED]

    Configures the labeling task and how it is presented to workers; including, but not limited to price, keywords, and batch size (task count).

    • WorkteamArn (string) -- [REQUIRED]

      The Amazon Resource Name (ARN) of the work team assigned to complete the tasks.

    • UiConfig (dict) -- [REQUIRED]

      Information about the user interface that workers use to complete the labeling task.

      • UiTemplateS3Uri (string) --

        The Amazon S3 bucket location of the UI template, or worker task template. This is the template used to render the worker UI and tools for labeling job tasks. For more information about the contents of a UI template, see Creating Your Custom Labeling Task Template.

      • HumanTaskUiArn (string) --

        The ARN of the worker task template used to render the worker UI and tools for labeling job tasks.

        Use this parameter when you are creating a labeling job for named entity recognition, 3D point cloud and video frame labeling jobs. Use your labeling job task type to select one of the following ARNs and use it with this parameter when you create a labeling job. Replace aws-region with the Amazon Web Services Region you are creating your labeling job in. For example, replace aws-region with us-west-1 if you create a labeling job in US West (N. California).

        Named Entity Recognition

        Use the following HumanTaskUiArn for named entity recognition labeling jobs:

        arn:aws:sagemaker:aws-region:394669845002:human-task-ui/NamedEntityRecognition

        3D Point Cloud HumanTaskUiArns

        Use this HumanTaskUiArn for 3D point cloud object detection and 3D point cloud object detection adjustment labeling jobs.

        • arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectDetection

        Use this HumanTaskUiArn for 3D point cloud object tracking and 3D point cloud object tracking adjustment labeling jobs.

        • arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectTracking

        Use this HumanTaskUiArn for 3D point cloud semantic segmentation and 3D point cloud semantic segmentation adjustment labeling jobs.

        • arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudSemanticSegmentation
        Video Frame HumanTaskUiArns

        Use this HumanTaskUiArn for video frame object detection and video frame object detection adjustment labeling jobs.

        • arn:aws:sagemaker:region:394669845002:human-task-ui/VideoObjectDetection

        Use this HumanTaskUiArn for video frame object tracking and video frame object tracking adjustment labeling jobs.

        • arn:aws:sagemaker:aws-region:394669845002:human-task-ui/VideoObjectTracking
    • PreHumanTaskLambdaArn (string) -- [REQUIRED]

      The Amazon Resource Name (ARN) of a Lambda function that is run before a data object is sent to a human worker. Use this function to provide input to a custom labeling job.

      For built-in task types, use one of the following Amazon SageMaker Ground Truth Lambda function ARNs for PreHumanTaskLambdaArn . For custom labeling workflows, see Pre-annotation Lambda.

      Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes.
      • arn:aws:lambda:us-east-1:432418664414:function:PRE-BoundingBox
      • arn:aws:lambda:us-east-2:266458841044:function:PRE-BoundingBox
      • arn:aws:lambda:us-west-2:081040173940:function:PRE-BoundingBox
      • arn:aws:lambda:ca-central-1:918755190332:function:PRE-BoundingBox
      • arn:aws:lambda:eu-west-1:568282634449:function:PRE-BoundingBox
      • arn:aws:lambda:eu-west-2:487402164563:function:PRE-BoundingBox
      • arn:aws:lambda:eu-central-1:203001061592:function:PRE-BoundingBox
      • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-BoundingBox
      • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-BoundingBox
      • arn:aws:lambda:ap-south-1:565803892007:function:PRE-BoundingBox
      • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-BoundingBox
      • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-BoundingBox
      Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers.
      • arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClass
      • arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClass
      • arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClass
      • arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClass
      • arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClass
      • arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClass
      • arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClass
      • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClass
      • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClass
      • arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClass
      • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClass
      • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClass
      Multi-label image classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of an image based on annotations from individual workers.
      • arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClassMultiLabel
      • arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClassMultiLabel
      • arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClassMultiLabel
      • arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClassMultiLabel
      • arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClassMultiLabel
      • arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClassMultiLabel
      • arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClassMultiLabel
      • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClassMultiLabel
      • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClassMultiLabel
      • arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClassMultiLabel
      • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClassMultiLabel
      • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClassMultiLabel
      Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label.
      • arn:aws:lambda:us-east-1:432418664414:function:PRE-SemanticSegmentation
      • arn:aws:lambda:us-east-2:266458841044:function:PRE-SemanticSegmentation
      • arn:aws:lambda:us-west-2:081040173940:function:PRE-SemanticSegmentation
      • arn:aws:lambda:ca-central-1:918755190332:function:PRE-SemanticSegmentation
      • arn:aws:lambda:eu-west-1:568282634449:function:PRE-SemanticSegmentation
      • arn:aws:lambda:eu-west-2:487402164563:function:PRE-SemanticSegmentation
      • arn:aws:lambda:eu-central-1:203001061592:function:PRE-SemanticSegmentation
      • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-SemanticSegmentation
      • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-SemanticSegmentation
      • arn:aws:lambda:ap-south-1:565803892007:function:PRE-SemanticSegmentation
      • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-SemanticSegmentation
      • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-SemanticSegmentation
      Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers.
      • arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClass
      • arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClass
      • arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClass
      • arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClass
      • arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClass
      • arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClass
      • arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClass
      • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClass
      • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClass
      • arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClass
      • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClass
      • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClass
      Multi-label text classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of text based on annotations from individual workers.
      • arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClassMultiLabel
      • arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClassMultiLabel
      • arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClassMultiLabel
      • arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClassMultiLabel
      • arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClassMultiLabel
      • arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClassMultiLabel
      • arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClassMultiLabel
      • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClassMultiLabel
      • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClassMultiLabel
      • arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClassMultiLabel
      • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClassMultiLabel
      • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClassMultiLabel
      Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label.
      • arn:aws:lambda:us-east-1:432418664414:function:PRE-NamedEntityRecognition
      • arn:aws:lambda:us-east-2:266458841044:function:PRE-NamedEntityRecognition
      • arn:aws:lambda:us-west-2:081040173940:function:PRE-NamedEntityRecognition
      • arn:aws:lambda:ca-central-1:918755190332:function:PRE-NamedEntityRecognition
      • arn:aws:lambda:eu-west-1:568282634449:function:PRE-NamedEntityRecognition
      • arn:aws:lambda:eu-west-2:487402164563:function:PRE-NamedEntityRecognition
      • arn:aws:lambda:eu-central-1:203001061592:function:PRE-NamedEntityRecognition
      • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-NamedEntityRecognition
      • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-NamedEntityRecognition
      • arn:aws:lambda:ap-south-1:565803892007:function:PRE-NamedEntityRecognition
      • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-NamedEntityRecognition
      • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-NamedEntityRecognition
      Video Classification - Use this task type when you need workers to classify videos using predefined labels that you specify. Workers are shown videos and are asked to choose one label for each video.
      • arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoMultiClass
      • arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoMultiClass
      • arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoMultiClass
      • arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoMultiClass
      • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoMultiClass
      • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoMultiClass
      • arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoMultiClass
      • arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoMultiClass
      • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoMultiClass
      • arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoMultiClass
      • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoMultiClass
      • arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoMultiClass
      Video Frame Object Detection - Use this task type to have workers identify and locate objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to identify and localize various objects in a series of video frames, such as cars, bikes, and pedestrians.
      • arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectDetection
      • arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectDetection
      • arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectDetection
      • arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectDetection
      • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectDetection
      • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectDetection
      • arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectDetection
      • arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectDetection
      • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectDetection
      • arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectDetection
      • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectDetection
      • arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectDetection
      Video Frame Object Tracking - Use this task type to have workers track the movement of objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to track the movement of objects, such as cars, bikes, and pedestrians.
      • arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectTracking
      • arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectTracking
      • arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectTracking
      • arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectTracking
      • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectTracking
      • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectTracking
      • arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectTracking
      • arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectTracking
      • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectTracking
      • arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectTracking
      • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectTracking
      • arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectTracking
      3D Point Cloud Modalities

      Use the following pre-annotation lambdas for 3D point cloud labeling modality tasks. See 3D Point Cloud Task types to learn more.

      3D Point Cloud Object Detection - Use this task type when you want workers to classify objects in a 3D point cloud by drawing 3D cuboids around objects. For example, you can use this task type to ask workers to identify different types of objects in a point cloud, such as cars, bikes, and pedestrians.
      • arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectDetection
      • arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectDetection
      • arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectDetection
      • arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectDetection
      • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectDetection
      • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectDetection
      • arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectDetection
      • arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectDetection
      • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectDetection
      • arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectDetection
      • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectDetection
      • arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectDetection
      3D Point Cloud Object Tracking - Use this task type when you want workers to draw 3D cuboids around objects that appear in a sequence of 3D point cloud frames. For example, you can use this task type to ask workers to track the movement of vehicles across multiple point cloud frames.
      • arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectTracking
      • arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectTracking
      • arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectTracking
      • arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectTracking
      • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectTracking
      • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectTracking
      • arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectTracking
      • arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectTracking
      • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectTracking
      • arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectTracking
      • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectTracking
      • arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectTracking
      3D Point Cloud Semantic Segmentation - Use this task type when you want workers to create a point-level semantic segmentation masks by painting objects in a 3D point cloud using different colors where each color is assigned to one of the classes you specify.
      • arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudSemanticSegmentation
      • arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudSemanticSegmentation
      • arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudSemanticSegmentation
      • arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudSemanticSegmentation
      • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudSemanticSegmentation
      • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudSemanticSegmentation
      • arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudSemanticSegmentation
      • arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudSemanticSegmentation
      • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudSemanticSegmentation
      • arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudSemanticSegmentation
      • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudSemanticSegmentation
      • arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudSemanticSegmentation
      Use the following ARNs for Label Verification and Adjustment Jobs

      Use label verification and adjustment jobs to review and adjust labels. To learn more, see Verify and Adjust Labels.

      Bounding box verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgement for bounding box labels based on annotations from individual workers.
      • arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationBoundingBox
      • arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationBoundingBox
      • arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationBoundingBox
      • arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationBoundingBox
      • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationBoundingBox
      • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationBoundingBox
      • arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationBoundingBox
      • arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationBoundingBox
      • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationBoundingBox
      • arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationBoundingBox
      • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationBoundingBox
      • arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationBoundingBox
      Bounding box adjustment - Finds the most similar boxes from different workers based on the Jaccard index of the adjusted annotations.
      • arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentBoundingBox
      • arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentBoundingBox
      • arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentBoundingBox
      • arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentBoundingBox
      • arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentBoundingBox
      • arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentBoundingBox
      • arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentBoundingBox
      • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentBoundingBox
      • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentBoundingBox
      • arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentBoundingBox
      • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentBoundingBox
      • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentBoundingBox
      Semantic segmentation verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgment for semantic segmentation labels based on annotations from individual workers.
      • arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationSemanticSegmentation
      • arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationSemanticSegmentation
      • arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationSemanticSegmentation
      • arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationSemanticSegmentation
      • arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationSemanticSegmentation
      • arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationSemanticSegmentation
      • arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationSemanticSegmentation
      • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationSemanticSegmentation
      • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationSemanticSegmentation
      • arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationSemanticSegmentation
      • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationSemanticSegmentation
      • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationSemanticSegmentation
      Semantic segmentation adjustment - Treats each pixel in an image as a multi-class classification and treats pixel adjusted annotations from workers as "votes" for the correct label.
      • arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentSemanticSegmentation
      • arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentSemanticSegmentation
      • arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentSemanticSegmentation
      • arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentSemanticSegmentation
      • arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentSemanticSegmentation
      • arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentSemanticSegmentation
      • arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentSemanticSegmentation
      • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentSemanticSegmentation
      • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentSemanticSegmentation
      • arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentSemanticSegmentation
      • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentSemanticSegmentation
      • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentSemanticSegmentation
      Video Frame Object Detection Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to classify and localize objects in a sequence of video frames.
      • arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectDetection
      • arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectDetection
      • arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectDetection
      • arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectDetection
      • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectDetection
      • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectDetection
      • arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectDetection
      • arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectDetection
      • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectDetection
      • arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectDetection
      • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectDetection
      • arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectDetection
      Video Frame Object Tracking Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to track object movement across a sequence of video frames.
      • arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectTracking
      • arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectTracking
      • arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectTracking
      • arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectTracking
      • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectTracking
      • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectTracking
      • arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectTracking
      • arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectTracking
      • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectTracking
      • arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectTracking
      • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectTracking
      • arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectTracking
      3D point cloud object detection adjustment - Adjust 3D cuboids in a point cloud frame.
      • arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectDetection
      • arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectDetection
      • arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectDetection
      • arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectDetection
      • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectDetection
      • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectDetection
      • arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectDetection
      • arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectDetection
      • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectDetection
      • arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectDetection
      • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectDetection
      • arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectDetection
      3D point cloud object tracking adjustment - Adjust 3D cuboids across a sequence of point cloud frames.
      • arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectTracking
      • arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectTracking
      • arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectTracking
      • arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectTracking
      • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectTracking
      • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectTracking
      • arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectTracking
      • arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectTracking
      • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectTracking
      • arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectTracking
      • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectTracking
      • arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectTracking
      3D point cloud semantic segmentation adjustment - Adjust semantic segmentation masks in a 3D point cloud.
      • arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudSemanticSegmentation
      • arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudSemanticSegmentation
      • arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudSemanticSegmentation
      • arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudSemanticSegmentation
      • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudSemanticSegmentation
      • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudSemanticSegmentation
      • arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudSemanticSegmentation
      • arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudSemanticSegmentation
      • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudSemanticSegmentation
      • arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudSemanticSegmentation
      • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudSemanticSegmentation
      • arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudSemanticSegmentation
    • TaskKeywords (list) --

      Keywords used to describe the task so that workers on Amazon Mechanical Turk can discover the task.

      • (string) --
    • TaskTitle (string) -- [REQUIRED]

      A title for the task for your human workers.

    • TaskDescription (string) -- [REQUIRED]

      A description of the task for your human workers.

    • NumberOfHumanWorkersPerDataObject (integer) -- [REQUIRED]

      The number of human workers that will label an object.

    • TaskTimeLimitInSeconds (integer) -- [REQUIRED]

      The amount of time that a worker has to complete a task.

      If you create a custom labeling job, the maximum value for this parameter is 8 hours (28,800 seconds).

      If you create a labeling job using a built-in task type the maximum for this parameter depends on the task type you use:

      • For image and text labeling jobs, the maximum is 8 hours (28,800 seconds).
      • For 3D point cloud and video frame labeling jobs, the maximum is 30 days (2952,000 seconds) for non-AL mode. For most users, the maximum is also 30 days.
    • TaskAvailabilityLifetimeInSeconds (integer) --

      The length of time that a task remains available for labeling by human workers. The default and maximum values for this parameter depend on the type of workforce you use.

      • If you choose the Amazon Mechanical Turk workforce, the maximum is 12 hours (43,200 seconds). The default is 6 hours (21,600 seconds).
      • If you choose a private or vendor workforce, the default value is 30 days (2592,000 seconds) for non-AL mode. For most users, the maximum is also 30 days.
    • MaxConcurrentTaskCount (integer) --

      Defines the maximum number of data objects that can be labeled by human workers at the same time. Also referred to as batch size. Each object may have more than one worker at one time. The default value is 1000 objects. To increase the maximum value to 5000 objects, contact Amazon Web Services Support.

    • AnnotationConsolidationConfig (dict) -- [REQUIRED]

      Configures how labels are consolidated across human workers.

      • AnnotationConsolidationLambdaArn (string) -- [REQUIRED]

        The Amazon Resource Name (ARN) of a Lambda function implements the logic for annotation consolidation and to process output data.

        This parameter is required for all labeling jobs. For built-in task types, use one of the following Amazon SageMaker Ground Truth Lambda function ARNs for AnnotationConsolidationLambdaArn . For custom labeling workflows, see Post-annotation Lambda.

        Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes.
        • arn:aws:lambda:us-east-1:432418664414:function:ACS-BoundingBox
        • arn:aws:lambda:us-east-2:266458841044:function:ACS-BoundingBox
        • arn:aws:lambda:us-west-2:081040173940:function:ACS-BoundingBox
        • arn:aws:lambda:eu-west-1:568282634449:function:ACS-BoundingBox
        • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-BoundingBox
        • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-BoundingBox
        • arn:aws:lambda:ap-south-1:565803892007:function:ACS-BoundingBox
        • arn:aws:lambda:eu-central-1:203001061592:function:ACS-BoundingBox
        • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-BoundingBox
        • arn:aws:lambda:eu-west-2:487402164563:function:ACS-BoundingBox
        • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-BoundingBox
        • arn:aws:lambda:ca-central-1:918755190332:function:ACS-BoundingBox
        Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers.
        • arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClass
        • arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClass
        • arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClass
        • arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClass
        • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClass
        • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClass
        • arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClass
        • arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClass
        • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClass
        • arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClass
        • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClass
        • arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClass
        Multi-label image classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of an image based on annotations from individual workers.
        • arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClassMultiLabel
        • arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClassMultiLabel
        • arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClassMultiLabel
        • arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClassMultiLabel
        • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClassMultiLabel
        • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClassMultiLabel
        • arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClassMultiLabel
        • arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClassMultiLabel
        • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClassMultiLabel
        • arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClassMultiLabel
        • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClassMultiLabel
        • arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClassMultiLabel
        Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label.
        • arn:aws:lambda:us-east-1:432418664414:function:ACS-SemanticSegmentation
        • arn:aws:lambda:us-east-2:266458841044:function:ACS-SemanticSegmentation
        • arn:aws:lambda:us-west-2:081040173940:function:ACS-SemanticSegmentation
        • arn:aws:lambda:eu-west-1:568282634449:function:ACS-SemanticSegmentation
        • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-SemanticSegmentation
        • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-SemanticSegmentation
        • arn:aws:lambda:ap-south-1:565803892007:function:ACS-SemanticSegmentation
        • arn:aws:lambda:eu-central-1:203001061592:function:ACS-SemanticSegmentation
        • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-SemanticSegmentation
        • arn:aws:lambda:eu-west-2:487402164563:function:ACS-SemanticSegmentation
        • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-SemanticSegmentation
        • arn:aws:lambda:ca-central-1:918755190332:function:ACS-SemanticSegmentation
        Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers.
        • arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClass
        • arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClass
        • arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClass
        • arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClass
        • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClass
        • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClass
        • arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClass
        • arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClass
        • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClass
        • arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClass
        • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClass
        • arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClass
        Multi-label text classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of text based on annotations from individual workers.
        • arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClassMultiLabel
        • arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClassMultiLabel
        • arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClassMultiLabel
        • arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClassMultiLabel
        • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClassMultiLabel
        • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClassMultiLabel
        • arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClassMultiLabel
        • arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClassMultiLabel
        • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClassMultiLabel
        • arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClassMultiLabel
        • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClassMultiLabel
        • arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClassMultiLabel
        Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label.
        • arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition
        • arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition
        • arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition
        • arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition
        • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognition
        • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognition
        • arn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognition
        • arn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognition
        • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognition
        • arn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognition
        • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognition
        • arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition
        Video Classification - Use this task type when you need workers to classify videos using predefined labels that you specify. Workers are shown videos and are asked to choose one label for each video.
        • arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoMultiClass
        • arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoMultiClass
        • arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoMultiClass
        • arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoMultiClass
        • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoMultiClass
        • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoMultiClass
        • arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoMultiClass
        • arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoMultiClass
        • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoMultiClass
        • arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoMultiClass
        • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoMultiClass
        • arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoMultiClass
        Video Frame Object Detection - Use this task type to have workers identify and locate objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to identify and localize various objects in a series of video frames, such as cars, bikes, and pedestrians.
        • arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectDetection
        • arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectDetection
        • arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectDetection
        • arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectDetection
        • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectDetection
        • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectDetection
        • arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectDetection
        • arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectDetection
        • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectDetection
        • arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectDetection
        • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectDetection
        • arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectDetection
        Video Frame Object Tracking - Use this task type to have workers track the movement of objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to track the movement of objects, such as cars, bikes, and pedestrians.
        • arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectTracking
        • arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectTracking
        • arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectTracking
        • arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectTracking
        • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectTracking
        • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectTracking
        • arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectTracking
        • arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectTracking
        • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectTracking
        • arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectTracking
        • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectTracking
        • arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectTracking
        3D Point Cloud Object Detection - Use this task type when you want workers to classify objects in a 3D point cloud by drawing 3D cuboids around objects. For example, you can use this task type to ask workers to identify different types of objects in a point cloud, such as cars, bikes, and pedestrians.
        • arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectDetection
        • arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectDetection
        • arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectDetection
        • arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectDetection
        • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectDetection
        • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectDetection
        • arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectDetection
        • arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectDetection
        • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectDetection
        • arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectDetection
        • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectDetection
        • arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectDetection
        3D Point Cloud Object Tracking - Use this task type when you want workers to draw 3D cuboids around objects that appear in a sequence of 3D point cloud frames. For example, you can use this task type to ask workers to track the movement of vehicles across multiple point cloud frames.
        • arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectTracking
        • arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectTracking
        • arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectTracking
        • arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectTracking
        • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectTracking
        • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectTracking
        • arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectTracking
        • arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectTracking
        • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectTracking
        • arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectTracking
        • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectTracking
        • arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectTracking
        3D Point Cloud Semantic Segmentation - Use this task type when you want workers to create a point-level semantic segmentation masks by painting objects in a 3D point cloud using different colors where each color is assigned to one of the classes you specify.
        • arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation
        • arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudSemanticSegmentation
        • arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudSemanticSegmentation
        • arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudSemanticSegmentation
        • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudSemanticSegmentation
        • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudSemanticSegmentation
        • arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudSemanticSegmentation
        • arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudSemanticSegmentation
        • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudSemanticSegmentation
        • arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudSemanticSegmentation
        • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudSemanticSegmentation
        • arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudSemanticSegmentation
        Use the following ARNs for Label Verification and Adjustment Jobs

        Use label verification and adjustment jobs to review and adjust labels. To learn more, see Verify and Adjust Labels.

        Semantic Segmentation Adjustment - Treats each pixel in an image as a multi-class classification and treats pixel adjusted annotations from workers as "votes" for the correct label.
        • arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentSemanticSegmentation
        • arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentSemanticSegmentation
        • arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentSemanticSegmentation
        • arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentSemanticSegmentation
        • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentSemanticSegmentation
        • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentSemanticSegmentation
        • arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentSemanticSegmentation
        • arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentSemanticSegmentation
        • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentSemanticSegmentation
        • arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentSemanticSegmentation
        • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentSemanticSegmentation
        • arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentSemanticSegmentation
        Semantic Segmentation Verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgment for semantic segmentation labels based on annotations from individual workers.
        • arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationSemanticSegmentation
        • arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationSemanticSegmentation
        • arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationSemanticSegmentation
        • arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationSemanticSegmentation
        • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationSemanticSegmentation
        • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationSemanticSegmentation
        • arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationSemanticSegmentation
        • arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationSemanticSegmentation
        • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationSemanticSegmentation
        • arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationSemanticSegmentation
        • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationSemanticSegmentation
        • arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationSemanticSegmentation
        Bounding Box Adjustment - Finds the most similar boxes from different workers based on the Jaccard index of the adjusted annotations.
        • arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentBoundingBox
        • arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentBoundingBox
        • arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentBoundingBox
        • arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentBoundingBox
        • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentBoundingBox
        • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentBoundingBox
        • arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentBoundingBox
        • arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentBoundingBox
        • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentBoundingBox
        • arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentBoundingBox
        • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentBoundingBox
        • arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentBoundingBox
        Bounding Box Verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgement for bounding box labels based on annotations from individual workers.
        • arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationBoundingBox
        • arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationBoundingBox
        • arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationBoundingBox
        • arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationBoundingBox
        • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationBoundingBox
        • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationBoundingBox
        • arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationBoundingBox
        • arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationBoundingBox
        • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationBoundingBox
        • arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationBoundingBox
        • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationBoundingBox
        • arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationBoundingBox
        Video Frame Object Detection Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to classify and localize objects in a sequence of video frames.
        • arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectDetection
        • arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectDetection
        • arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectDetection
        • arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectDetection
        • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectDetection
        • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectDetection
        • arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectDetection
        • arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectDetection
        • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectDetection
        • arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectDetection
        • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectDetection
        • arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectDetection
        Video Frame Object Tracking Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to track object movement across a sequence of video frames.
        • arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectTracking
        • arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectTracking
        • arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectTracking
        • arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectTracking
        • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectTracking
        • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectTracking
        • arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectTracking
        • arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectTracking
        • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectTracking
        • arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectTracking
        • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectTracking
        • arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectTracking
        3D Point Cloud Object Detection Adjustment - Use this task type when you want workers to adjust 3D cuboids around objects in a 3D point cloud.
        • arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectDetection
        • arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectDetection
        • arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectDetection
        • arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectDetection
        • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectDetection
        • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectDetection
        • arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectDetection
        • arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectDetection
        • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectDetection
        • arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectDetection
        • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectDetection
        • arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectDetection
        3D Point Cloud Object Tracking Adjustment - Use this task type when you want workers to adjust 3D cuboids around objects that appear in a sequence of 3D point cloud frames.
        • arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectTracking
        • arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectTracking
        • arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectTracking
        • arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectTracking
        • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectTracking
        • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectTracking
        • arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectTracking
        • arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectTracking
        • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectTracking
        • arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectTracking
        • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectTracking
        • arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectTracking
        3D Point Cloud Semantic Segmentation Adjustment - Use this task type when you want workers to adjust a point-level semantic segmentation masks using a paint tool.
        • arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation
        • arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudSemanticSegmentation
        • arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudSemanticSegmentation
        • arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudSemanticSegmentation
        • arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudSemanticSegmentation
        • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudSemanticSegmentation
        • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudSemanticSegmentation
        • arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudSemanticSegmentation
        • arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudSemanticSegmentation
        • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudSemanticSegmentation
        • arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudSemanticSegmentation
        • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudSemanticSegmentation
        • arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudSemanticSegmentation
    • PublicWorkforceTaskPrice (dict) --

      The price that you pay for each task performed by an Amazon Mechanical Turk worker.

      • AmountInUsd (dict) --

        Defines the amount of money paid to an Amazon Mechanical Turk worker in United States dollars.

        • Dollars (integer) --

          The whole number of dollars in the amount.

        • Cents (integer) --

          The fractional portion, in cents, of the amount.

        • TenthFractionsOfACent (integer) --

          Fractions of a cent, in tenths.

  • Tags (list) --

    An array of key/value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide .

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'LabelingJobArn': 'string'
}

Response Structure

  • (dict) --

    • LabelingJobArn (string) --

      The Amazon Resource Name (ARN) of the labeling job. You use this ARN to identify the labeling job.

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceLimitExceeded
create_model(**kwargs)

Creates a model in SageMaker. In the request, you name the model and describe a primary container. For the primary container, you specify the Docker image that contains inference code, artifacts (from prior training), and a custom environment map that the inference code uses when you deploy the model for predictions.

Use this API to create a model if you want to use SageMaker hosting services or run a batch transform job.

To host your model, you create an endpoint configuration with the CreateEndpointConfig API, and then create an endpoint with the CreateEndpoint API. SageMaker then deploys all of the containers that you defined for the model in the hosting environment.

For an example that calls this method when deploying a model to SageMaker hosting services, see Create a Model (Amazon Web Services SDK for Python (Boto 3)).

To run a batch transform using your model, you start a job with the CreateTransformJob API. SageMaker uses your model and your dataset to get inferences which are then saved to a specified S3 location.

In the request, you also provide an IAM role that SageMaker can assume to access model artifacts and docker image for deployment on ML compute hosting instances or for batch transform jobs. In addition, you also use the IAM role to manage permissions the inference code needs. For example, if the inference code access any other Amazon Web Services resources, you grant necessary permissions via this role.

See also: AWS API Documentation

Request Syntax

response = client.create_model(
    ModelName='string',
    PrimaryContainer={
        'ContainerHostname': 'string',
        'Image': 'string',
        'ImageConfig': {
            'RepositoryAccessMode': 'Platform'|'Vpc',
            'RepositoryAuthConfig': {
                'RepositoryCredentialsProviderArn': 'string'
            }
        },
        'Mode': 'SingleModel'|'MultiModel',
        'ModelDataUrl': 'string',
        'Environment': {
            'string': 'string'
        },
        'ModelPackageName': 'string',
        'InferenceSpecificationName': 'string',
        'MultiModelConfig': {
            'ModelCacheSetting': 'Enabled'|'Disabled'
        }
    },
    Containers=[
        {
            'ContainerHostname': 'string',
            'Image': 'string',
            'ImageConfig': {
                'RepositoryAccessMode': 'Platform'|'Vpc',
                'RepositoryAuthConfig': {
                    'RepositoryCredentialsProviderArn': 'string'
                }
            },
            'Mode': 'SingleModel'|'MultiModel',
            'ModelDataUrl': 'string',
            'Environment': {
                'string': 'string'
            },
            'ModelPackageName': 'string',
            'InferenceSpecificationName': 'string',
            'MultiModelConfig': {
                'ModelCacheSetting': 'Enabled'|'Disabled'
            }
        },
    ],
    InferenceExecutionConfig={
        'Mode': 'Serial'|'Direct'
    },
    ExecutionRoleArn='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    VpcConfig={
        'SecurityGroupIds': [
            'string',
        ],
        'Subnets': [
            'string',
        ]
    },
    EnableNetworkIsolation=True|False
)
Parameters
  • ModelName (string) --

    [REQUIRED]

    The name of the new model.

  • PrimaryContainer (dict) --

    The location of the primary docker image containing inference code, associated artifacts, and custom environment map that the inference code uses when the model is deployed for predictions.

    • ContainerHostname (string) --

      This parameter is ignored for models that contain only a PrimaryContainer .

      When a ContainerDefinition is part of an inference pipeline, the value of the parameter uniquely identifies the container for the purposes of logging and metrics. For information, see Use Logs and Metrics to Monitor an Inference Pipeline. If you don't specify a value for this parameter for a ContainerDefinition that is part of an inference pipeline, a unique name is automatically assigned based on the position of the ContainerDefinition in the pipeline. If you specify a value for the ContainerHostName for any ContainerDefinition that is part of an inference pipeline, you must specify a value for the ContainerHostName parameter of every ContainerDefinition in that pipeline.

    • Image (string) --

      The path where inference code is stored. This can be either in Amazon EC2 Container Registry or in a Docker registry that is accessible from the same VPC that you configure for your endpoint. If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker

    • ImageConfig (dict) --

      Specifies whether the model container is in Amazon ECR or a private Docker registry accessible from your Amazon Virtual Private Cloud (VPC). For information about storing containers in a private Docker registry, see Use a Private Docker Registry for Real-Time Inference Containers

      • RepositoryAccessMode (string) -- [REQUIRED]

        Set this to one of the following values:

        • Platform - The model image is hosted in Amazon ECR.
        • Vpc - The model image is hosted in a private Docker registry in your VPC.
      • RepositoryAuthConfig (dict) --

        (Optional) Specifies an authentication configuration for the private docker registry where your model image is hosted. Specify a value for this property only if you specified Vpc as the value for the RepositoryAccessMode field, and the private Docker registry where the model image is hosted requires authentication.

        • RepositoryCredentialsProviderArn (string) -- [REQUIRED]

          The Amazon Resource Name (ARN) of an Amazon Web Services Lambda function that provides credentials to authenticate to the private Docker registry where your model image is hosted. For information about how to create an Amazon Web Services Lambda function, see Create a Lambda function with the console in the Amazon Web Services Lambda Developer Guide .

    • Mode (string) --

      Whether the container hosts a single model or multiple models.

    • ModelDataUrl (string) --

      The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The S3 path is required for SageMaker built-in algorithms, but not if you use your own algorithms. For more information on built-in algorithms, see Common Parameters.

      Note

      The model artifacts must be in an S3 bucket that is in the same region as the model or endpoint you are creating.

      If you provide a value for this parameter, SageMaker uses Amazon Web Services Security Token Service to download model artifacts from the S3 path you provide. Amazon Web Services STS is activated in your Amazon Web Services account by default. If you previously deactivated Amazon Web Services STS for a region, you need to reactivate Amazon Web Services STS for that region. For more information, see Activating and Deactivating Amazon Web Services STS in an Amazon Web Services Region in the Amazon Web Services Identity and Access Management User Guide .

      Warning

      If you use a built-in algorithm to create a model, SageMaker requires that you provide a S3 path to the model artifacts in ModelDataUrl .

    • Environment (dict) --

      The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.

      • (string) --
        • (string) --
    • ModelPackageName (string) --

      The name or Amazon Resource Name (ARN) of the model package to use to create the model.

    • InferenceSpecificationName (string) --

      The inference specification name in the model package version.

    • MultiModelConfig (dict) --

      Specifies additional configuration for multi-model endpoints.

      • ModelCacheSetting (string) --

        Whether to cache models for a multi-model endpoint. By default, multi-model endpoints cache models so that a model does not have to be loaded into memory each time it is invoked. Some use cases do not benefit from model caching. For example, if an endpoint hosts a large number of models that are each invoked infrequently, the endpoint might perform better if you disable model caching. To disable model caching, set the value of this parameter to Disabled .

  • Containers (list) --

    Specifies the containers in the inference pipeline.

    • (dict) --

      Describes the container, as part of model definition.

      • ContainerHostname (string) --

        This parameter is ignored for models that contain only a PrimaryContainer .

        When a ContainerDefinition is part of an inference pipeline, the value of the parameter uniquely identifies the container for the purposes of logging and metrics. For information, see Use Logs and Metrics to Monitor an Inference Pipeline. If you don't specify a value for this parameter for a ContainerDefinition that is part of an inference pipeline, a unique name is automatically assigned based on the position of the ContainerDefinition in the pipeline. If you specify a value for the ContainerHostName for any ContainerDefinition that is part of an inference pipeline, you must specify a value for the ContainerHostName parameter of every ContainerDefinition in that pipeline.

      • Image (string) --

        The path where inference code is stored. This can be either in Amazon EC2 Container Registry or in a Docker registry that is accessible from the same VPC that you configure for your endpoint. If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker

      • ImageConfig (dict) --

        Specifies whether the model container is in Amazon ECR or a private Docker registry accessible from your Amazon Virtual Private Cloud (VPC). For information about storing containers in a private Docker registry, see Use a Private Docker Registry for Real-Time Inference Containers

        • RepositoryAccessMode (string) -- [REQUIRED]

          Set this to one of the following values:

          • Platform - The model image is hosted in Amazon ECR.
          • Vpc - The model image is hosted in a private Docker registry in your VPC.
        • RepositoryAuthConfig (dict) --

          (Optional) Specifies an authentication configuration for the private docker registry where your model image is hosted. Specify a value for this property only if you specified Vpc as the value for the RepositoryAccessMode field, and the private Docker registry where the model image is hosted requires authentication.

          • RepositoryCredentialsProviderArn (string) -- [REQUIRED]

            The Amazon Resource Name (ARN) of an Amazon Web Services Lambda function that provides credentials to authenticate to the private Docker registry where your model image is hosted. For information about how to create an Amazon Web Services Lambda function, see Create a Lambda function with the console in the Amazon Web Services Lambda Developer Guide .

      • Mode (string) --

        Whether the container hosts a single model or multiple models.

      • ModelDataUrl (string) --

        The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The S3 path is required for SageMaker built-in algorithms, but not if you use your own algorithms. For more information on built-in algorithms, see Common Parameters.

        Note

        The model artifacts must be in an S3 bucket that is in the same region as the model or endpoint you are creating.

        If you provide a value for this parameter, SageMaker uses Amazon Web Services Security Token Service to download model artifacts from the S3 path you provide. Amazon Web Services STS is activated in your Amazon Web Services account by default. If you previously deactivated Amazon Web Services STS for a region, you need to reactivate Amazon Web Services STS for that region. For more information, see Activating and Deactivating Amazon Web Services STS in an Amazon Web Services Region in the Amazon Web Services Identity and Access Management User Guide .

        Warning

        If you use a built-in algorithm to create a model, SageMaker requires that you provide a S3 path to the model artifacts in ModelDataUrl .

      • Environment (dict) --

        The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.

        • (string) --
          • (string) --
      • ModelPackageName (string) --

        The name or Amazon Resource Name (ARN) of the model package to use to create the model.

      • InferenceSpecificationName (string) --

        The inference specification name in the model package version.

      • MultiModelConfig (dict) --

        Specifies additional configuration for multi-model endpoints.

        • ModelCacheSetting (string) --

          Whether to cache models for a multi-model endpoint. By default, multi-model endpoints cache models so that a model does not have to be loaded into memory each time it is invoked. Some use cases do not benefit from model caching. For example, if an endpoint hosts a large number of models that are each invoked infrequently, the endpoint might perform better if you disable model caching. To disable model caching, set the value of this parameter to Disabled .

  • InferenceExecutionConfig (dict) --

    Specifies details of how containers in a multi-container endpoint are called.

    • Mode (string) -- [REQUIRED]

      How containers in a multi-container are run. The following values are valid.

      • SERIAL - Containers run as a serial pipeline.
      • DIRECT - Only the individual container that you specify is run.
  • ExecutionRoleArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of the IAM role that SageMaker can assume to access model artifacts and docker image for deployment on ML compute instances or for batch transform jobs. Deploying on ML compute instances is part of model hosting. For more information, see SageMaker Roles.

    Note

    To be able to pass this role to SageMaker, the caller of this API must have the iam:PassRole permission.

  • Tags (list) --

    An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

  • VpcConfig (dict) --

    A VpcConfig object that specifies the VPC that you want your model to connect to. Control access to and from your model container by configuring the VPC. VpcConfig is used in hosting services and in batch transform. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Data in Batch Transform Jobs by Using an Amazon Virtual Private Cloud.

    • SecurityGroupIds (list) -- [REQUIRED]

      The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

      • (string) --
    • Subnets (list) -- [REQUIRED]

      The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.

      • (string) --
  • EnableNetworkIsolation (boolean) -- Isolates the model container. No inbound or outbound network calls can be made to or from the model container.
Return type

dict

Returns

Response Syntax

{
    'ModelArn': 'string'
}

Response Structure

  • (dict) --

    • ModelArn (string) --

      The ARN of the model created in SageMaker.

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
create_model_bias_job_definition(**kwargs)

Creates the definition for a model bias job.

See also: AWS API Documentation

Request Syntax

response = client.create_model_bias_job_definition(
    JobDefinitionName='string',
    ModelBiasBaselineConfig={
        'BaseliningJobName': 'string',
        'ConstraintsResource': {
            'S3Uri': 'string'
        }
    },
    ModelBiasAppSpecification={
        'ImageUri': 'string',
        'ConfigUri': 'string',
        'Environment': {
            'string': 'string'
        }
    },
    ModelBiasJobInput={
        'EndpointInput': {
            'EndpointName': 'string',
            'LocalPath': 'string',
            'S3InputMode': 'Pipe'|'File',
            'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
            'FeaturesAttribute': 'string',
            'InferenceAttribute': 'string',
            'ProbabilityAttribute': 'string',
            'ProbabilityThresholdAttribute': 123.0,
            'StartTimeOffset': 'string',
            'EndTimeOffset': 'string'
        },
        'BatchTransformInput': {
            'DataCapturedDestinationS3Uri': 'string',
            'DatasetFormat': {
                'Csv': {
                    'Header': True|False
                },
                'Json': {
                    'Line': True|False
                },
                'Parquet': {}

            },
            'LocalPath': 'string',
            'S3InputMode': 'Pipe'|'File',
            'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
            'FeaturesAttribute': 'string',
            'InferenceAttribute': 'string',
            'ProbabilityAttribute': 'string',
            'ProbabilityThresholdAttribute': 123.0,
            'StartTimeOffset': 'string',
            'EndTimeOffset': 'string'
        },
        'GroundTruthS3Input': {
            'S3Uri': 'string'
        }
    },
    ModelBiasJobOutputConfig={
        'MonitoringOutputs': [
            {
                'S3Output': {
                    'S3Uri': 'string',
                    'LocalPath': 'string',
                    'S3UploadMode': 'Continuous'|'EndOfJob'
                }
            },
        ],
        'KmsKeyId': 'string'
    },
    JobResources={
        'ClusterConfig': {
            'InstanceCount': 123,
            'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
            'VolumeSizeInGB': 123,
            'VolumeKmsKeyId': 'string'
        }
    },
    NetworkConfig={
        'EnableInterContainerTrafficEncryption': True|False,
        'EnableNetworkIsolation': True|False,
        'VpcConfig': {
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ]
        }
    },
    RoleArn='string',
    StoppingCondition={
        'MaxRuntimeInSeconds': 123
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • JobDefinitionName (string) --

    [REQUIRED]

    The name of the bias job definition. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.

  • ModelBiasBaselineConfig (dict) --

    The baseline configuration for a model bias job.

    • BaseliningJobName (string) --

      The name of the baseline model bias job.

    • ConstraintsResource (dict) --

      The constraints resource for a monitoring job.

      • S3Uri (string) --

        The Amazon S3 URI for the constraints resource.

  • ModelBiasAppSpecification (dict) --

    [REQUIRED]

    Configures the model bias job to run a specified Docker container image.

    • ImageUri (string) -- [REQUIRED]

      The container image to be run by the model bias job.

    • ConfigUri (string) -- [REQUIRED]

      JSON formatted S3 file that defines bias parameters. For more information on this JSON configuration file, see Configure bias parameters.

    • Environment (dict) --

      Sets the environment variables in the Docker container.

      • (string) --
        • (string) --
  • ModelBiasJobInput (dict) --

    [REQUIRED]

    Inputs for the model bias job.

    • EndpointInput (dict) --

      Input object for the endpoint

      • EndpointName (string) -- [REQUIRED]

        An endpoint in customer's account which has enabled DataCaptureConfig enabled.

      • LocalPath (string) -- [REQUIRED]

        Path to the filesystem where the endpoint data is available to the container.

      • S3InputMode (string) --

        Whether the Pipe or File is used as the input mode for transferring data for the monitoring job. Pipe mode is recommended for large datasets. File mode is useful for small files that fit in memory. Defaults to File .

      • S3DataDistributionType (string) --

        Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defaults to FullyReplicated

      • FeaturesAttribute (string) --

        The attributes of the input data that are the input features.

      • InferenceAttribute (string) --

        The attribute of the input data that represents the ground truth label.

      • ProbabilityAttribute (string) --

        In a classification problem, the attribute that represents the class probability.

      • ProbabilityThresholdAttribute (float) --

        The threshold for the class probability to be evaluated as a positive result.

      • StartTimeOffset (string) --

        If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

      • EndTimeOffset (string) --

        If specified, monitoring jobs substract this time from the end time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

    • BatchTransformInput (dict) --

      Input object for the batch transform job.

      • DataCapturedDestinationS3Uri (string) -- [REQUIRED]

        The Amazon S3 location being used to capture the data.

      • DatasetFormat (dict) -- [REQUIRED]

        The dataset format for your batch transform job.

        • Csv (dict) --

          The CSV dataset used in the monitoring job.

          • Header (boolean) --

            Indicates if the CSV data has a header.

        • Json (dict) --

          The JSON dataset used in the monitoring job

          • Line (boolean) --

            Indicates if the file should be read as a json object per line.

        • Parquet (dict) --

          The Parquet dataset used in the monitoring job

      • LocalPath (string) -- [REQUIRED]

        Path to the filesystem where the batch transform data is available to the container.

      • S3InputMode (string) --

        Whether the Pipe or File is used as the input mode for transferring data for the monitoring job. Pipe mode is recommended for large datasets. File mode is useful for small files that fit in memory. Defaults to File .

      • S3DataDistributionType (string) --

        Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defaults to FullyReplicated

      • FeaturesAttribute (string) --

        The attributes of the input data that are the input features.

      • InferenceAttribute (string) --

        The attribute of the input data that represents the ground truth label.

      • ProbabilityAttribute (string) --

        In a classification problem, the attribute that represents the class probability.

      • ProbabilityThresholdAttribute (float) --

        The threshold for the class probability to be evaluated as a positive result.

      • StartTimeOffset (string) --

        If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

      • EndTimeOffset (string) --

        If specified, monitoring jobs substract this time from the end time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

    • GroundTruthS3Input (dict) -- [REQUIRED]

      Location of ground truth labels to use in model bias job.

      • S3Uri (string) --

        The address of the Amazon S3 location of the ground truth labels.

  • ModelBiasJobOutputConfig (dict) --

    [REQUIRED]

    The output configuration for monitoring jobs.

    • MonitoringOutputs (list) -- [REQUIRED]

      Monitoring outputs for monitoring jobs. This is where the output of the periodic monitoring jobs is uploaded.

      • (dict) --

        The output object for a monitoring job.

        • S3Output (dict) -- [REQUIRED]

          The Amazon S3 storage location where the results of a monitoring job are saved.

          • S3Uri (string) -- [REQUIRED]

            A URI that identifies the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job.

          • LocalPath (string) -- [REQUIRED]

            The local path to the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job. LocalPath is an absolute path for the output data.

          • S3UploadMode (string) --

            Whether to upload the results of the monitoring job continuously or after the job completes.

    • KmsKeyId (string) --

      The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.

  • JobResources (dict) --

    [REQUIRED]

    Identifies the resources to deploy for a monitoring job.

    • ClusterConfig (dict) -- [REQUIRED]

      The configuration for the cluster resources used to run the processing job.

      • InstanceCount (integer) -- [REQUIRED]

        The number of ML compute instances to use in the model monitoring job. For distributed processing jobs, specify a value greater than 1. The default value is 1.

      • InstanceType (string) -- [REQUIRED]

        The ML compute instance type for the processing job.

      • VolumeSizeInGB (integer) -- [REQUIRED]

        The size of the ML storage volume, in gigabytes, that you want to provision. You must specify sufficient ML storage for your scenario.

      • VolumeKmsKeyId (string) --

        The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.

  • NetworkConfig (dict) --

    Networking options for a model bias job.

    • EnableInterContainerTrafficEncryption (boolean) --

      Whether to encrypt all communications between the instances used for the monitoring jobs. Choose True to encrypt communications. Encryption provides greater security for distributed jobs, but the processing might take longer.

    • EnableNetworkIsolation (boolean) --

      Whether to allow inbound and outbound network calls to and from the containers used for the monitoring job.

    • VpcConfig (dict) --

      Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud.

      • SecurityGroupIds (list) -- [REQUIRED]

        The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

        • (string) --
      • Subnets (list) -- [REQUIRED]

        The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.

        • (string) --
  • RoleArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.

  • StoppingCondition (dict) --

    A time limit for how long the monitoring job is allowed to run before stopping.

    • MaxRuntimeInSeconds (integer) -- [REQUIRED]

      The maximum runtime allowed in seconds.

      Note

      The MaxRuntimeInSeconds cannot exceed the frequency of the job. For data quality and model explainability, this can be up to 3600 seconds for an hourly schedule. For model bias and model quality hourly schedules, this can be up to 1800 seconds.

  • Tags (list) --

    (Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide .

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'JobDefinitionArn': 'string'
}

Response Structure

  • (dict) --

    • JobDefinitionArn (string) --

      The Amazon Resource Name (ARN) of the model bias job.

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
  • SageMaker.Client.exceptions.ResourceInUse
create_model_card(**kwargs)

Creates an Amazon SageMaker Model Card.

For information about how to use model cards, see Amazon SageMaker Model Card.

See also: AWS API Documentation

Request Syntax

response = client.create_model_card(
    ModelCardName='string',
    SecurityConfig={
        'KmsKeyId': 'string'
    },
    Content='string',
    ModelCardStatus='Draft'|'PendingReview'|'Approved'|'Archived',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • ModelCardName (string) --

    [REQUIRED]

    The unique name of the model card.

  • SecurityConfig (dict) --

    An optional Key Management Service key to encrypt, decrypt, and re-encrypt model card content for regulated workloads with highly sensitive data.

    • KmsKeyId (string) --

      A Key Management Service key ID to use for encrypting a model card.

  • Content (string) --

    [REQUIRED]

    The content of the model card. Content must be in model card JSON schema and provided as a string.

  • ModelCardStatus (string) --

    [REQUIRED]

    The approval status of the model card within your organization. Different organizations might have different criteria for model card review and approval.

    • Draft : The model card is a work in progress.
    • PendingReview : The model card is pending review.
    • Approved : The model card is approved.
    • Archived : The model card is archived. No more updates should be made to the model card, but it can still be exported.
  • Tags (list) --

    Key-value pairs used to manage metadata for model cards.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'ModelCardArn': 'string'
}

Response Structure

  • (dict) --

    • ModelCardArn (string) --

      The Amazon Resource Name (ARN) of the successfully created model card.

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
  • SageMaker.Client.exceptions.ConflictException
create_model_card_export_job(**kwargs)

Creates an Amazon SageMaker Model Card export job.

See also: AWS API Documentation

Request Syntax

response = client.create_model_card_export_job(
    ModelCardName='string',
    ModelCardVersion=123,
    ModelCardExportJobName='string',
    OutputConfig={
        'S3OutputPath': 'string'
    }
)
Parameters
  • ModelCardName (string) --

    [REQUIRED]

    The name of the model card to export.

  • ModelCardVersion (integer) -- The version of the model card to export. If a version is not provided, then the latest version of the model card is exported.
  • ModelCardExportJobName (string) --

    [REQUIRED]

    The name of the model card export job.

  • OutputConfig (dict) --

    [REQUIRED]

    The model card output configuration that specifies the Amazon S3 path for exporting.

    • S3OutputPath (string) -- [REQUIRED]

      The Amazon S3 output path to export your model card PDF.

Return type

dict

Returns

Response Syntax

{
    'ModelCardExportJobArn': 'string'
}

Response Structure

  • (dict) --

    • ModelCardExportJobArn (string) --

      The Amazon Resource Name (ARN) of the model card export job.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
  • SageMaker.Client.exceptions.ResourceLimitExceeded
  • SageMaker.Client.exceptions.ConflictException
create_model_explainability_job_definition(**kwargs)

Creates the definition for a model explainability job.

See also: AWS API Documentation

Request Syntax

response = client.create_model_explainability_job_definition(
    JobDefinitionName='string',
    ModelExplainabilityBaselineConfig={
        'BaseliningJobName': 'string',
        'ConstraintsResource': {
            'S3Uri': 'string'
        }
    },
    ModelExplainabilityAppSpecification={
        'ImageUri': 'string',
        'ConfigUri': 'string',
        'Environment': {
            'string': 'string'
        }
    },
    ModelExplainabilityJobInput={
        'EndpointInput': {
            'EndpointName': 'string',
            'LocalPath': 'string',
            'S3InputMode': 'Pipe'|'File',
            'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
            'FeaturesAttribute': 'string',
            'InferenceAttribute': 'string',
            'ProbabilityAttribute': 'string',
            'ProbabilityThresholdAttribute': 123.0,
            'StartTimeOffset': 'string',
            'EndTimeOffset': 'string'
        },
        'BatchTransformInput': {
            'DataCapturedDestinationS3Uri': 'string',
            'DatasetFormat': {
                'Csv': {
                    'Header': True|False
                },
                'Json': {
                    'Line': True|False
                },
                'Parquet': {}

            },
            'LocalPath': 'string',
            'S3InputMode': 'Pipe'|'File',
            'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
            'FeaturesAttribute': 'string',
            'InferenceAttribute': 'string',
            'ProbabilityAttribute': 'string',
            'ProbabilityThresholdAttribute': 123.0,
            'StartTimeOffset': 'string',
            'EndTimeOffset': 'string'
        }
    },
    ModelExplainabilityJobOutputConfig={
        'MonitoringOutputs': [
            {
                'S3Output': {
                    'S3Uri': 'string',
                    'LocalPath': 'string',
                    'S3UploadMode': 'Continuous'|'EndOfJob'
                }
            },
        ],
        'KmsKeyId': 'string'
    },
    JobResources={
        'ClusterConfig': {
            'InstanceCount': 123,
            'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
            'VolumeSizeInGB': 123,
            'VolumeKmsKeyId': 'string'
        }
    },
    NetworkConfig={
        'EnableInterContainerTrafficEncryption': True|False,
        'EnableNetworkIsolation': True|False,
        'VpcConfig': {
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ]
        }
    },
    RoleArn='string',
    StoppingCondition={
        'MaxRuntimeInSeconds': 123
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • JobDefinitionName (string) --

    [REQUIRED]

    The name of the model explainability job definition. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.

  • ModelExplainabilityBaselineConfig (dict) --

    The baseline configuration for a model explainability job.

    • BaseliningJobName (string) --

      The name of the baseline model explainability job.

    • ConstraintsResource (dict) --

      The constraints resource for a monitoring job.

      • S3Uri (string) --

        The Amazon S3 URI for the constraints resource.

  • ModelExplainabilityAppSpecification (dict) --

    [REQUIRED]

    Configures the model explainability job to run a specified Docker container image.

    • ImageUri (string) -- [REQUIRED]

      The container image to be run by the model explainability job.

    • ConfigUri (string) -- [REQUIRED]

      JSON formatted S3 file that defines explainability parameters. For more information on this JSON configuration file, see Configure model explainability parameters.

    • Environment (dict) --

      Sets the environment variables in the Docker container.

      • (string) --
        • (string) --
  • ModelExplainabilityJobInput (dict) --

    [REQUIRED]

    Inputs for the model explainability job.

    • EndpointInput (dict) --

      Input object for the endpoint

      • EndpointName (string) -- [REQUIRED]

        An endpoint in customer's account which has enabled DataCaptureConfig enabled.

      • LocalPath (string) -- [REQUIRED]

        Path to the filesystem where the endpoint data is available to the container.

      • S3InputMode (string) --

        Whether the Pipe or File is used as the input mode for transferring data for the monitoring job. Pipe mode is recommended for large datasets. File mode is useful for small files that fit in memory. Defaults to File .

      • S3DataDistributionType (string) --

        Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defaults to FullyReplicated

      • FeaturesAttribute (string) --

        The attributes of the input data that are the input features.

      • InferenceAttribute (string) --

        The attribute of the input data that represents the ground truth label.

      • ProbabilityAttribute (string) --

        In a classification problem, the attribute that represents the class probability.

      • ProbabilityThresholdAttribute (float) --

        The threshold for the class probability to be evaluated as a positive result.

      • StartTimeOffset (string) --

        If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

      • EndTimeOffset (string) --

        If specified, monitoring jobs substract this time from the end time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

    • BatchTransformInput (dict) --

      Input object for the batch transform job.

      • DataCapturedDestinationS3Uri (string) -- [REQUIRED]

        The Amazon S3 location being used to capture the data.

      • DatasetFormat (dict) -- [REQUIRED]

        The dataset format for your batch transform job.

        • Csv (dict) --

          The CSV dataset used in the monitoring job.

          • Header (boolean) --

            Indicates if the CSV data has a header.

        • Json (dict) --

          The JSON dataset used in the monitoring job

          • Line (boolean) --

            Indicates if the file should be read as a json object per line.

        • Parquet (dict) --

          The Parquet dataset used in the monitoring job

      • LocalPath (string) -- [REQUIRED]

        Path to the filesystem where the batch transform data is available to the container.

      • S3InputMode (string) --

        Whether the Pipe or File is used as the input mode for transferring data for the monitoring job. Pipe mode is recommended for large datasets. File mode is useful for small files that fit in memory. Defaults to File .

      • S3DataDistributionType (string) --

        Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defaults to FullyReplicated

      • FeaturesAttribute (string) --

        The attributes of the input data that are the input features.

      • InferenceAttribute (string) --

        The attribute of the input data that represents the ground truth label.

      • ProbabilityAttribute (string) --

        In a classification problem, the attribute that represents the class probability.

      • ProbabilityThresholdAttribute (float) --

        The threshold for the class probability to be evaluated as a positive result.

      • StartTimeOffset (string) --

        If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

      • EndTimeOffset (string) --

        If specified, monitoring jobs substract this time from the end time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

  • ModelExplainabilityJobOutputConfig (dict) --

    [REQUIRED]

    The output configuration for monitoring jobs.

    • MonitoringOutputs (list) -- [REQUIRED]

      Monitoring outputs for monitoring jobs. This is where the output of the periodic monitoring jobs is uploaded.

      • (dict) --

        The output object for a monitoring job.

        • S3Output (dict) -- [REQUIRED]

          The Amazon S3 storage location where the results of a monitoring job are saved.

          • S3Uri (string) -- [REQUIRED]

            A URI that identifies the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job.

          • LocalPath (string) -- [REQUIRED]

            The local path to the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job. LocalPath is an absolute path for the output data.

          • S3UploadMode (string) --

            Whether to upload the results of the monitoring job continuously or after the job completes.

    • KmsKeyId (string) --

      The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.

  • JobResources (dict) --

    [REQUIRED]

    Identifies the resources to deploy for a monitoring job.

    • ClusterConfig (dict) -- [REQUIRED]

      The configuration for the cluster resources used to run the processing job.

      • InstanceCount (integer) -- [REQUIRED]

        The number of ML compute instances to use in the model monitoring job. For distributed processing jobs, specify a value greater than 1. The default value is 1.

      • InstanceType (string) -- [REQUIRED]

        The ML compute instance type for the processing job.

      • VolumeSizeInGB (integer) -- [REQUIRED]

        The size of the ML storage volume, in gigabytes, that you want to provision. You must specify sufficient ML storage for your scenario.

      • VolumeKmsKeyId (string) --

        The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.

  • NetworkConfig (dict) --

    Networking options for a model explainability job.

    • EnableInterContainerTrafficEncryption (boolean) --

      Whether to encrypt all communications between the instances used for the monitoring jobs. Choose True to encrypt communications. Encryption provides greater security for distributed jobs, but the processing might take longer.

    • EnableNetworkIsolation (boolean) --

      Whether to allow inbound and outbound network calls to and from the containers used for the monitoring job.

    • VpcConfig (dict) --

      Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud.

      • SecurityGroupIds (list) -- [REQUIRED]

        The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

        • (string) --
      • Subnets (list) -- [REQUIRED]

        The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.

        • (string) --
  • RoleArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.

  • StoppingCondition (dict) --

    A time limit for how long the monitoring job is allowed to run before stopping.

    • MaxRuntimeInSeconds (integer) -- [REQUIRED]

      The maximum runtime allowed in seconds.

      Note

      The MaxRuntimeInSeconds cannot exceed the frequency of the job. For data quality and model explainability, this can be up to 3600 seconds for an hourly schedule. For model bias and model quality hourly schedules, this can be up to 1800 seconds.

  • Tags (list) --

    (Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide .

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'JobDefinitionArn': 'string'
}

Response Structure

  • (dict) --

    • JobDefinitionArn (string) --

      The Amazon Resource Name (ARN) of the model explainability job.

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
  • SageMaker.Client.exceptions.ResourceInUse
create_model_package(**kwargs)

Creates a model package that you can use to create SageMaker models or list on Amazon Web Services Marketplace, or a versioned model that is part of a model group. Buyers can subscribe to model packages listed on Amazon Web Services Marketplace to create models in SageMaker.

To create a model package by specifying a Docker container that contains your inference code and the Amazon S3 location of your model artifacts, provide values for InferenceSpecification . To create a model from an algorithm resource that you created or subscribed to in Amazon Web Services Marketplace, provide a value for SourceAlgorithmSpecification .

Note

There are two types of model packages:

  • Versioned - a model that is part of a model group in the model registry.
  • Unversioned - a model package that is not part of a model group.

See also: AWS API Documentation

Request Syntax

response = client.create_model_package(
    ModelPackageName='string',
    ModelPackageGroupName='string',
    ModelPackageDescription='string',
    InferenceSpecification={
        'Containers': [
            {
                'ContainerHostname': 'string',
                'Image': 'string',
                'ImageDigest': 'string',
                'ModelDataUrl': 'string',
                'ProductId': 'string',
                'Environment': {
                    'string': 'string'
                },
                'ModelInput': {
                    'DataInputConfig': 'string'
                },
                'Framework': 'string',
                'FrameworkVersion': 'string',
                'NearestModelName': 'string'
            },
        ],
        'SupportedTransformInstanceTypes': [
            'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
        ],
        'SupportedRealtimeInferenceInstanceTypes': [
            'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge',
        ],
        'SupportedContentTypes': [
            'string',
        ],
        'SupportedResponseMIMETypes': [
            'string',
        ]
    },
    ValidationSpecification={
        'ValidationRole': 'string',
        'ValidationProfiles': [
            {
                'ProfileName': 'string',
                'TransformJobDefinition': {
                    'MaxConcurrentTransforms': 123,
                    'MaxPayloadInMB': 123,
                    'BatchStrategy': 'MultiRecord'|'SingleRecord',
                    'Environment': {
                        'string': 'string'
                    },
                    'TransformInput': {
                        'DataSource': {
                            'S3DataSource': {
                                'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                                'S3Uri': 'string'
                            }
                        },
                        'ContentType': 'string',
                        'CompressionType': 'None'|'Gzip',
                        'SplitType': 'None'|'Line'|'RecordIO'|'TFRecord'
                    },
                    'TransformOutput': {
                        'S3OutputPath': 'string',
                        'Accept': 'string',
                        'AssembleWith': 'None'|'Line',
                        'KmsKeyId': 'string'
                    },
                    'TransformResources': {
                        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
                        'InstanceCount': 123,
                        'VolumeKmsKeyId': 'string'
                    }
                }
            },
        ]
    },
    SourceAlgorithmSpecification={
        'SourceAlgorithms': [
            {
                'ModelDataUrl': 'string',
                'AlgorithmName': 'string'
            },
        ]
    },
    CertifyForMarketplace=True|False,
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    ModelApprovalStatus='Approved'|'Rejected'|'PendingManualApproval',
    MetadataProperties={
        'CommitId': 'string',
        'Repository': 'string',
        'GeneratedBy': 'string',
        'ProjectId': 'string'
    },
    ModelMetrics={
        'ModelQuality': {
            'Statistics': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'Constraints': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        },
        'ModelDataQuality': {
            'Statistics': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'Constraints': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        },
        'Bias': {
            'Report': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'PreTrainingReport': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'PostTrainingReport': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        },
        'Explainability': {
            'Report': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        }
    },
    ClientToken='string',
    CustomerMetadataProperties={
        'string': 'string'
    },
    DriftCheckBaselines={
        'Bias': {
            'ConfigFile': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'PreTrainingConstraints': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'PostTrainingConstraints': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        },
        'Explainability': {
            'Constraints': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'ConfigFile': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        },
        'ModelQuality': {
            'Statistics': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'Constraints': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        },
        'ModelDataQuality': {
            'Statistics': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'Constraints': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        }
    },
    Domain='string',
    Task='string',
    SamplePayloadUrl='string',
    AdditionalInferenceSpecifications=[
        {
            'Name': 'string',
            'Description': 'string',
            'Containers': [
                {
                    'ContainerHostname': 'string',
                    'Image': 'string',
                    'ImageDigest': 'string',
                    'ModelDataUrl': 'string',
                    'ProductId': 'string',
                    'Environment': {
                        'string': 'string'
                    },
                    'ModelInput': {
                        'DataInputConfig': 'string'
                    },
                    'Framework': 'string',
                    'FrameworkVersion': 'string',
                    'NearestModelName': 'string'
                },
            ],
            'SupportedTransformInstanceTypes': [
                'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
            ],
            'SupportedRealtimeInferenceInstanceTypes': [
                'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge',
            ],
            'SupportedContentTypes': [
                'string',
            ],
            'SupportedResponseMIMETypes': [
                'string',
            ]
        },
    ]
)
Parameters
  • ModelPackageName (string) --

    The name of the model package. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).

    This parameter is required for unversioned models. It is not applicable to versioned models.

  • ModelPackageGroupName (string) --

    The name or Amazon Resource Name (ARN) of the model package group that this model version belongs to.

    This parameter is required for versioned models, and does not apply to unversioned models.

  • ModelPackageDescription (string) -- A description of the model package.
  • InferenceSpecification (dict) --

    Specifies details about inference jobs that can be run with models based on this model package, including the following:

    • The Amazon ECR paths of containers that contain the inference code and model artifacts.
    • The instance types that the model package supports for transform jobs and real-time endpoints used for inference.
    • The input and output content formats that the model package supports for inference.
    • Containers (list) -- [REQUIRED]

      The Amazon ECR registry path of the Docker image that contains the inference code.

      • (dict) --

        Describes the Docker container for the model package.

        • ContainerHostname (string) --

          The DNS host name for the Docker container.

        • Image (string) -- [REQUIRED]

          The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.

          If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

        • ImageDigest (string) --

          An MD5 hash of the training algorithm that identifies the Docker image used for training.

        • ModelDataUrl (string) --

          The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).

          Note

          The model artifacts must be in an S3 bucket that is in the same region as the model package.

        • ProductId (string) --

          The Amazon Web Services Marketplace product ID of the model package.

        • Environment (dict) --

          The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.

          • (string) --
            • (string) --
        • ModelInput (dict) --

          A structure with Model Input details.

          • DataInputConfig (string) -- [REQUIRED]

            The input configuration object for the model.

        • Framework (string) --

          The machine learning framework of the model package container image.

        • FrameworkVersion (string) --

          The framework version of the Model Package Container Image.

        • NearestModelName (string) --

          The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata .

    • SupportedTransformInstanceTypes (list) --

      A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.

      This parameter is required for unversioned models, and optional for versioned models.

      • (string) --
    • SupportedRealtimeInferenceInstanceTypes (list) --

      A list of the instance types that are used to generate inferences in real-time.

      This parameter is required for unversioned models, and optional for versioned models.

      • (string) --
    • SupportedContentTypes (list) -- [REQUIRED]

      The supported MIME types for the input data.

      • (string) --
    • SupportedResponseMIMETypes (list) -- [REQUIRED]

      The supported MIME types for the output data.

      • (string) --
  • ValidationSpecification (dict) --

    Specifies configurations for one or more transform jobs that SageMaker runs to test the model package.

    • ValidationRole (string) -- [REQUIRED]

      The IAM roles to be used for the validation of the model package.

    • ValidationProfiles (list) -- [REQUIRED]

      An array of ModelPackageValidationProfile objects, each of which specifies a batch transform job that SageMaker runs to validate your model package.

      • (dict) --

        Contains data, such as the inputs and targeted instance types that are used in the process of validating the model package.

        The data provided in the validation profile is made available to your buyers on Amazon Web Services Marketplace.

        • ProfileName (string) -- [REQUIRED]

          The name of the profile for the model package.

        • TransformJobDefinition (dict) -- [REQUIRED]

          The TransformJobDefinition object that describes the transform job used for the validation of the model package.

          • MaxConcurrentTransforms (integer) --

            The maximum number of parallel requests that can be sent to each instance in a transform job. The default value is 1.

          • MaxPayloadInMB (integer) --

            The maximum payload size allowed, in MB. A payload is the data portion of a record (without metadata).

          • BatchStrategy (string) --

            A string that determines the number of records included in a single mini-batch.

            SingleRecord means only one record is used per mini-batch. MultiRecord means a mini-batch is set to contain as many records that can fit within the MaxPayloadInMB limit.
          • Environment (dict) --

            The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.

            • (string) --
              • (string) --
          • TransformInput (dict) -- [REQUIRED]

            A description of the input source and the way the transform job consumes it.

            • DataSource (dict) -- [REQUIRED]

              Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.

              • S3DataSource (dict) -- [REQUIRED]

                The S3 location of the data source that is associated with a channel.

                • S3DataType (string) -- [REQUIRED]

                  If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.

                  If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.

                  The following values are compatible: ManifestFile , S3Prefix

                  The following value is not compatible: AugmentedManifestFile

                • S3Uri (string) -- [REQUIRED]

                  Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

                  • A key name prefix might look like this: s3://bucketname/exampleprefix .
                  • A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following S3Uris : s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uris in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.
            • ContentType (string) --

              The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.

            • CompressionType (string) --

              If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None .

            • SplitType (string) --

              The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType is None , which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line to split records on a newline character boundary. SplitType also supports a number of record-oriented binary data formats. Currently, the supported record formats are:

              • RecordIO
              • TFRecord

              When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord , Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord , Amazon SageMaker sends individual records in each request.

              Note

              Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of BatchStrategy is set to SingleRecord . Padding is not removed if the value of BatchStrategy is set to MultiRecord .

              For more information about RecordIO , see Create a Dataset Using RecordIO in the MXNet documentation. For more information about TFRecord , see Consuming TFRecord data in the TensorFlow documentation.

          • TransformOutput (dict) -- [REQUIRED]

            Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.

            • S3OutputPath (string) -- [REQUIRED]

              The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix .

              For every S3 object used as input for the transform job, batch transform stores the transformed data with an . out suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv , batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out . Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an . out file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.

            • Accept (string) --

              The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.

            • AssembleWith (string) --

              Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None . To add a newline character at the end of every transformed record, specify Line .

            • KmsKeyId (string) --

              The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

              • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
              • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
              • Alias name: alias/ExampleAlias
              • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

              If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

              The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .

          • TransformResources (dict) -- [REQUIRED]

            Identifies the ML compute instances for the transform job.

            • InstanceType (string) -- [REQUIRED]

              The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ml.m5.large instance types.

            • InstanceCount (integer) -- [REQUIRED]

              The number of ML compute instances to use in the transform job. The default value is 1 , and the maximum is 100 . For distributed transform jobs, specify a value greater than 1 .

            • VolumeKmsKeyId (string) --

              The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job.

              Note

              Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

              For a list of instance types that support local instance storage, see Instance Store Volumes.

              For more information about local instance storage encryption, see SSD Instance Store Volumes.

              The VolumeKmsKeyId can be any of the following formats:

              • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
              • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
              • Alias name: alias/ExampleAlias
              • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
  • SourceAlgorithmSpecification (dict) --

    Details about the algorithm that was used to create the model package.

    • SourceAlgorithms (list) -- [REQUIRED]

      A list of the algorithms that were used to create a model package.

      • (dict) --

        Specifies an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your SageMaker account or an algorithm in Amazon Web Services Marketplace that you are subscribed to.

        • ModelDataUrl (string) --

          The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).

          Note

          The model artifacts must be in an S3 bucket that is in the same region as the algorithm.

        • AlgorithmName (string) -- [REQUIRED]

          The name of an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your SageMaker account or an algorithm in Amazon Web Services Marketplace that you are subscribed to.

  • CertifyForMarketplace (boolean) --

    Whether to certify the model package for listing on Amazon Web Services Marketplace.

    This parameter is optional for unversioned models, and does not apply to versioned models.

  • Tags (list) --

    A list of key value pairs associated with the model. For more information, see Tagging Amazon Web Services resources in the Amazon Web Services General Reference Guide .

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

  • ModelApprovalStatus (string) --

    Whether the model is approved for deployment.

    This parameter is optional for versioned models, and does not apply to unversioned models.

    For versioned models, the value of this parameter must be set to Approved to deploy the model.

  • MetadataProperties (dict) --

    Metadata properties of the tracking entity, trial, or trial component.

    • CommitId (string) --

      The commit ID.

    • Repository (string) --

      The repository.

    • GeneratedBy (string) --

      The entity this entity was generated by.

    • ProjectId (string) --

      The project ID.

  • ModelMetrics (dict) --

    A structure that contains model metrics reports.

    • ModelQuality (dict) --

      Metrics that measure the quality of a model.

      • Statistics (dict) --

        Model quality statistics.

        • ContentType (string) -- [REQUIRED]

          The metric source content type.

        • ContentDigest (string) --

          The hash key used for the metrics source.

        • S3Uri (string) -- [REQUIRED]

          The S3 URI for the metrics source.

      • Constraints (dict) --

        Model quality constraints.

        • ContentType (string) -- [REQUIRED]

          The metric source content type.

        • ContentDigest (string) --

          The hash key used for the metrics source.

        • S3Uri (string) -- [REQUIRED]

          The S3 URI for the metrics source.

    • ModelDataQuality (dict) --

      Metrics that measure the quality of the input data for a model.

      • Statistics (dict) --

        Data quality statistics for a model.

        • ContentType (string) -- [REQUIRED]

          The metric source content type.

        • ContentDigest (string) --

          The hash key used for the metrics source.

        • S3Uri (string) -- [REQUIRED]

          The S3 URI for the metrics source.

      • Constraints (dict) --

        Data quality constraints for a model.

        • ContentType (string) -- [REQUIRED]

          The metric source content type.

        • ContentDigest (string) --

          The hash key used for the metrics source.

        • S3Uri (string) -- [REQUIRED]

          The S3 URI for the metrics source.

    • Bias (dict) --

      Metrics that measure bais in a model.

      • Report (dict) --

        The bias report for a model

        • ContentType (string) -- [REQUIRED]

          The metric source content type.

        • ContentDigest (string) --

          The hash key used for the metrics source.

        • S3Uri (string) -- [REQUIRED]

          The S3 URI for the metrics source.

      • PreTrainingReport (dict) --

        The pre-training bias report for a model.

        • ContentType (string) -- [REQUIRED]

          The metric source content type.

        • ContentDigest (string) --

          The hash key used for the metrics source.

        • S3Uri (string) -- [REQUIRED]

          The S3 URI for the metrics source.

      • PostTrainingReport (dict) --

        The post-training bias report for a model.

        • ContentType (string) -- [REQUIRED]

          The metric source content type.

        • ContentDigest (string) --

          The hash key used for the metrics source.

        • S3Uri (string) -- [REQUIRED]

          The S3 URI for the metrics source.

    • Explainability (dict) --

      Metrics that help explain a model.

      • Report (dict) --

        The explainability report for a model.

        • ContentType (string) -- [REQUIRED]

          The metric source content type.

        • ContentDigest (string) --

          The hash key used for the metrics source.

        • S3Uri (string) -- [REQUIRED]

          The S3 URI for the metrics source.

  • ClientToken (string) --

    A unique token that guarantees that the call to this API is idempotent.

    This field is autopopulated if not provided.

  • CustomerMetadataProperties (dict) --

    The metadata properties associated with the model package versions.

    • (string) --
      • (string) --
  • DriftCheckBaselines (dict) --

    Represents the drift check baselines that can be used when the model monitor is set using the model package. For more information, see the topic on Drift Detection against Previous Baselines in SageMaker Pipelines in the Amazon SageMaker Developer Guide .

    • Bias (dict) --

      Represents the drift check bias baselines that can be used when the model monitor is set using the model package.

      • ConfigFile (dict) --

        The bias config file for a model.

        • ContentType (string) --

          The type of content stored in the file source.

        • ContentDigest (string) --

          The digest of the file source.

        • S3Uri (string) -- [REQUIRED]

          The Amazon S3 URI for the file source.

      • PreTrainingConstraints (dict) --

        The pre-training constraints.

        • ContentType (string) -- [REQUIRED]

          The metric source content type.

        • ContentDigest (string) --

          The hash key used for the metrics source.

        • S3Uri (string) -- [REQUIRED]

          The S3 URI for the metrics source.

      • PostTrainingConstraints (dict) --

        The post-training constraints.

        • ContentType (string) -- [REQUIRED]

          The metric source content type.

        • ContentDigest (string) --

          The hash key used for the metrics source.

        • S3Uri (string) -- [REQUIRED]

          The S3 URI for the metrics source.

    • Explainability (dict) --

      Represents the drift check explainability baselines that can be used when the model monitor is set using the model package.

      • Constraints (dict) --

        The drift check explainability constraints.

        • ContentType (string) -- [REQUIRED]

          The metric source content type.

        • ContentDigest (string) --

          The hash key used for the metrics source.

        • S3Uri (string) -- [REQUIRED]

          The S3 URI for the metrics source.

      • ConfigFile (dict) --

        The explainability config file for the model.

        • ContentType (string) --

          The type of content stored in the file source.

        • ContentDigest (string) --

          The digest of the file source.

        • S3Uri (string) -- [REQUIRED]

          The Amazon S3 URI for the file source.

    • ModelQuality (dict) --

      Represents the drift check model quality baselines that can be used when the model monitor is set using the model package.

      • Statistics (dict) --

        The drift check model quality statistics.

        • ContentType (string) -- [REQUIRED]

          The metric source content type.

        • ContentDigest (string) --

          The hash key used for the metrics source.

        • S3Uri (string) -- [REQUIRED]

          The S3 URI for the metrics source.

      • Constraints (dict) --

        The drift check model quality constraints.

        • ContentType (string) -- [REQUIRED]

          The metric source content type.

        • ContentDigest (string) --

          The hash key used for the metrics source.

        • S3Uri (string) -- [REQUIRED]

          The S3 URI for the metrics source.

    • ModelDataQuality (dict) --

      Represents the drift check model data quality baselines that can be used when the model monitor is set using the model package.

      • Statistics (dict) --

        The drift check model data quality statistics.

        • ContentType (string) -- [REQUIRED]

          The metric source content type.

        • ContentDigest (string) --

          The hash key used for the metrics source.

        • S3Uri (string) -- [REQUIRED]

          The S3 URI for the metrics source.

      • Constraints (dict) --

        The drift check model data quality constraints.

        • ContentType (string) -- [REQUIRED]

          The metric source content type.

        • ContentDigest (string) --

          The hash key used for the metrics source.

        • S3Uri (string) -- [REQUIRED]

          The S3 URI for the metrics source.

  • Domain (string) -- The machine learning domain of your model package and its components. Common machine learning domains include computer vision and natural language processing.
  • Task (string) --

    The machine learning task your model package accomplishes. Common machine learning tasks include object detection and image classification. The following tasks are supported by Inference Recommender: "IMAGE_CLASSIFICATION" | "OBJECT_DETECTION" | "TEXT_GENERATION" | "IMAGE_SEGMENTATION" | "FILL_MASK" | "CLASSIFICATION" | "REGRESSION" | "OTHER" .

    Specify "OTHER" if none of the tasks listed fit your use case.

  • SamplePayloadUrl (string) -- The Amazon Simple Storage Service (Amazon S3) path where the sample payload are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).
  • AdditionalInferenceSpecifications (list) --

    An array of additional Inference Specification objects. Each additional Inference Specification specifies artifacts based on this model package that can be used on inference endpoints. Generally used with SageMaker Neo to store the compiled artifacts.

    • (dict) --

      A structure of additional Inference Specification. Additional Inference Specification specifies details about inference jobs that can be run with models based on this model package

      • Name (string) -- [REQUIRED]

        A unique name to identify the additional inference specification. The name must be unique within the list of your additional inference specifications for a particular model package.

      • Description (string) --

        A description of the additional Inference specification

      • Containers (list) -- [REQUIRED]

        The Amazon ECR registry path of the Docker image that contains the inference code.

        • (dict) --

          Describes the Docker container for the model package.

          • ContainerHostname (string) --

            The DNS host name for the Docker container.

          • Image (string) -- [REQUIRED]

            The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.

            If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

          • ImageDigest (string) --

            An MD5 hash of the training algorithm that identifies the Docker image used for training.

          • ModelDataUrl (string) --

            The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).

            Note

            The model artifacts must be in an S3 bucket that is in the same region as the model package.

          • ProductId (string) --

            The Amazon Web Services Marketplace product ID of the model package.

          • Environment (dict) --

            The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.

            • (string) --
              • (string) --
          • ModelInput (dict) --

            A structure with Model Input details.

            • DataInputConfig (string) -- [REQUIRED]

              The input configuration object for the model.

          • Framework (string) --

            The machine learning framework of the model package container image.

          • FrameworkVersion (string) --

            The framework version of the Model Package Container Image.

          • NearestModelName (string) --

            The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata .

      • SupportedTransformInstanceTypes (list) --

        A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.

        • (string) --
      • SupportedRealtimeInferenceInstanceTypes (list) --

        A list of the instance types that are used to generate inferences in real-time.

        • (string) --
      • SupportedContentTypes (list) --

        The supported MIME types for the input data.

        • (string) --
      • SupportedResponseMIMETypes (list) --

        The supported MIME types for the output data.

        • (string) --
Return type

dict

Returns

Response Syntax

{
    'ModelPackageArn': 'string'
}

Response Structure

  • (dict) --

    • ModelPackageArn (string) --

      The Amazon Resource Name (ARN) of the new model package.

Exceptions

  • SageMaker.Client.exceptions.ConflictException
  • SageMaker.Client.exceptions.ResourceLimitExceeded
create_model_package_group(**kwargs)

Creates a model group. A model group contains a group of model versions.

See also: AWS API Documentation

Request Syntax

response = client.create_model_package_group(
    ModelPackageGroupName='string',
    ModelPackageGroupDescription='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • ModelPackageGroupName (string) --

    [REQUIRED]

    The name of the model group.

  • ModelPackageGroupDescription (string) -- A description for the model group.
  • Tags (list) --

    A list of key value pairs associated with the model group. For more information, see Tagging Amazon Web Services resources in the Amazon Web Services General Reference Guide .

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'ModelPackageGroupArn': 'string'
}

Response Structure

  • (dict) --

    • ModelPackageGroupArn (string) --

      The Amazon Resource Name (ARN) of the model group.

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
create_model_quality_job_definition(**kwargs)

Creates a definition for a job that monitors model quality and drift. For information about model monitor, see Amazon SageMaker Model Monitor.

See also: AWS API Documentation

Request Syntax

response = client.create_model_quality_job_definition(
    JobDefinitionName='string',
    ModelQualityBaselineConfig={
        'BaseliningJobName': 'string',
        'ConstraintsResource': {
            'S3Uri': 'string'
        }
    },
    ModelQualityAppSpecification={
        'ImageUri': 'string',
        'ContainerEntrypoint': [
            'string',
        ],
        'ContainerArguments': [
            'string',
        ],
        'RecordPreprocessorSourceUri': 'string',
        'PostAnalyticsProcessorSourceUri': 'string',
        'ProblemType': 'BinaryClassification'|'MulticlassClassification'|'Regression',
        'Environment': {
            'string': 'string'
        }
    },
    ModelQualityJobInput={
        'EndpointInput': {
            'EndpointName': 'string',
            'LocalPath': 'string',
            'S3InputMode': 'Pipe'|'File',
            'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
            'FeaturesAttribute': 'string',
            'InferenceAttribute': 'string',
            'ProbabilityAttribute': 'string',
            'ProbabilityThresholdAttribute': 123.0,
            'StartTimeOffset': 'string',
            'EndTimeOffset': 'string'
        },
        'BatchTransformInput': {
            'DataCapturedDestinationS3Uri': 'string',
            'DatasetFormat': {
                'Csv': {
                    'Header': True|False
                },
                'Json': {
                    'Line': True|False
                },
                'Parquet': {}

            },
            'LocalPath': 'string',
            'S3InputMode': 'Pipe'|'File',
            'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
            'FeaturesAttribute': 'string',
            'InferenceAttribute': 'string',
            'ProbabilityAttribute': 'string',
            'ProbabilityThresholdAttribute': 123.0,
            'StartTimeOffset': 'string',
            'EndTimeOffset': 'string'
        },
        'GroundTruthS3Input': {
            'S3Uri': 'string'
        }
    },
    ModelQualityJobOutputConfig={
        'MonitoringOutputs': [
            {
                'S3Output': {
                    'S3Uri': 'string',
                    'LocalPath': 'string',
                    'S3UploadMode': 'Continuous'|'EndOfJob'
                }
            },
        ],
        'KmsKeyId': 'string'
    },
    JobResources={
        'ClusterConfig': {
            'InstanceCount': 123,
            'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
            'VolumeSizeInGB': 123,
            'VolumeKmsKeyId': 'string'
        }
    },
    NetworkConfig={
        'EnableInterContainerTrafficEncryption': True|False,
        'EnableNetworkIsolation': True|False,
        'VpcConfig': {
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ]
        }
    },
    RoleArn='string',
    StoppingCondition={
        'MaxRuntimeInSeconds': 123
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • JobDefinitionName (string) --

    [REQUIRED]

    The name of the monitoring job definition.

  • ModelQualityBaselineConfig (dict) --

    Specifies the constraints and baselines for the monitoring job.

    • BaseliningJobName (string) --

      The name of the job that performs baselining for the monitoring job.

    • ConstraintsResource (dict) --

      The constraints resource for a monitoring job.

      • S3Uri (string) --

        The Amazon S3 URI for the constraints resource.

  • ModelQualityAppSpecification (dict) --

    [REQUIRED]

    The container that runs the monitoring job.

    • ImageUri (string) -- [REQUIRED]

      The address of the container image that the monitoring job runs.

    • ContainerEntrypoint (list) --

      Specifies the entrypoint for a container that the monitoring job runs.

      • (string) --
    • ContainerArguments (list) --

      An array of arguments for the container used to run the monitoring job.

      • (string) --
    • RecordPreprocessorSourceUri (string) --

      An Amazon S3 URI to a script that is called per row prior to running analysis. It can base64 decode the payload and convert it into a flatted json so that the built-in container can use the converted data. Applicable only for the built-in (first party) containers.

    • PostAnalyticsProcessorSourceUri (string) --

      An Amazon S3 URI to a script that is called after analysis has been performed. Applicable only for the built-in (first party) containers.

    • ProblemType (string) --

      The machine learning problem type of the model that the monitoring job monitors.

    • Environment (dict) --

      Sets the environment variables in the container that the monitoring job runs.

      • (string) --
        • (string) --
  • ModelQualityJobInput (dict) --

    [REQUIRED]

    A list of the inputs that are monitored. Currently endpoints are supported.

    • EndpointInput (dict) --

      Input object for the endpoint

      • EndpointName (string) -- [REQUIRED]

        An endpoint in customer's account which has enabled DataCaptureConfig enabled.

      • LocalPath (string) -- [REQUIRED]

        Path to the filesystem where the endpoint data is available to the container.

      • S3InputMode (string) --

        Whether the Pipe or File is used as the input mode for transferring data for the monitoring job. Pipe mode is recommended for large datasets. File mode is useful for small files that fit in memory. Defaults to File .

      • S3DataDistributionType (string) --

        Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defaults to FullyReplicated

      • FeaturesAttribute (string) --

        The attributes of the input data that are the input features.

      • InferenceAttribute (string) --

        The attribute of the input data that represents the ground truth label.

      • ProbabilityAttribute (string) --

        In a classification problem, the attribute that represents the class probability.

      • ProbabilityThresholdAttribute (float) --

        The threshold for the class probability to be evaluated as a positive result.

      • StartTimeOffset (string) --

        If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

      • EndTimeOffset (string) --

        If specified, monitoring jobs substract this time from the end time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

    • BatchTransformInput (dict) --

      Input object for the batch transform job.

      • DataCapturedDestinationS3Uri (string) -- [REQUIRED]

        The Amazon S3 location being used to capture the data.

      • DatasetFormat (dict) -- [REQUIRED]

        The dataset format for your batch transform job.

        • Csv (dict) --

          The CSV dataset used in the monitoring job.

          • Header (boolean) --

            Indicates if the CSV data has a header.

        • Json (dict) --

          The JSON dataset used in the monitoring job

          • Line (boolean) --

            Indicates if the file should be read as a json object per line.

        • Parquet (dict) --

          The Parquet dataset used in the monitoring job

      • LocalPath (string) -- [REQUIRED]

        Path to the filesystem where the batch transform data is available to the container.

      • S3InputMode (string) --

        Whether the Pipe or File is used as the input mode for transferring data for the monitoring job. Pipe mode is recommended for large datasets. File mode is useful for small files that fit in memory. Defaults to File .

      • S3DataDistributionType (string) --

        Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defaults to FullyReplicated

      • FeaturesAttribute (string) --

        The attributes of the input data that are the input features.

      • InferenceAttribute (string) --

        The attribute of the input data that represents the ground truth label.

      • ProbabilityAttribute (string) --

        In a classification problem, the attribute that represents the class probability.

      • ProbabilityThresholdAttribute (float) --

        The threshold for the class probability to be evaluated as a positive result.

      • StartTimeOffset (string) --

        If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

      • EndTimeOffset (string) --

        If specified, monitoring jobs substract this time from the end time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

    • GroundTruthS3Input (dict) -- [REQUIRED]

      The ground truth label provided for the model.

      • S3Uri (string) --

        The address of the Amazon S3 location of the ground truth labels.

  • ModelQualityJobOutputConfig (dict) --

    [REQUIRED]

    The output configuration for monitoring jobs.

    • MonitoringOutputs (list) -- [REQUIRED]

      Monitoring outputs for monitoring jobs. This is where the output of the periodic monitoring jobs is uploaded.

      • (dict) --

        The output object for a monitoring job.

        • S3Output (dict) -- [REQUIRED]

          The Amazon S3 storage location where the results of a monitoring job are saved.

          • S3Uri (string) -- [REQUIRED]

            A URI that identifies the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job.

          • LocalPath (string) -- [REQUIRED]

            The local path to the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job. LocalPath is an absolute path for the output data.

          • S3UploadMode (string) --

            Whether to upload the results of the monitoring job continuously or after the job completes.

    • KmsKeyId (string) --

      The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.

  • JobResources (dict) --

    [REQUIRED]

    Identifies the resources to deploy for a monitoring job.

    • ClusterConfig (dict) -- [REQUIRED]

      The configuration for the cluster resources used to run the processing job.

      • InstanceCount (integer) -- [REQUIRED]

        The number of ML compute instances to use in the model monitoring job. For distributed processing jobs, specify a value greater than 1. The default value is 1.

      • InstanceType (string) -- [REQUIRED]

        The ML compute instance type for the processing job.

      • VolumeSizeInGB (integer) -- [REQUIRED]

        The size of the ML storage volume, in gigabytes, that you want to provision. You must specify sufficient ML storage for your scenario.

      • VolumeKmsKeyId (string) --

        The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.

  • NetworkConfig (dict) --

    Specifies the network configuration for the monitoring job.

    • EnableInterContainerTrafficEncryption (boolean) --

      Whether to encrypt all communications between the instances used for the monitoring jobs. Choose True to encrypt communications. Encryption provides greater security for distributed jobs, but the processing might take longer.

    • EnableNetworkIsolation (boolean) --

      Whether to allow inbound and outbound network calls to and from the containers used for the monitoring job.

    • VpcConfig (dict) --

      Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud.

      • SecurityGroupIds (list) -- [REQUIRED]

        The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

        • (string) --
      • Subnets (list) -- [REQUIRED]

        The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.

        • (string) --
  • RoleArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.

  • StoppingCondition (dict) --

    A time limit for how long the monitoring job is allowed to run before stopping.

    • MaxRuntimeInSeconds (integer) -- [REQUIRED]

      The maximum runtime allowed in seconds.

      Note

      The MaxRuntimeInSeconds cannot exceed the frequency of the job. For data quality and model explainability, this can be up to 3600 seconds for an hourly schedule. For model bias and model quality hourly schedules, this can be up to 1800 seconds.

  • Tags (list) --

    (Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide .

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'JobDefinitionArn': 'string'
}

Response Structure

  • (dict) --

    • JobDefinitionArn (string) --

      The Amazon Resource Name (ARN) of the model quality monitoring job.

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
  • SageMaker.Client.exceptions.ResourceInUse
create_monitoring_schedule(**kwargs)

Creates a schedule that regularly starts Amazon SageMaker Processing Jobs to monitor the data captured for an Amazon SageMaker Endoint.

See also: AWS API Documentation

Request Syntax

response = client.create_monitoring_schedule(
    MonitoringScheduleName='string',
    MonitoringScheduleConfig={
        'ScheduleConfig': {
            'ScheduleExpression': 'string'
        },
        'MonitoringJobDefinition': {
            'BaselineConfig': {
                'BaseliningJobName': 'string',
                'ConstraintsResource': {
                    'S3Uri': 'string'
                },
                'StatisticsResource': {
                    'S3Uri': 'string'
                }
            },
            'MonitoringInputs': [
                {
                    'EndpointInput': {
                        'EndpointName': 'string',
                        'LocalPath': 'string',
                        'S3InputMode': 'Pipe'|'File',
                        'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                        'FeaturesAttribute': 'string',
                        'InferenceAttribute': 'string',
                        'ProbabilityAttribute': 'string',
                        'ProbabilityThresholdAttribute': 123.0,
                        'StartTimeOffset': 'string',
                        'EndTimeOffset': 'string'
                    },
                    'BatchTransformInput': {
                        'DataCapturedDestinationS3Uri': 'string',
                        'DatasetFormat': {
                            'Csv': {
                                'Header': True|False
                            },
                            'Json': {
                                'Line': True|False
                            },
                            'Parquet': {}

                        },
                        'LocalPath': 'string',
                        'S3InputMode': 'Pipe'|'File',
                        'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                        'FeaturesAttribute': 'string',
                        'InferenceAttribute': 'string',
                        'ProbabilityAttribute': 'string',
                        'ProbabilityThresholdAttribute': 123.0,
                        'StartTimeOffset': 'string',
                        'EndTimeOffset': 'string'
                    }
                },
            ],
            'MonitoringOutputConfig': {
                'MonitoringOutputs': [
                    {
                        'S3Output': {
                            'S3Uri': 'string',
                            'LocalPath': 'string',
                            'S3UploadMode': 'Continuous'|'EndOfJob'
                        }
                    },
                ],
                'KmsKeyId': 'string'
            },
            'MonitoringResources': {
                'ClusterConfig': {
                    'InstanceCount': 123,
                    'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
                    'VolumeSizeInGB': 123,
                    'VolumeKmsKeyId': 'string'
                }
            },
            'MonitoringAppSpecification': {
                'ImageUri': 'string',
                'ContainerEntrypoint': [
                    'string',
                ],
                'ContainerArguments': [
                    'string',
                ],
                'RecordPreprocessorSourceUri': 'string',
                'PostAnalyticsProcessorSourceUri': 'string'
            },
            'StoppingCondition': {
                'MaxRuntimeInSeconds': 123
            },
            'Environment': {
                'string': 'string'
            },
            'NetworkConfig': {
                'EnableInterContainerTrafficEncryption': True|False,
                'EnableNetworkIsolation': True|False,
                'VpcConfig': {
                    'SecurityGroupIds': [
                        'string',
                    ],
                    'Subnets': [
                        'string',
                    ]
                }
            },
            'RoleArn': 'string'
        },
        'MonitoringJobDefinitionName': 'string',
        'MonitoringType': 'DataQuality'|'ModelQuality'|'ModelBias'|'ModelExplainability'
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • MonitoringScheduleName (string) --

    [REQUIRED]

    The name of the monitoring schedule. The name must be unique within an Amazon Web Services Region within an Amazon Web Services account.

  • MonitoringScheduleConfig (dict) --

    [REQUIRED]

    The configuration object that specifies the monitoring schedule and defines the monitoring job.

    • ScheduleConfig (dict) --

      Configures the monitoring schedule.

      • ScheduleExpression (string) -- [REQUIRED]

        A cron expression that describes details about the monitoring schedule.

        Currently the only supported cron expressions are:

        • If you want to set the job to start every hour, please use the following: Hourly: cron(0 * ? * * *)
        • If you want to start the job daily: cron(0 [00-23] ? * * *)

        For example, the following are valid cron expressions:

        • Daily at noon UTC: cron(0 12 ? * * *)
        • Daily at midnight UTC: cron(0 0 ? * * *)

        To support running every 6, 12 hours, the following are also supported:

        cron(0 [00-23]/[01-24] ? * * *)

        For example, the following are valid cron expressions:

        • Every 12 hours, starting at 5pm UTC: cron(0 17/12 ? * * *)
        • Every two hours starting at midnight: cron(0 0/2 ? * * *)

        Note

        • Even though the cron expression is set to start at 5PM UTC, note that there could be a delay of 0-20 minutes from the actual requested time to run the execution.
        • We recommend that if you would like a daily schedule, you do not provide this parameter. Amazon SageMaker will pick a time for running every day.
    • MonitoringJobDefinition (dict) --

      Defines the monitoring job.

      • BaselineConfig (dict) --

        Baseline configuration used to validate that the data conforms to the specified constraints and statistics

        • BaseliningJobName (string) --

          The name of the job that performs baselining for the monitoring job.

        • ConstraintsResource (dict) --

          The baseline constraint file in Amazon S3 that the current monitoring job should validated against.

          • S3Uri (string) --

            The Amazon S3 URI for the constraints resource.

        • StatisticsResource (dict) --

          The baseline statistics file in Amazon S3 that the current monitoring job should be validated against.

          • S3Uri (string) --

            The Amazon S3 URI for the statistics resource.

      • MonitoringInputs (list) -- [REQUIRED]

        The array of inputs for the monitoring job. Currently we support monitoring an Amazon SageMaker Endpoint.

        • (dict) --

          The inputs for a monitoring job.

          • EndpointInput (dict) --

            The endpoint for a monitoring job.

            • EndpointName (string) -- [REQUIRED]

              An endpoint in customer's account which has enabled DataCaptureConfig enabled.

            • LocalPath (string) -- [REQUIRED]

              Path to the filesystem where the endpoint data is available to the container.

            • S3InputMode (string) --

              Whether the Pipe or File is used as the input mode for transferring data for the monitoring job. Pipe mode is recommended for large datasets. File mode is useful for small files that fit in memory. Defaults to File .

            • S3DataDistributionType (string) --

              Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defaults to FullyReplicated

            • FeaturesAttribute (string) --

              The attributes of the input data that are the input features.

            • InferenceAttribute (string) --

              The attribute of the input data that represents the ground truth label.

            • ProbabilityAttribute (string) --

              In a classification problem, the attribute that represents the class probability.

            • ProbabilityThresholdAttribute (float) --

              The threshold for the class probability to be evaluated as a positive result.

            • StartTimeOffset (string) --

              If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

            • EndTimeOffset (string) --

              If specified, monitoring jobs substract this time from the end time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

          • BatchTransformInput (dict) --

            Input object for the batch transform job.

            • DataCapturedDestinationS3Uri (string) -- [REQUIRED]

              The Amazon S3 location being used to capture the data.

            • DatasetFormat (dict) -- [REQUIRED]

              The dataset format for your batch transform job.

              • Csv (dict) --

                The CSV dataset used in the monitoring job.

                • Header (boolean) --

                  Indicates if the CSV data has a header.

              • Json (dict) --

                The JSON dataset used in the monitoring job

                • Line (boolean) --

                  Indicates if the file should be read as a json object per line.

              • Parquet (dict) --

                The Parquet dataset used in the monitoring job

            • LocalPath (string) -- [REQUIRED]

              Path to the filesystem where the batch transform data is available to the container.

            • S3InputMode (string) --

              Whether the Pipe or File is used as the input mode for transferring data for the monitoring job. Pipe mode is recommended for large datasets. File mode is useful for small files that fit in memory. Defaults to File .

            • S3DataDistributionType (string) --

              Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defaults to FullyReplicated

            • FeaturesAttribute (string) --

              The attributes of the input data that are the input features.

            • InferenceAttribute (string) --

              The attribute of the input data that represents the ground truth label.

            • ProbabilityAttribute (string) --

              In a classification problem, the attribute that represents the class probability.

            • ProbabilityThresholdAttribute (float) --

              The threshold for the class probability to be evaluated as a positive result.

            • StartTimeOffset (string) --

              If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

            • EndTimeOffset (string) --

              If specified, monitoring jobs substract this time from the end time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

      • MonitoringOutputConfig (dict) -- [REQUIRED]

        The array of outputs from the monitoring job to be uploaded to Amazon Simple Storage Service (Amazon S3).

        • MonitoringOutputs (list) -- [REQUIRED]

          Monitoring outputs for monitoring jobs. This is where the output of the periodic monitoring jobs is uploaded.

          • (dict) --

            The output object for a monitoring job.

            • S3Output (dict) -- [REQUIRED]

              The Amazon S3 storage location where the results of a monitoring job are saved.

              • S3Uri (string) -- [REQUIRED]

                A URI that identifies the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job.

              • LocalPath (string) -- [REQUIRED]

                The local path to the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job. LocalPath is an absolute path for the output data.

              • S3UploadMode (string) --

                Whether to upload the results of the monitoring job continuously or after the job completes.

        • KmsKeyId (string) --

          The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.

      • MonitoringResources (dict) -- [REQUIRED]

        Identifies the resources, ML compute instances, and ML storage volumes to deploy for a monitoring job. In distributed processing, you specify more than one instance.

        • ClusterConfig (dict) -- [REQUIRED]

          The configuration for the cluster resources used to run the processing job.

          • InstanceCount (integer) -- [REQUIRED]

            The number of ML compute instances to use in the model monitoring job. For distributed processing jobs, specify a value greater than 1. The default value is 1.

          • InstanceType (string) -- [REQUIRED]

            The ML compute instance type for the processing job.

          • VolumeSizeInGB (integer) -- [REQUIRED]

            The size of the ML storage volume, in gigabytes, that you want to provision. You must specify sufficient ML storage for your scenario.

          • VolumeKmsKeyId (string) --

            The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.

      • MonitoringAppSpecification (dict) -- [REQUIRED]

        Configures the monitoring job to run a specified Docker container image.

        • ImageUri (string) -- [REQUIRED]

          The container image to be run by the monitoring job.

        • ContainerEntrypoint (list) --

          Specifies the entrypoint for a container used to run the monitoring job.

          • (string) --
        • ContainerArguments (list) --

          An array of arguments for the container used to run the monitoring job.

          • (string) --
        • RecordPreprocessorSourceUri (string) --

          An Amazon S3 URI to a script that is called per row prior to running analysis. It can base64 decode the payload and convert it into a flatted json so that the built-in container can use the converted data. Applicable only for the built-in (first party) containers.

        • PostAnalyticsProcessorSourceUri (string) --

          An Amazon S3 URI to a script that is called after analysis has been performed. Applicable only for the built-in (first party) containers.

      • StoppingCondition (dict) --

        Specifies a time limit for how long the monitoring job is allowed to run.

        • MaxRuntimeInSeconds (integer) -- [REQUIRED]

          The maximum runtime allowed in seconds.

          Note

          The MaxRuntimeInSeconds cannot exceed the frequency of the job. For data quality and model explainability, this can be up to 3600 seconds for an hourly schedule. For model bias and model quality hourly schedules, this can be up to 1800 seconds.

      • Environment (dict) --

        Sets the environment variables in the Docker container.

        • (string) --
          • (string) --
      • NetworkConfig (dict) --

        Specifies networking options for an monitoring job.

        • EnableInterContainerTrafficEncryption (boolean) --

          Whether to encrypt all communications between distributed processing jobs. Choose True to encrypt communications. Encryption provides greater security for distributed processing jobs, but the processing might take longer.

        • EnableNetworkIsolation (boolean) --

          Whether to allow inbound and outbound network calls to and from the containers used for the processing job.

        • VpcConfig (dict) --

          Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud.

          • SecurityGroupIds (list) -- [REQUIRED]

            The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

            • (string) --
          • Subnets (list) -- [REQUIRED]

            The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.

            • (string) --
      • RoleArn (string) -- [REQUIRED]

        The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.

    • MonitoringJobDefinitionName (string) --

      The name of the monitoring job definition to schedule.

    • MonitoringType (string) --

      The type of the monitoring job definition to schedule.

  • Tags (list) --

    (Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide .

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'MonitoringScheduleArn': 'string'
}

Response Structure

  • (dict) --

    • MonitoringScheduleArn (string) --

      The Amazon Resource Name (ARN) of the monitoring schedule.

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
  • SageMaker.Client.exceptions.ResourceInUse
create_notebook_instance(**kwargs)

Creates an SageMaker notebook instance. A notebook instance is a machine learning (ML) compute instance running on a Jupyter notebook.

In a CreateNotebookInstance request, specify the type of ML compute instance that you want to run. SageMaker launches the instance, installs common libraries that you can use to explore datasets for model training, and attaches an ML storage volume to the notebook instance.

SageMaker also provides a set of example notebooks. Each notebook demonstrates how to use SageMaker with a specific algorithm or with a machine learning framework.

After receiving the request, SageMaker does the following:

  • Creates a network interface in the SageMaker VPC.
  • (Option) If you specified SubnetId , SageMaker creates a network interface in your own VPC, which is inferred from the subnet ID that you provide in the input. When creating this network interface, SageMaker attaches the security group that you specified in the request to the network interface that it creates in your VPC.
  • Launches an EC2 instance of the type specified in the request in the SageMaker VPC. If you specified SubnetId of your VPC, SageMaker specifies both network interfaces when launching this instance. This enables inbound traffic from your own VPC to the notebook instance, assuming that the security groups allow it.

After creating the notebook instance, SageMaker returns its Amazon Resource Name (ARN). You can't change the name of a notebook instance after you create it.

After SageMaker creates the notebook instance, you can connect to the Jupyter server and work in Jupyter notebooks. For example, you can write code to explore a dataset that you can use for model training, train a model, host models by creating SageMaker endpoints, and validate hosted models.

For more information, see How It Works.

See also: AWS API Documentation

Request Syntax

response = client.create_notebook_instance(
    NotebookInstanceName='string',
    InstanceType='ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
    SubnetId='string',
    SecurityGroupIds=[
        'string',
    ],
    RoleArn='string',
    KmsKeyId='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    LifecycleConfigName='string',
    DirectInternetAccess='Enabled'|'Disabled',
    VolumeSizeInGB=123,
    AcceleratorTypes=[
        'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge',
    ],
    DefaultCodeRepository='string',
    AdditionalCodeRepositories=[
        'string',
    ],
    RootAccess='Enabled'|'Disabled',
    PlatformIdentifier='string',
    InstanceMetadataServiceConfiguration={
        'MinimumInstanceMetadataServiceVersion': 'string'
    }
)
Parameters
  • NotebookInstanceName (string) --

    [REQUIRED]

    The name of the new notebook instance.

  • InstanceType (string) --

    [REQUIRED]

    The type of ML compute instance to launch for the notebook instance.

  • SubnetId (string) -- The ID of the subnet in a VPC to which you would like to have a connectivity from your ML compute instance.
  • SecurityGroupIds (list) --

    The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet.

    • (string) --
  • RoleArn (string) --

    [REQUIRED]

    When you send any requests to Amazon Web Services resources from the notebook instance, SageMaker assumes this role to perform tasks on your behalf. You must grant this role necessary permissions so SageMaker can perform these tasks. The policy must allow the SageMaker service principal (sagemaker.amazonaws.com) permissions to assume this role. For more information, see SageMaker Roles.

    Note

    To be able to pass this role to SageMaker, the caller of this API must have the iam:PassRole permission.

  • KmsKeyId (string) -- The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker uses to encrypt data on the storage volume attached to your notebook instance. The KMS key you provide must be enabled. For information, see Enabling and Disabling Keys in the Amazon Web Services Key Management Service Developer Guide .
  • Tags (list) --

    An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

  • LifecycleConfigName (string) -- The name of a lifecycle configuration to associate with the notebook instance. For information about lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
  • DirectInternetAccess (string) --

    Sets whether SageMaker provides internet access to the notebook instance. If you set this to Disabled this notebook instance is able to access resources only in your VPC, and is not be able to connect to SageMaker training and endpoint services unless you configure a NAT Gateway in your VPC.

    For more information, see Notebook Instances Are Internet-Enabled by Default. You can set the value of this parameter to Disabled only if you set a value for the SubnetId parameter.

  • VolumeSizeInGB (integer) -- The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
  • AcceleratorTypes (list) --

    A list of Elastic Inference (EI) instance types to associate with this notebook instance. Currently, only one instance type can be associated with a notebook instance. For more information, see Using Elastic Inference in Amazon SageMaker.

    • (string) --
  • DefaultCodeRepository (string) -- A Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker Notebook Instances.
  • AdditionalCodeRepositories (list) --

    An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker Notebook Instances.

    • (string) --
  • RootAccess (string) --

    Whether root access is enabled or disabled for users of the notebook instance. The default value is Enabled .

    Note

    Lifecycle configurations need root access to be able to set up a notebook instance. Because of this, lifecycle configurations associated with a notebook instance always run with root access even if you disable root access for users.

  • PlatformIdentifier (string) -- The platform identifier of the notebook instance runtime environment.
  • InstanceMetadataServiceConfiguration (dict) --

    Information on the IMDS configuration of the notebook instance

    • MinimumInstanceMetadataServiceVersion (string) -- [REQUIRED]

      Indicates the minimum IMDS version that the notebook instance supports. When passed as part of CreateNotebookInstance , if no value is selected, then it defaults to IMDSv1. This means that both IMDSv1 and IMDSv2 are supported. If passed as part of UpdateNotebookInstance , there is no default.

Return type

dict

Returns

Response Syntax

{
    'NotebookInstanceArn': 'string'
}

Response Structure

  • (dict) --

    • NotebookInstanceArn (string) --

      The Amazon Resource Name (ARN) of the notebook instance.

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
create_notebook_instance_lifecycle_config(**kwargs)

Creates a lifecycle configuration that you can associate with a notebook instance. A lifecycle configuration is a collection of shell scripts that run when you create or start a notebook instance.

Each lifecycle configuration script has a limit of 16384 characters.

The value of the $PATH environment variable that is available to both scripts is /sbin:bin:/usr/sbin:/usr/bin .

View CloudWatch Logs for notebook instance lifecycle configurations in log group /aws/sagemaker/NotebookInstances in log stream [notebook-instance-name]/[LifecycleConfigHook] .

Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started.

For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.

See also: AWS API Documentation

Request Syntax

response = client.create_notebook_instance_lifecycle_config(
    NotebookInstanceLifecycleConfigName='string',
    OnCreate=[
        {
            'Content': 'string'
        },
    ],
    OnStart=[
        {
            'Content': 'string'
        },
    ]
)
Parameters
  • NotebookInstanceLifecycleConfigName (string) --

    [REQUIRED]

    The name of the lifecycle configuration.

  • OnCreate (list) --

    A shell script that runs only once, when you create a notebook instance. The shell script must be a base64-encoded string.

    • (dict) --

      Contains the notebook instance lifecycle configuration script.

      Each lifecycle configuration script has a limit of 16384 characters.

      The value of the $PATH environment variable that is available to both scripts is /sbin:bin:/usr/sbin:/usr/bin .

      View CloudWatch Logs for notebook instance lifecycle configurations in log group /aws/sagemaker/NotebookInstances in log stream [notebook-instance-name]/[LifecycleConfigHook] .

      Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started.

      For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.

      • Content (string) --

        A base64-encoded string that contains a shell script for a notebook instance lifecycle configuration.

  • OnStart (list) --

    A shell script that runs every time you start a notebook instance, including when you create the notebook instance. The shell script must be a base64-encoded string.

    • (dict) --

      Contains the notebook instance lifecycle configuration script.

      Each lifecycle configuration script has a limit of 16384 characters.

      The value of the $PATH environment variable that is available to both scripts is /sbin:bin:/usr/sbin:/usr/bin .

      View CloudWatch Logs for notebook instance lifecycle configurations in log group /aws/sagemaker/NotebookInstances in log stream [notebook-instance-name]/[LifecycleConfigHook] .

      Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started.

      For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.

      • Content (string) --

        A base64-encoded string that contains a shell script for a notebook instance lifecycle configuration.

Return type

dict

Returns

Response Syntax

{
    'NotebookInstanceLifecycleConfigArn': 'string'
}

Response Structure

  • (dict) --

    • NotebookInstanceLifecycleConfigArn (string) --

      The Amazon Resource Name (ARN) of the lifecycle configuration.

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
create_pipeline(**kwargs)

Creates a pipeline using a JSON pipeline definition.

See also: AWS API Documentation

Request Syntax

response = client.create_pipeline(
    PipelineName='string',
    PipelineDisplayName='string',
    PipelineDefinition='string',
    PipelineDefinitionS3Location={
        'Bucket': 'string',
        'ObjectKey': 'string',
        'VersionId': 'string'
    },
    PipelineDescription='string',
    ClientRequestToken='string',
    RoleArn='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    ParallelismConfiguration={
        'MaxParallelExecutionSteps': 123
    }
)
Parameters
  • PipelineName (string) --

    [REQUIRED]

    The name of the pipeline.

  • PipelineDisplayName (string) -- The display name of the pipeline.
  • PipelineDefinition (string) -- The JSON pipeline definition of the pipeline.
  • PipelineDefinitionS3Location (dict) --

    The location of the pipeline definition stored in Amazon S3. If specified, SageMaker will retrieve the pipeline definition from this location.

    • Bucket (string) -- [REQUIRED]

      Name of the S3 bucket.

    • ObjectKey (string) -- [REQUIRED]

      The object key (or key name) uniquely identifies the object in an S3 bucket.

    • VersionId (string) --

      Version Id of the pipeline definition file. If not specified, Amazon SageMaker will retrieve the latest version.

  • PipelineDescription (string) -- A description of the pipeline.
  • ClientRequestToken (string) --

    [REQUIRED]

    A unique, case-sensitive identifier that you provide to ensure the idempotency of the operation. An idempotent operation completes no more than one time.

    This field is autopopulated if not provided.

  • RoleArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of the role used by the pipeline to access and create resources.

  • Tags (list) --

    A list of tags to apply to the created pipeline.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

  • ParallelismConfiguration (dict) --

    This is the configuration that controls the parallelism of the pipeline. If specified, it applies to all runs of this pipeline by default.

    • MaxParallelExecutionSteps (integer) -- [REQUIRED]

      The max number of steps that can be executed in parallel.

Return type

dict

Returns

Response Syntax

{
    'PipelineArn': 'string'
}

Response Structure

  • (dict) --

    • PipelineArn (string) --

      The Amazon Resource Name (ARN) of the created pipeline.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
  • SageMaker.Client.exceptions.ResourceLimitExceeded
create_presigned_domain_url(**kwargs)

Creates a URL for a specified UserProfile in a Domain. When accessed in a web browser, the user will be automatically signed in to Amazon SageMaker Studio, and granted access to all of the Apps and files associated with the Domain's Amazon Elastic File System (EFS) volume. This operation can only be called when the authentication mode equals IAM.

The IAM role or user passed to this API defines the permissions to access the app. Once the presigned URL is created, no additional permission is required to access this URL. IAM authorization policies for this API are also enforced for every HTTP request and WebSocket frame that attempts to connect to the app.

You can restrict access to this API and to the URL that it returns to a list of IP addresses, Amazon VPCs or Amazon VPC Endpoints that you specify. For more information, see Connect to SageMaker Studio Through an Interface VPC Endpoint .

Note

The URL that you get from a call to CreatePresignedDomainUrl has a default timeout of 5 minutes. You can configure this value using ExpiresInSeconds . If you try to use the URL after the timeout limit expires, you are directed to the Amazon Web Services console sign-in page.

See also: AWS API Documentation

Request Syntax

response = client.create_presigned_domain_url(
    DomainId='string',
    UserProfileName='string',
    SessionExpirationDurationInSeconds=123,
    ExpiresInSeconds=123,
    SpaceName='string'
)
Parameters
  • DomainId (string) --

    [REQUIRED]

    The domain ID.

  • UserProfileName (string) --

    [REQUIRED]

    The name of the UserProfile to sign-in as.

  • SessionExpirationDurationInSeconds (integer) -- The session expiration duration in seconds. This value defaults to 43200.
  • ExpiresInSeconds (integer) -- The number of seconds until the pre-signed URL expires. This value defaults to 300.
  • SpaceName (string) -- The name of the space.
Return type

dict

Returns

Response Syntax

{
    'AuthorizedUrl': 'string'
}

Response Structure

  • (dict) --

    • AuthorizedUrl (string) --

      The presigned URL.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
create_presigned_notebook_instance_url(**kwargs)

Returns a URL that you can use to connect to the Jupyter server from a notebook instance. In the SageMaker console, when you choose Open next to a notebook instance, SageMaker opens a new tab showing the Jupyter server home page from the notebook instance. The console uses this API to get the URL and show the page.

The IAM role or user used to call this API defines the permissions to access the notebook instance. Once the presigned URL is created, no additional permission is required to access this URL. IAM authorization policies for this API are also enforced for every HTTP request and WebSocket frame that attempts to connect to the notebook instance.

You can restrict access to this API and to the URL that it returns to a list of IP addresses that you specify. Use the NotIpAddress condition operator and the aws:SourceIP condition context key to specify the list of IP addresses that you want to have access to the notebook instance. For more information, see Limit Access to a Notebook Instance by IP Address.

Note

The URL that you get from a call to CreatePresignedNotebookInstanceUrl is valid only for 5 minutes. If you try to use the URL after the 5-minute limit expires, you are directed to the Amazon Web Services console sign-in page.

See also: AWS API Documentation

Request Syntax

response = client.create_presigned_notebook_instance_url(
    NotebookInstanceName='string',
    SessionExpirationDurationInSeconds=123
)
Parameters
  • NotebookInstanceName (string) --

    [REQUIRED]

    The name of the notebook instance.

  • SessionExpirationDurationInSeconds (integer) -- The duration of the session, in seconds. The default is 12 hours.
Return type

dict

Returns

Response Syntax

{
    'AuthorizedUrl': 'string'
}

Response Structure

  • (dict) --

    • AuthorizedUrl (string) --

      A JSON object that contains the URL string.

create_processing_job(**kwargs)

Creates a processing job.

See also: AWS API Documentation

Request Syntax

response = client.create_processing_job(
    ProcessingInputs=[
        {
            'InputName': 'string',
            'AppManaged': True|False,
            'S3Input': {
                'S3Uri': 'string',
                'LocalPath': 'string',
                'S3DataType': 'ManifestFile'|'S3Prefix',
                'S3InputMode': 'Pipe'|'File',
                'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                'S3CompressionType': 'None'|'Gzip'
            },
            'DatasetDefinition': {
                'AthenaDatasetDefinition': {
                    'Catalog': 'string',
                    'Database': 'string',
                    'QueryString': 'string',
                    'WorkGroup': 'string',
                    'OutputS3Uri': 'string',
                    'KmsKeyId': 'string',
                    'OutputFormat': 'PARQUET'|'ORC'|'AVRO'|'JSON'|'TEXTFILE',
                    'OutputCompression': 'GZIP'|'SNAPPY'|'ZLIB'
                },
                'RedshiftDatasetDefinition': {
                    'ClusterId': 'string',
                    'Database': 'string',
                    'DbUser': 'string',
                    'QueryString': 'string',
                    'ClusterRoleArn': 'string',
                    'OutputS3Uri': 'string',
                    'KmsKeyId': 'string',
                    'OutputFormat': 'PARQUET'|'CSV',
                    'OutputCompression': 'None'|'GZIP'|'BZIP2'|'ZSTD'|'SNAPPY'
                },
                'LocalPath': 'string',
                'DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                'InputMode': 'Pipe'|'File'
            }
        },
    ],
    ProcessingOutputConfig={
        'Outputs': [
            {
                'OutputName': 'string',
                'S3Output': {
                    'S3Uri': 'string',
                    'LocalPath': 'string',
                    'S3UploadMode': 'Continuous'|'EndOfJob'
                },
                'FeatureStoreOutput': {
                    'FeatureGroupName': 'string'
                },
                'AppManaged': True|False
            },
        ],
        'KmsKeyId': 'string'
    },
    ProcessingJobName='string',
    ProcessingResources={
        'ClusterConfig': {
            'InstanceCount': 123,
            'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
            'VolumeSizeInGB': 123,
            'VolumeKmsKeyId': 'string'
        }
    },
    StoppingCondition={
        'MaxRuntimeInSeconds': 123
    },
    AppSpecification={
        'ImageUri': 'string',
        'ContainerEntrypoint': [
            'string',
        ],
        'ContainerArguments': [
            'string',
        ]
    },
    Environment={
        'string': 'string'
    },
    NetworkConfig={
        'EnableInterContainerTrafficEncryption': True|False,
        'EnableNetworkIsolation': True|False,
        'VpcConfig': {
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ]
        }
    },
    RoleArn='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    ExperimentConfig={
        'ExperimentName': 'string',
        'TrialName': 'string',
        'TrialComponentDisplayName': 'string',
        'RunName': 'string'
    }
)
Parameters
  • ProcessingInputs (list) --

    An array of inputs configuring the data to download into the processing container.

    • (dict) --

      The inputs for a processing job. The processing input must specify exactly one of either S3Input or DatasetDefinition types.

      • InputName (string) -- [REQUIRED]

        The name for the processing job input.

      • AppManaged (boolean) --

        When True , input operations such as data download are managed natively by the processing job application. When False (default), input operations are managed by Amazon SageMaker.

      • S3Input (dict) --

        Configuration for downloading input data from Amazon S3 into the processing container.

        • S3Uri (string) -- [REQUIRED]

          The URI of the Amazon S3 prefix Amazon SageMaker downloads data required to run a processing job.

        • LocalPath (string) --

          The local path in your container where you want Amazon SageMaker to write input data to. LocalPath is an absolute path to the input data and must begin with /opt/ml/processing/ . LocalPath is a required parameter when AppManaged is False (default).

        • S3DataType (string) -- [REQUIRED]

          Whether you use an S3Prefix or a ManifestFile for the data type. If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for the processing job. If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for the processing job.

        • S3InputMode (string) --

          Whether to use File or Pipe input mode. In File mode, Amazon SageMaker copies the data from the input source onto the local ML storage volume before starting your processing container. This is the most commonly used input mode. In Pipe mode, Amazon SageMaker streams input data from the source directly to your processing container into named pipes without using the ML storage volume.

        • S3DataDistributionType (string) --

          Whether to distribute the data from Amazon S3 to all processing instances with FullyReplicated , or whether the data from Amazon S3 is shared by Amazon S3 key, downloading one shard of data to each processing instance.

        • S3CompressionType (string) --

          Whether to GZIP-decompress the data in Amazon S3 as it is streamed into the processing container. Gzip can only be used when Pipe mode is specified as the S3InputMode . In Pipe mode, Amazon SageMaker streams input data from the source directly to your container without using the EBS volume.

      • DatasetDefinition (dict) --

        Configuration for a Dataset Definition input.

        • AthenaDatasetDefinition (dict) --

          Configuration for Athena Dataset Definition input.

          • Catalog (string) -- [REQUIRED]

            The name of the data catalog used in Athena query execution.

          • Database (string) -- [REQUIRED]

            The name of the database used in the Athena query execution.

          • QueryString (string) -- [REQUIRED]

            The SQL query statements, to be executed.

          • WorkGroup (string) --

            The name of the workgroup in which the Athena query is being started.

          • OutputS3Uri (string) -- [REQUIRED]

            The location in Amazon S3 where Athena query results are stored.

          • KmsKeyId (string) --

            The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data generated from an Athena query execution.

          • OutputFormat (string) -- [REQUIRED]

            The data storage format for Athena query results.

          • OutputCompression (string) --

            The compression used for Athena query results.

        • RedshiftDatasetDefinition (dict) --

          Configuration for Redshift Dataset Definition input.

          • ClusterId (string) -- [REQUIRED]

            The Redshift cluster Identifier.

          • Database (string) -- [REQUIRED]

            The name of the Redshift database used in Redshift query execution.

          • DbUser (string) -- [REQUIRED]

            The database user name used in Redshift query execution.

          • QueryString (string) -- [REQUIRED]

            The SQL query statements to be executed.

          • ClusterRoleArn (string) -- [REQUIRED]

            The IAM role attached to your Redshift cluster that Amazon SageMaker uses to generate datasets.

          • OutputS3Uri (string) -- [REQUIRED]

            The location in Amazon S3 where the Redshift query results are stored.

          • KmsKeyId (string) --

            The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data from a Redshift execution.

          • OutputFormat (string) -- [REQUIRED]

            The data storage format for Redshift query results.

          • OutputCompression (string) --

            The compression used for Redshift query results.

        • LocalPath (string) --

          The local path where you want Amazon SageMaker to download the Dataset Definition inputs to run a processing job. LocalPath is an absolute path to the input data. This is a required parameter when AppManaged is False (default).

        • DataDistributionType (string) --

          Whether the generated dataset is FullyReplicated or ShardedByS3Key (default).

        • InputMode (string) --

          Whether to use File or Pipe input mode. In File (default) mode, Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used input mode. In Pipe mode, Amazon SageMaker streams input data from the source directly to your algorithm without using the EBS volume.

  • ProcessingOutputConfig (dict) --

    Output configuration for the processing job.

    • Outputs (list) -- [REQUIRED]

      An array of outputs configuring the data to upload from the processing container.

      • (dict) --

        Describes the results of a processing job. The processing output must specify exactly one of either S3Output or FeatureStoreOutput types.

        • OutputName (string) -- [REQUIRED]

          The name for the processing job output.

        • S3Output (dict) --

          Configuration for processing job outputs in Amazon S3.

          • S3Uri (string) -- [REQUIRED]

            A URI that identifies the Amazon S3 bucket where you want Amazon SageMaker to save the results of a processing job.

          • LocalPath (string) -- [REQUIRED]

            The local path of a directory where you want Amazon SageMaker to upload its contents to Amazon S3. LocalPath is an absolute path to a directory containing output files. This directory will be created by the platform and exist when your container's entrypoint is invoked.

          • S3UploadMode (string) -- [REQUIRED]

            Whether to upload the results of the processing job continuously or after the job completes.

        • FeatureStoreOutput (dict) --

          Configuration for processing job outputs in Amazon SageMaker Feature Store. This processing output type is only supported when AppManaged is specified.

          • FeatureGroupName (string) -- [REQUIRED]

            The name of the Amazon SageMaker FeatureGroup to use as the destination for processing job output. Note that your processing script is responsible for putting records into your Feature Store.

        • AppManaged (boolean) --

          When True , output operations such as data upload are managed natively by the processing job application. When False (default), output operations are managed by Amazon SageMaker.

    • KmsKeyId (string) --

      The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the processing job output. KmsKeyId can be an ID of a KMS key, ARN of a KMS key, alias of a KMS key, or alias of a KMS key. The KmsKeyId is applied to all outputs.

  • ProcessingJobName (string) --

    [REQUIRED]

    The name of the processing job. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.

  • ProcessingResources (dict) --

    [REQUIRED]

    Identifies the resources, ML compute instances, and ML storage volumes to deploy for a processing job. In distributed training, you specify more than one instance.

    • ClusterConfig (dict) -- [REQUIRED]

      The configuration for the resources in a cluster used to run the processing job.

      • InstanceCount (integer) -- [REQUIRED]

        The number of ML compute instances to use in the processing job. For distributed processing jobs, specify a value greater than 1. The default value is 1.

      • InstanceType (string) -- [REQUIRED]

        The ML compute instance type for the processing job.

      • VolumeSizeInGB (integer) -- [REQUIRED]

        The size of the ML storage volume in gigabytes that you want to provision. You must specify sufficient ML storage for your scenario.

        Note

        Certain Nitro-based instances include local storage with a fixed total size, dependent on the instance type. When using these instances for processing, Amazon SageMaker mounts the local instance storage instead of Amazon EBS gp2 storage. You can't request a VolumeSizeInGB greater than the total size of the local instance storage.

        For a list of instance types that support local instance storage, including the total size per instance type, see Instance Store Volumes.

      • VolumeKmsKeyId (string) --

        The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the processing job.

        Note

        Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

        For a list of instance types that support local instance storage, see Instance Store Volumes.

        For more information about local instance storage encryption, see SSD Instance Store Volumes.

  • StoppingCondition (dict) --

    The time limit for how long the processing job is allowed to run.

    • MaxRuntimeInSeconds (integer) -- [REQUIRED]

      Specifies the maximum runtime in seconds.

  • AppSpecification (dict) --

    [REQUIRED]

    Configures the processing job to run a specified Docker container image.

    • ImageUri (string) -- [REQUIRED]

      The container image to be run by the processing job.

    • ContainerEntrypoint (list) --

      The entrypoint for a container used to run a processing job.

      • (string) --
    • ContainerArguments (list) --

      The arguments for a container used to run a processing job.

      • (string) --
  • Environment (dict) --

    The environment variables to set in the Docker container. Up to 100 key and values entries in the map are supported.

    • (string) --
      • (string) --
  • NetworkConfig (dict) --

    Networking options for a processing job, such as whether to allow inbound and outbound network calls to and from processing containers, and the VPC subnets and security groups to use for VPC-enabled processing jobs.

    • EnableInterContainerTrafficEncryption (boolean) --

      Whether to encrypt all communications between distributed processing jobs. Choose True to encrypt communications. Encryption provides greater security for distributed processing jobs, but the processing might take longer.

    • EnableNetworkIsolation (boolean) --

      Whether to allow inbound and outbound network calls to and from the containers used for the processing job.

    • VpcConfig (dict) --

      Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud.

      • SecurityGroupIds (list) -- [REQUIRED]

        The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

        • (string) --
      • Subnets (list) -- [REQUIRED]

        The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.

        • (string) --
  • RoleArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.

  • Tags (list) --

    (Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide .

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

  • ExperimentConfig (dict) --

    Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:

    • CreateProcessingJob
    • CreateTrainingJob
    • CreateTransformJob
    • ExperimentName (string) --

      The name of an existing experiment to associate with the trial component.

    • TrialName (string) --

      The name of an existing trial to associate the trial component with. If not specified, a new trial is created.

    • TrialComponentDisplayName (string) --

      The display name for the trial component. If this key isn't specified, the display name is the trial component name.

    • RunName (string) --

      The name of the experiment run to associate with the trial component.

Return type

dict

Returns

Response Syntax

{
    'ProcessingJobArn': 'string'
}

Response Structure

  • (dict) --

    • ProcessingJobArn (string) --

      The Amazon Resource Name (ARN) of the processing job.

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceLimitExceeded
  • SageMaker.Client.exceptions.ResourceNotFound
create_project(**kwargs)

Creates a machine learning (ML) project that can contain one or more templates that set up an ML pipeline from training to deploying an approved model.

See also: AWS API Documentation

Request Syntax

response = client.create_project(
    ProjectName='string',
    ProjectDescription='string',
    ServiceCatalogProvisioningDetails={
        'ProductId': 'string',
        'ProvisioningArtifactId': 'string',
        'PathId': 'string',
        'ProvisioningParameters': [
            {
                'Key': 'string',
                'Value': 'string'
            },
        ]
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • ProjectName (string) --

    [REQUIRED]

    The name of the project.

  • ProjectDescription (string) -- A description for the project.
  • ServiceCatalogProvisioningDetails (dict) --

    [REQUIRED]

    The product ID and provisioning artifact ID to provision a service catalog. The provisioning artifact ID will default to the latest provisioning artifact ID of the product, if you don't provide the provisioning artifact ID. For more information, see What is Amazon Web Services Service Catalog.

    • ProductId (string) -- [REQUIRED]

      The ID of the product to provision.

    • ProvisioningArtifactId (string) --

      The ID of the provisioning artifact.

    • PathId (string) --

      The path identifier of the product. This value is optional if the product has a default path, and required if the product has more than one path.

    • ProvisioningParameters (list) --

      A list of key value pairs that you specify when you provision a product.

      • (dict) --

        A key value pair used when you provision a project as a service catalog product. For information, see What is Amazon Web Services Service Catalog.

        • Key (string) --

          The key that identifies a provisioning parameter.

        • Value (string) --

          The value of the provisioning parameter.

  • Tags (list) --

    An array of key-value pairs that you want to use to organize and track your Amazon Web Services resource costs. For more information, see Tagging Amazon Web Services resources in the Amazon Web Services General Reference Guide .

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'ProjectArn': 'string',
    'ProjectId': 'string'
}

Response Structure

  • (dict) --

    • ProjectArn (string) --

      The Amazon Resource Name (ARN) of the project.

    • ProjectId (string) --

      The ID of the new project.

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
create_space(**kwargs)

Creates a space used for real time collaboration in a Domain.

See also: AWS API Documentation

Request Syntax

response = client.create_space(
    DomainId='string',
    SpaceName='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    SpaceSettings={
        'JupyterServerAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'LifecycleConfigArns': [
                'string',
            ],
            'CodeRepositories': [
                {
                    'RepositoryUrl': 'string'
                },
            ]
        },
        'KernelGatewayAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'CustomImages': [
                {
                    'ImageName': 'string',
                    'ImageVersionNumber': 123,
                    'AppImageConfigName': 'string'
                },
            ],
            'LifecycleConfigArns': [
                'string',
            ]
        }
    }
)
Parameters
  • DomainId (string) --

    [REQUIRED]

    The ID of the associated Domain.

  • SpaceName (string) --

    [REQUIRED]

    The name of the space.

  • Tags (list) --

    Tags to associated with the space. Each tag consists of a key and an optional value. Tag keys must be unique for each resource. Tags are searchable using the Search API.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

  • SpaceSettings (dict) --

    A collection of space settings.

    • JupyterServerAppSettings (dict) --

      The JupyterServer app settings.

      • DefaultResourceSpec (dict) --

        The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.

        • SageMakerImageArn (string) --

          The ARN of the SageMaker image that the image version belongs to.

        • SageMakerImageVersionArn (string) --

          The ARN of the image version created on the instance.

        • InstanceType (string) --

          The instance type that the image version runs on.

          Note

          JupyterServer apps only support the system value.

          For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

        • LifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

      • LifecycleConfigArns (list) --

        The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter is also required.

        Note

        To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.

        • (string) --
      • CodeRepositories (list) --

        A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.

        • (dict) --

          A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.

          • RepositoryUrl (string) -- [REQUIRED]

            The URL of the Git repository.

    • KernelGatewayAppSettings (dict) --

      The KernelGateway app settings.

      • DefaultResourceSpec (dict) --

        The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app.

        Note

        The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the Amazon Web Services Command Line Interface or Amazon Web Services CloudFormation and the instance type parameter value is not passed.

        • SageMakerImageArn (string) --

          The ARN of the SageMaker image that the image version belongs to.

        • SageMakerImageVersionArn (string) --

          The ARN of the image version created on the instance.

        • InstanceType (string) --

          The instance type that the image version runs on.

          Note

          JupyterServer apps only support the system value.

          For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

        • LifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

      • CustomImages (list) --

        A list of custom SageMaker images that are configured to run as a KernelGateway app.

        • (dict) --

          A custom SageMaker image. For more information, see Bring your own SageMaker image.

          • ImageName (string) -- [REQUIRED]

            The name of the CustomImage. Must be unique to your account.

          • ImageVersionNumber (integer) --

            The version number of the CustomImage.

          • AppImageConfigName (string) -- [REQUIRED]

            The name of the AppImageConfig.

      • LifecycleConfigArns (list) --

        The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.

        Note

        To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.

        • (string) --
Return type

dict

Returns

Response Syntax

{
    'SpaceArn': 'string'
}

Response Structure

  • (dict) --

    • SpaceArn (string) --

      The space's Amazon Resource Name (ARN).

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
  • SageMaker.Client.exceptions.ResourceInUse
create_studio_lifecycle_config(**kwargs)

Creates a new Studio Lifecycle Configuration.

See also: AWS API Documentation

Request Syntax

response = client.create_studio_lifecycle_config(
    StudioLifecycleConfigName='string',
    StudioLifecycleConfigContent='string',
    StudioLifecycleConfigAppType='JupyterServer'|'KernelGateway',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • StudioLifecycleConfigName (string) --

    [REQUIRED]

    The name of the Studio Lifecycle Configuration to create.

  • StudioLifecycleConfigContent (string) --

    [REQUIRED]

    The content of your Studio Lifecycle Configuration script. This content must be base64 encoded.

  • StudioLifecycleConfigAppType (string) --

    [REQUIRED]

    The App type that the Lifecycle Configuration is attached to.

  • Tags (list) --

    Tags to be associated with the Lifecycle Configuration. Each tag consists of a key and an optional value. Tag keys must be unique per resource. Tags are searchable using the Search API.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'StudioLifecycleConfigArn': 'string'
}

Response Structure

  • (dict) --

    • StudioLifecycleConfigArn (string) --

      The ARN of your created Lifecycle Configuration.

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
create_training_job(**kwargs)

Starts a model training job. After training completes, SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify.

If you choose to host your model using SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than SageMaker, provided that you know how to use them for inference.

In the request body, you provide the following:

  • AlgorithmSpecification - Identifies the training algorithm to use.
  • HyperParameters - Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see Algorithms.

Warning

Do not include any security-sensitive information including account access IDs, secrets or tokens in any hyperparameter field. If the use of security-sensitive credentials are detected, SageMaker will reject your training job request and return an exception error.

  • InputDataConfig - Describes the input required by the training job and the Amazon S3, EFS, or FSx location where it is stored.
  • OutputDataConfig - Identifies the Amazon S3 bucket where you want SageMaker to save the results of model training.
  • ResourceConfig - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance.
  • EnableManagedSpotTraining - Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see Managed Spot Training.
  • RoleArn - The Amazon Resource Name (ARN) that SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that SageMaker can successfully complete model training.
  • StoppingCondition - To help cap training costs, use MaxRuntimeInSeconds to set a time limit for training. Use MaxWaitTimeInSeconds to specify how long a managed spot training job has to complete.
  • Environment - The environment variables to set in the Docker container.
  • RetryStrategy - The number of times to retry the job when the job fails due to an InternalServerError .

For more information about SageMaker, see How It Works.

See also: AWS API Documentation

Request Syntax

response = client.create_training_job(
    TrainingJobName='string',
    HyperParameters={
        'string': 'string'
    },
    AlgorithmSpecification={
        'TrainingImage': 'string',
        'AlgorithmName': 'string',
        'TrainingInputMode': 'Pipe'|'File'|'FastFile',
        'MetricDefinitions': [
            {
                'Name': 'string',
                'Regex': 'string'
            },
        ],
        'EnableSageMakerMetricsTimeSeries': True|False,
        'ContainerEntrypoint': [
            'string',
        ],
        'ContainerArguments': [
            'string',
        ],
        'TrainingImageConfig': {
            'TrainingRepositoryAccessMode': 'Platform'|'Vpc',
            'TrainingRepositoryAuthConfig': {
                'TrainingRepositoryCredentialsProviderArn': 'string'
            }
        }
    },
    RoleArn='string',
    InputDataConfig=[
        {
            'ChannelName': 'string',
            'DataSource': {
                'S3DataSource': {
                    'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                    'S3Uri': 'string',
                    'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                    'AttributeNames': [
                        'string',
                    ],
                    'InstanceGroupNames': [
                        'string',
                    ]
                },
                'FileSystemDataSource': {
                    'FileSystemId': 'string',
                    'FileSystemAccessMode': 'rw'|'ro',
                    'FileSystemType': 'EFS'|'FSxLustre',
                    'DirectoryPath': 'string'
                }
            },
            'ContentType': 'string',
            'CompressionType': 'None'|'Gzip',
            'RecordWrapperType': 'None'|'RecordIO',
            'InputMode': 'Pipe'|'File'|'FastFile',
            'ShuffleConfig': {
                'Seed': 123
            }
        },
    ],
    OutputDataConfig={
        'KmsKeyId': 'string',
        'S3OutputPath': 'string'
    },
    ResourceConfig={
        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge',
        'InstanceCount': 123,
        'VolumeSizeInGB': 123,
        'VolumeKmsKeyId': 'string',
        'InstanceGroups': [
            {
                'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge',
                'InstanceCount': 123,
                'InstanceGroupName': 'string'
            },
        ],
        'KeepAlivePeriodInSeconds': 123
    },
    VpcConfig={
        'SecurityGroupIds': [
            'string',
        ],
        'Subnets': [
            'string',
        ]
    },
    StoppingCondition={
        'MaxRuntimeInSeconds': 123,
        'MaxWaitTimeInSeconds': 123
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    EnableNetworkIsolation=True|False,
    EnableInterContainerTrafficEncryption=True|False,
    EnableManagedSpotTraining=True|False,
    CheckpointConfig={
        'S3Uri': 'string',
        'LocalPath': 'string'
    },
    DebugHookConfig={
        'LocalPath': 'string',
        'S3OutputPath': 'string',
        'HookParameters': {
            'string': 'string'
        },
        'CollectionConfigurations': [
            {
                'CollectionName': 'string',
                'CollectionParameters': {
                    'string': 'string'
                }
            },
        ]
    },
    DebugRuleConfigurations=[
        {
            'RuleConfigurationName': 'string',
            'LocalPath': 'string',
            'S3OutputPath': 'string',
            'RuleEvaluatorImage': 'string',
            'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
            'VolumeSizeInGB': 123,
            'RuleParameters': {
                'string': 'string'
            }
        },
    ],
    TensorBoardOutputConfig={
        'LocalPath': 'string',
        'S3OutputPath': 'string'
    },
    ExperimentConfig={
        'ExperimentName': 'string',
        'TrialName': 'string',
        'TrialComponentDisplayName': 'string',
        'RunName': 'string'
    },
    ProfilerConfig={
        'S3OutputPath': 'string',
        'ProfilingIntervalInMilliseconds': 123,
        'ProfilingParameters': {
            'string': 'string'
        },
        'DisableProfiler': True|False
    },
    ProfilerRuleConfigurations=[
        {
            'RuleConfigurationName': 'string',
            'LocalPath': 'string',
            'S3OutputPath': 'string',
            'RuleEvaluatorImage': 'string',
            'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
            'VolumeSizeInGB': 123,
            'RuleParameters': {
                'string': 'string'
            }
        },
    ],
    Environment={
        'string': 'string'
    },
    RetryStrategy={
        'MaximumRetryAttempts': 123
    }
)
Parameters
  • TrainingJobName (string) --

    [REQUIRED]

    The name of the training job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.

  • HyperParameters (dict) --

    Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see Algorithms.

    You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the Length Constraint .

    Warning

    Do not include any security-sensitive information including account access IDs, secrets or tokens in any hyperparameter field. If the use of security-sensitive credentials are detected, SageMaker will reject your training job request and return an exception error.

    • (string) --
      • (string) --
  • AlgorithmSpecification (dict) --

    [REQUIRED]

    The registry path of the Docker image that contains the training algorithm and algorithm-specific metadata, including the input mode. For more information about algorithms provided by SageMaker, see Algorithms. For information about providing your own algorithms, see Using Your Own Algorithms with Amazon SageMaker.

    • TrainingImage (string) --

      The registry path of the Docker image that contains the training algorithm. For information about docker registry paths for SageMaker built-in algorithms, see Docker Registry Paths and Example Code in the Amazon SageMaker developer guide . SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information about using your custom training container, see Using Your Own Algorithms with Amazon SageMaker.

      Note

      You must specify either the algorithm name to the AlgorithmName parameter or the image URI of the algorithm container to the TrainingImage parameter.

      For more information, see the note in the AlgorithmName parameter description.

    • AlgorithmName (string) --

      The name of the algorithm resource to use for the training job. This must be an algorithm resource that you created or subscribe to on Amazon Web Services Marketplace.

      Note

      You must specify either the algorithm name to the AlgorithmName parameter or the image URI of the algorithm container to the TrainingImage parameter.

      Note that the AlgorithmName parameter is mutually exclusive with the TrainingImage parameter. If you specify a value for the AlgorithmName parameter, you can't specify a value for TrainingImage , and vice versa.

      If you specify values for both parameters, the training job might break; if you don't specify any value for both parameters, the training job might raise a null error.

    • TrainingInputMode (string) -- [REQUIRED]

      The training input mode that the algorithm supports. For more information about input modes, see Algorithms.

      Pipe mode

      If an algorithm supports Pipe mode, Amazon SageMaker streams data directly from Amazon S3 to the container.

      File mode

      If an algorithm supports File mode, SageMaker downloads the training data from S3 to the provisioned ML storage volume, and mounts the directory to the Docker volume for the training container.

      You must provision the ML storage volume with sufficient capacity to accommodate the data downloaded from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container uses the ML storage volume to also store intermediate information, if any.

      For distributed algorithms, training data is distributed uniformly. Your training duration is predictable if the input data objects sizes are approximately the same. SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed when one host in a training cluster is overloaded, thus becoming a bottleneck in training.

      FastFile mode

      If an algorithm supports FastFile mode, SageMaker streams data directly from S3 to the container with no code changes, and provides file system access to the data. Users can author their training script to interact with these files as if they were stored on disk.

      FastFile mode works best when the data is read sequentially. Augmented manifest files aren't supported. The startup time is lower when there are fewer files in the S3 bucket provided.
    • MetricDefinitions (list) --

      A list of metric definition objects. Each object specifies the metric name and regular expressions used to parse algorithm logs. SageMaker publishes each metric to Amazon CloudWatch.

      • (dict) --

        Specifies a metric that the training algorithm writes to stderr or stdout . SageMakerhyperparameter tuning captures all defined metrics. You specify one metric that a hyperparameter tuning job uses as its objective metric to choose the best training job.

        • Name (string) -- [REQUIRED]

          The name of the metric.

        • Regex (string) -- [REQUIRED]

          A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining Objective Metrics.

    • EnableSageMakerMetricsTimeSeries (boolean) --

      To generate and save time-series metrics during training, set to true . The default is false and time-series metrics aren't generated except in the following cases:

      • You use one of the SageMaker built-in algorithms
      • You use one of the following Prebuilt SageMaker Docker Images:
        • Tensorflow (version >= 1.15)
        • MXNet (version >= 1.6)
        • PyTorch (version >= 1.3)
      • You specify at least one MetricDefinition
    • ContainerEntrypoint (list) --

      The entrypoint script for a Docker container used to run a training job. This script takes precedence over the default train processing instructions. See How Amazon SageMaker Runs Your Training Image for more information.

      • (string) --
    • ContainerArguments (list) --

      The arguments for a container used to run a training job. See How Amazon SageMaker Runs Your Training Image for additional information.

      • (string) --
    • TrainingImageConfig (dict) --

      The configuration to use an image from a private Docker registry for a training job.

      • TrainingRepositoryAccessMode (string) -- [REQUIRED]

        The method that your training job will use to gain access to the images in your private Docker registry. For access to an image in a private Docker registry, set to Vpc .

      • TrainingRepositoryAuthConfig (dict) --

        An object containing authentication information for a private Docker registry containing your training images.

        • TrainingRepositoryCredentialsProviderArn (string) -- [REQUIRED]

          The Amazon Resource Name (ARN) of an Amazon Web Services Lambda function used to give SageMaker access credentials to your private Docker registry.

  • RoleArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of an IAM role that SageMaker can assume to perform tasks on your behalf.

    During model training, SageMaker needs your permission to read input data from an S3 bucket, download a Docker image that contains training code, write model artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For more information, see SageMaker Roles.

    Note

    To be able to pass this role to SageMaker, the caller of this API must have the iam:PassRole permission.

  • InputDataConfig (list) --

    An array of Channel objects. Each channel is a named input source. InputDataConfig describes the input data and its location.

    Algorithms can accept input data from one or more channels. For example, an algorithm might have two channels of input data, training_data and validation_data . The configuration for each channel provides the S3, EFS, or FSx location where the input data is stored. It also provides information about the stored data: the MIME type, compression method, and whether the data is wrapped in RecordIO format.

    Depending on the input mode that the algorithm supports, SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. For example, if you specify an EFS location, input data files are available as input streams. They do not need to be downloaded.

    • (dict) --

      A channel is a named input source that training algorithms can consume.

      • ChannelName (string) -- [REQUIRED]

        The name of the channel.

      • DataSource (dict) -- [REQUIRED]

        The location of the channel data.

        • S3DataSource (dict) --

          The S3 location of the data source that is associated with a channel.

          • S3DataType (string) -- [REQUIRED]

            If you choose S3Prefix , S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix for model training.

            If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want SageMaker to use for model training.

            If you choose AugmentedManifestFile , S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel's input mode is Pipe .

          • S3Uri (string) -- [REQUIRED]

            Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

            • A key name prefix might look like this: s3://bucketname/exampleprefix
            • A manifest might look like this: s3://bucketname/example.manifest A manifest is an S3 object which is a JSON file consisting of an array of elements. The first element is a prefix which is followed by one or more suffixes. SageMaker appends the suffix elements to the prefix to get a full set of S3Uri . Note that the prefix must be a valid non-empty S3Uri that precludes users from specifying a manifest whose individual S3Uri is sourced from different S3 buckets. The following code example shows a valid manifest format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] This JSON is equivalent to the following S3Uri list: s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uri in this manifest is the input data for the channel for this data source. The object that each S3Uri points to must be readable by the IAM role that SageMaker uses to perform tasks on your behalf.
          • S3DataDistributionType (string) --

            If you want SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated .

            If you want SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key . If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.

            Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.

            In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key . If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File ), this copies 1/n of the number of objects.

          • AttributeNames (list) --

            A list of one or more attribute names to use that are found in a specified augmented manifest file.

            • (string) --
          • InstanceGroupNames (list) --

            A list of names of instance groups that get data from the S3 data source.

            • (string) --
        • FileSystemDataSource (dict) --

          The file system that is associated with a channel.

          • FileSystemId (string) -- [REQUIRED]

            The file system id.

          • FileSystemAccessMode (string) -- [REQUIRED]

            The access mode of the mount of the directory associated with the channel. A directory can be mounted either in ro (read-only) or rw (read-write) mode.

          • FileSystemType (string) -- [REQUIRED]

            The file system type.

          • DirectoryPath (string) -- [REQUIRED]

            The full path to the directory to associate with the channel.

      • ContentType (string) --

        The MIME type of the data.

      • CompressionType (string) --

        If training data is compressed, the compression type. The default value is None . CompressionType is used only in Pipe input mode. In File mode, leave this field unset or set it to None.

      • RecordWrapperType (string) --

        Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.

        In File mode, leave this field unset or set it to None.

      • InputMode (string) --

        (Optional) The input mode to use for the data channel in a training job. If you don't set a value for InputMode , SageMaker uses the value set for TrainingInputMode . Use this parameter to override the TrainingInputMode setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use File input mode. To stream data directly from Amazon S3 to the container, choose Pipe input mode.

        To use a model for incremental training, choose File input model.

      • ShuffleConfig (dict) --

        A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType , this shuffles the results of the S3 key prefix matches. If you use ManifestFile , the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile , the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value.

        For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key , the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.

        • Seed (integer) -- [REQUIRED]

          Determines the shuffling order in ShuffleConfig value.

  • OutputDataConfig (dict) --

    [REQUIRED]

    Specifies the path to the S3 location where you want to store model artifacts. SageMaker creates subfolders for the artifacts.

    • KmsKeyId (string) --

      The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

      • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
      • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
      • // KMS Key Alias "alias/ExampleAlias"
      • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

      If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

      The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob , CreateTransformJob , or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .

    • S3OutputPath (string) -- [REQUIRED]

      Identifies the S3 path where you want SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix .

  • ResourceConfig (dict) --

    [REQUIRED]

    The resources, including the ML compute instances and ML storage volumes, to use for model training.

    ML storage volumes store model artifacts and incremental states. Training algorithms might also use ML storage volumes for scratch space. If you want SageMaker to use the ML storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.

    • InstanceType (string) --

      The ML compute instance type.

      Note

      SageMaker Training on Amazon Elastic Compute Cloud (EC2) P4de instances is in preview release starting December 9th, 2022.

      Amazon EC2 P4de instances (currently in preview) are powered by 8 NVIDIA A100 GPUs with 80GB high-performance HBM2e GPU memory, which accelerate the speed of training ML models that need to be trained on large datasets of high-resolution data. In this preview release, Amazon SageMaker supports ML training jobs on P4de instances ( ml.p4de.24xlarge ) to reduce model training time. The ml.p4de.24xlarge instances are available in the following Amazon Web Services Regions.
      • US East (N. Virginia) (us-east-1)
      • US West (Oregon) (us-west-2)

      To request quota limit increase and start using P4de instances, contact the SageMaker Training service team through your account team.

    • InstanceCount (integer) --

      The number of ML compute instances to use. For distributed training, provide a value greater than 1.

    • VolumeSizeInGB (integer) -- [REQUIRED]

      The size of the ML storage volume that you want to provision.

      ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.

      When using an ML instance with NVMe SSD volumes, SageMaker doesn't provision Amazon EBS General Purpose SSD (gp2) storage. Available storage is fixed to the NVMe-type instance's storage capacity. SageMaker configures storage paths for training datasets, checkpoints, model artifacts, and outputs to use the entire capacity of the instance storage. For example, ML instance families with the NVMe-type instance storage include ml.p4d , ml.g4dn , and ml.g5 .

      When using an ML instance with the EBS-only storage option and without instance storage, you must define the size of EBS volume through VolumeSizeInGB in the ResourceConfig API. For example, ML instance families that use EBS volumes include ml.c5 and ml.p2 .

      To look up instance types and their instance storage types and volumes, see Amazon EC2 Instance Types.

      To find the default local paths defined by the SageMaker training platform, see Amazon SageMaker Training Storage Folders for Training Datasets, Checkpoints, Model Artifacts, and Outputs.

    • VolumeKmsKeyId (string) --

      The Amazon Web Services KMS key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.

      Note

      Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

      For a list of instance types that support local instance storage, see Instance Store Volumes.

      For more information about local instance storage encryption, see SSD Instance Store Volumes.

      The VolumeKmsKeyId can be in any of the following formats:

      • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
      • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
    • InstanceGroups (list) --

      The configuration of a heterogeneous cluster in JSON format.

      • (dict) --

        Defines an instance group for heterogeneous cluster training. When requesting a training job using the CreateTrainingJob API, you can configure multiple instance groups .

        • InstanceType (string) -- [REQUIRED]

          Specifies the instance type of the instance group.

        • InstanceCount (integer) -- [REQUIRED]

          Specifies the number of instances of the instance group.

        • InstanceGroupName (string) -- [REQUIRED]

          Specifies the name of the instance group.

    • KeepAlivePeriodInSeconds (integer) --

      The duration of time in seconds to retain configured resources in a warm pool for subsequent training jobs.

  • VpcConfig (dict) --

    A VpcConfig object that specifies the VPC that you want your training job to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.

    • SecurityGroupIds (list) -- [REQUIRED]

      The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

      • (string) --
    • Subnets (list) -- [REQUIRED]

      The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.

      • (string) --
  • StoppingCondition (dict) --

    [REQUIRED]

    Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.

    To stop a job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.

    • MaxRuntimeInSeconds (integer) --

      The maximum length of time, in seconds, that a training or compilation job can run before it is stopped.

      For compilation jobs, if the job does not complete during this time, a TimeOut error is generated. We recommend starting with 900 seconds and increasing as necessary based on your model.

      For all other jobs, if the job does not complete during this time, SageMaker ends the job. When RetryStrategy is specified in the job request, MaxRuntimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt. The default value is 1 day. The maximum value is 28 days.

      The maximum time that a TrainingJob can run in total, including any time spent publishing metrics or archiving and uploading models after it has been stopped, is 30 days.

    • MaxWaitTimeInSeconds (integer) --

      The maximum length of time, in seconds, that a managed Spot training job has to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the job can run. It must be equal to or greater than MaxRuntimeInSeconds . If the job does not complete during this time, SageMaker ends the job.

      When RetryStrategy is specified in the job request, MaxWaitTimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt.

  • Tags (list) --

    An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

  • EnableNetworkIsolation (boolean) -- Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If you enable network isolation for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.
  • EnableInterContainerTrafficEncryption (boolean) -- To encrypt all communications between ML compute instances in distributed training, choose True . Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training. For more information, see Protect Communications Between ML Compute Instances in a Distributed Training Job.
  • EnableManagedSpotTraining (boolean) --

    To train models using managed spot training, choose True . Managed spot training provides a fully managed and scalable infrastructure for training machine learning models. this option is useful when training jobs can be interrupted and when there is flexibility when the training job is run.

    The complete and intermediate results of jobs are stored in an Amazon S3 bucket, and can be used as a starting point to train models incrementally. Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to see when managed spot training jobs are running, interrupted, resumed, or completed.

  • CheckpointConfig (dict) --

    Contains information about the output location for managed spot training checkpoint data.

    • S3Uri (string) -- [REQUIRED]

      Identifies the S3 path where you want SageMaker to store checkpoints. For example, s3://bucket-name/key-name-prefix .

    • LocalPath (string) --

      (Optional) The local directory where checkpoints are written. The default directory is /opt/ml/checkpoints/ .

  • DebugHookConfig (dict) --

    Configuration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the DebugHookConfig parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.

    • LocalPath (string) --

      Path to local storage location for metrics and tensors. Defaults to /opt/ml/output/tensors/ .

    • S3OutputPath (string) -- [REQUIRED]

      Path to Amazon S3 storage location for metrics and tensors.

    • HookParameters (dict) --

      Configuration information for the Amazon SageMaker Debugger hook parameters.

      • (string) --
        • (string) --
    • CollectionConfigurations (list) --

      Configuration information for Amazon SageMaker Debugger tensor collections. To learn more about how to configure the CollectionConfiguration parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.

      • (dict) --

        Configuration information for the Amazon SageMaker Debugger output tensor collections.

        • CollectionName (string) --

          The name of the tensor collection. The name must be unique relative to other rule configuration names.

        • CollectionParameters (dict) --

          Parameter values for the tensor collection. The allowed parameters are "name" , "include_regex" , "reduction_config" , "save_config" , "tensor_names" , and "save_histogram" .

          • (string) --
            • (string) --
  • DebugRuleConfigurations (list) --

    Configuration information for Amazon SageMaker Debugger rules for debugging output tensors.

    • (dict) --

      Configuration information for SageMaker Debugger rules for debugging. To learn more about how to configure the DebugRuleConfiguration parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.

      • RuleConfigurationName (string) -- [REQUIRED]

        The name of the rule configuration. It must be unique relative to other rule configuration names.

      • LocalPath (string) --

        Path to local storage location for output of rules. Defaults to /opt/ml/processing/output/rule/ .

      • S3OutputPath (string) --

        Path to Amazon S3 storage location for rules.

      • RuleEvaluatorImage (string) -- [REQUIRED]

        The Amazon Elastic Container (ECR) Image for the managed rule evaluation.

      • InstanceType (string) --

        The instance type to deploy a custom rule for debugging a training job.

      • VolumeSizeInGB (integer) --

        The size, in GB, of the ML storage volume attached to the processing instance.

      • RuleParameters (dict) --

        Runtime configuration for rule container.

        • (string) --
          • (string) --
  • TensorBoardOutputConfig (dict) --

    Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.

    • LocalPath (string) --

      Path to local storage location for tensorBoard output. Defaults to /opt/ml/output/tensorboard .

    • S3OutputPath (string) -- [REQUIRED]

      Path to Amazon S3 storage location for TensorBoard output.

  • ExperimentConfig (dict) --

    Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:

    • CreateProcessingJob
    • CreateTrainingJob
    • CreateTransformJob
    • ExperimentName (string) --

      The name of an existing experiment to associate with the trial component.

    • TrialName (string) --

      The name of an existing trial to associate the trial component with. If not specified, a new trial is created.

    • TrialComponentDisplayName (string) --

      The display name for the trial component. If this key isn't specified, the display name is the trial component name.

    • RunName (string) --

      The name of the experiment run to associate with the trial component.

  • ProfilerConfig (dict) --

    Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.

    • S3OutputPath (string) --

      Path to Amazon S3 storage location for system and framework metrics.

    • ProfilingIntervalInMilliseconds (integer) --

      A time interval for capturing system metrics in milliseconds. Available values are 100, 200, 500, 1000 (1 second), 5000 (5 seconds), and 60000 (1 minute) milliseconds. The default value is 500 milliseconds.

    • ProfilingParameters (dict) --

      Configuration information for capturing framework metrics. Available key strings for different profiling options are DetailedProfilingConfig , PythonProfilingConfig , and DataLoaderProfilingConfig . The following codes are configuration structures for the ProfilingParameters parameter. To learn more about how to configure the ProfilingParameters parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.

      • (string) --
        • (string) --
    • DisableProfiler (boolean) --

      Configuration to turn off Amazon SageMaker Debugger's system monitoring and profiling functionality. To turn it off, set to True .

  • ProfilerRuleConfigurations (list) --

    Configuration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.

    • (dict) --

      Configuration information for profiling rules.

      • RuleConfigurationName (string) -- [REQUIRED]

        The name of the rule configuration. It must be unique relative to other rule configuration names.

      • LocalPath (string) --

        Path to local storage location for output of rules. Defaults to /opt/ml/processing/output/rule/ .

      • S3OutputPath (string) --

        Path to Amazon S3 storage location for rules.

      • RuleEvaluatorImage (string) -- [REQUIRED]

        The Amazon Elastic Container Registry Image for the managed rule evaluation.

      • InstanceType (string) --

        The instance type to deploy a custom rule for profiling a training job.

      • VolumeSizeInGB (integer) --

        The size, in GB, of the ML storage volume attached to the processing instance.

      • RuleParameters (dict) --

        Runtime configuration for rule container.

        • (string) --
          • (string) --
  • Environment (dict) --

    The environment variables to set in the Docker container.

    • (string) --
      • (string) --
  • RetryStrategy (dict) --

    The number of times to retry the job when the job fails due to an InternalServerError .

    • MaximumRetryAttempts (integer) -- [REQUIRED]

      The number of times to retry the job. When the job is retried, it's SecondaryStatus is changed to STARTING .

Return type

dict

Returns

Response Syntax

{
    'TrainingJobArn': 'string'
}

Response Structure

  • (dict) --

    • TrainingJobArn (string) --

      The Amazon Resource Name (ARN) of the training job.

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceLimitExceeded
  • SageMaker.Client.exceptions.ResourceNotFound
create_transform_job(**kwargs)

Starts a transform job. A transform job uses a trained model to get inferences on a dataset and saves these results to an Amazon S3 location that you specify.

To perform batch transformations, you create a transform job and use the data that you have readily available.

In the request body, you provide the following:

  • TransformJobName - Identifies the transform job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.
  • ModelName - Identifies the model to use. ModelName must be the name of an existing Amazon SageMaker model in the same Amazon Web Services Region and Amazon Web Services account. For information on creating a model, see CreateModel.
  • TransformInput - Describes the dataset to be transformed and the Amazon S3 location where it is stored.
  • TransformOutput - Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.
  • TransformResources - Identifies the ML compute instances for the transform job.

For more information about how batch transformation works, see Batch Transform.

See also: AWS API Documentation

Request Syntax

response = client.create_transform_job(
    TransformJobName='string',
    ModelName='string',
    MaxConcurrentTransforms=123,
    ModelClientConfig={
        'InvocationsTimeoutInSeconds': 123,
        'InvocationsMaxRetries': 123
    },
    MaxPayloadInMB=123,
    BatchStrategy='MultiRecord'|'SingleRecord',
    Environment={
        'string': 'string'
    },
    TransformInput={
        'DataSource': {
            'S3DataSource': {
                'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                'S3Uri': 'string'
            }
        },
        'ContentType': 'string',
        'CompressionType': 'None'|'Gzip',
        'SplitType': 'None'|'Line'|'RecordIO'|'TFRecord'
    },
    TransformOutput={
        'S3OutputPath': 'string',
        'Accept': 'string',
        'AssembleWith': 'None'|'Line',
        'KmsKeyId': 'string'
    },
    DataCaptureConfig={
        'DestinationS3Uri': 'string',
        'KmsKeyId': 'string',
        'GenerateInferenceId': True|False
    },
    TransformResources={
        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
        'InstanceCount': 123,
        'VolumeKmsKeyId': 'string'
    },
    DataProcessing={
        'InputFilter': 'string',
        'OutputFilter': 'string',
        'JoinSource': 'Input'|'None'
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    ExperimentConfig={
        'ExperimentName': 'string',
        'TrialName': 'string',
        'TrialComponentDisplayName': 'string',
        'RunName': 'string'
    }
)
Parameters
  • TransformJobName (string) --

    [REQUIRED]

    The name of the transform job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.

  • ModelName (string) --

    [REQUIRED]

    The name of the model that you want to use for the transform job. ModelName must be the name of an existing Amazon SageMaker model within an Amazon Web Services Region in an Amazon Web Services account.

  • MaxConcurrentTransforms (integer) -- The maximum number of parallel requests that can be sent to each instance in a transform job. If MaxConcurrentTransforms is set to 0 or left unset, Amazon SageMaker checks the optional execution-parameters to determine the settings for your chosen algorithm. If the execution-parameters endpoint is not enabled, the default value is 1 . For more information on execution-parameters, see How Containers Serve Requests. For built-in algorithms, you don't need to set a value for MaxConcurrentTransforms .
  • ModelClientConfig (dict) --

    Configures the timeout and maximum number of retries for processing a transform job invocation.

    • InvocationsTimeoutInSeconds (integer) --

      The timeout value in seconds for an invocation request. The default value is 600.

    • InvocationsMaxRetries (integer) --

      The maximum number of retries when invocation requests are failing. The default value is 3.

  • MaxPayloadInMB (integer) --

    The maximum allowed size of the payload, in MB. A payload is the data portion of a record (without metadata). The value in MaxPayloadInMB must be greater than, or equal to, the size of a single record. To estimate the size of a record in MB, divide the size of your dataset by the number of records. To ensure that the records fit within the maximum payload size, we recommend using a slightly larger value. The default value is 6 MB.

    The value of MaxPayloadInMB cannot be greater than 100 MB. If you specify the MaxConcurrentTransforms parameter, the value of (MaxConcurrentTransforms * MaxPayloadInMB) also cannot exceed 100 MB.

    For cases where the payload might be arbitrarily large and is transmitted using HTTP chunked encoding, set the value to 0 . This feature works only in supported algorithms. Currently, Amazon SageMaker built-in algorithms do not support HTTP chunked encoding.

  • BatchStrategy (string) --

    Specifies the number of records to include in a mini-batch for an HTTP inference request. A record is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.

    To enable the batch strategy, you must set the SplitType property to Line , RecordIO , or TFRecord .

    To use only one record when making an HTTP invocation request to a container, set BatchStrategy to SingleRecord and SplitType to Line .

    To fit as many records in a mini-batch as can fit within the MaxPayloadInMB limit, set BatchStrategy to MultiRecord and SplitType to Line .

  • Environment (dict) --

    The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.

    • (string) --
      • (string) --
  • TransformInput (dict) --

    [REQUIRED]

    Describes the input source and the way the transform job consumes it.

    • DataSource (dict) -- [REQUIRED]

      Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.

      • S3DataSource (dict) -- [REQUIRED]

        The S3 location of the data source that is associated with a channel.

        • S3DataType (string) -- [REQUIRED]

          If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.

          If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.

          The following values are compatible: ManifestFile , S3Prefix

          The following value is not compatible: AugmentedManifestFile

        • S3Uri (string) -- [REQUIRED]

          Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

          • A key name prefix might look like this: s3://bucketname/exampleprefix .
          • A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following S3Uris : s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uris in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.
    • ContentType (string) --

      The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.

    • CompressionType (string) --

      If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None .

    • SplitType (string) --

      The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType is None , which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line to split records on a newline character boundary. SplitType also supports a number of record-oriented binary data formats. Currently, the supported record formats are:

      • RecordIO
      • TFRecord

      When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord , Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord , Amazon SageMaker sends individual records in each request.

      Note

      Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of BatchStrategy is set to SingleRecord . Padding is not removed if the value of BatchStrategy is set to MultiRecord .

      For more information about RecordIO , see Create a Dataset Using RecordIO in the MXNet documentation. For more information about TFRecord , see Consuming TFRecord data in the TensorFlow documentation.

  • TransformOutput (dict) --

    [REQUIRED]

    Describes the results of the transform job.

    • S3OutputPath (string) -- [REQUIRED]

      The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix .

      For every S3 object used as input for the transform job, batch transform stores the transformed data with an . out suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv , batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out . Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an . out file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.

    • Accept (string) --

      The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.

    • AssembleWith (string) --

      Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None . To add a newline character at the end of every transformed record, specify Line .

    • KmsKeyId (string) --

      The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

      • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
      • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
      • Alias name: alias/ExampleAlias
      • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

      If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

      The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .

  • DataCaptureConfig (dict) --

    Configuration to control how SageMaker captures inference data.

    • DestinationS3Uri (string) -- [REQUIRED]

      The Amazon S3 location being used to capture the data.

    • KmsKeyId (string) --

      The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the batch transform job.

      The KmsKeyId can be any of the following formats:

      • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
      • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
      • Alias name: alias/ExampleAlias
      • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
    • GenerateInferenceId (boolean) --

      Flag that indicates whether to append inference id to the output.

  • TransformResources (dict) --

    [REQUIRED]

    Describes the resources, including ML instance types and ML instance count, to use for the transform job.

    • InstanceType (string) -- [REQUIRED]

      The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ml.m5.large instance types.

    • InstanceCount (integer) -- [REQUIRED]

      The number of ML compute instances to use in the transform job. The default value is 1 , and the maximum is 100 . For distributed transform jobs, specify a value greater than 1 .

    • VolumeKmsKeyId (string) --

      The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job.

      Note

      Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

      For a list of instance types that support local instance storage, see Instance Store Volumes.

      For more information about local instance storage encryption, see SSD Instance Store Volumes.

      The VolumeKmsKeyId can be any of the following formats:

      • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
      • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
      • Alias name: alias/ExampleAlias
      • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
  • DataProcessing (dict) --

    The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see Associate Prediction Results with their Corresponding Input Records.

    • InputFilter (string) --

      A JSONPath expression used to select a portion of the input data to pass to the algorithm. Use the InputFilter parameter to exclude fields, such as an ID column, from the input. If you want SageMaker to pass the entire input dataset to the algorithm, accept the default value $ .

      Examples: "$" , "$[1:]" , "$.features"

    • OutputFilter (string) --

      A JSONPath expression used to select a portion of the joined dataset to save in the output file for a batch transform job. If you want SageMaker to store the entire input dataset in the output file, leave the default value, $ . If you specify indexes that aren't within the dimension size of the joined dataset, you get an error.

      Examples: "$" , "$[0,5:]" , "$['id','SageMakerOutput']"

    • JoinSource (string) --

      Specifies the source of the data to join with the transformed data. The valid values are None and Input . The default value is None , which specifies not to join the input with the transformed data. If you want the batch transform job to join the original input data with the transformed data, set JoinSource to Input . You can specify OutputFilter as an additional filter to select a portion of the joined dataset and store it in the output file.

      For JSON or JSONLines objects, such as a JSON array, SageMaker adds the transformed data to the input JSON object in an attribute called SageMakerOutput . The joined result for JSON must be a key-value pair object. If the input is not a key-value pair object, SageMaker creates a new JSON file. In the new JSON file, and the input data is stored under the SageMakerInput key and the results are stored in SageMakerOutput .

      For CSV data, SageMaker takes each row as a JSON array and joins the transformed data with the input by appending each transformed row to the end of the input. The joined data has the original input data followed by the transformed data and the output is a CSV file.

      For information on how joining in applied, see Workflow for Associating Inferences with Input Records.

  • Tags (list) --

    (Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide .

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

  • ExperimentConfig (dict) --

    Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:

    • CreateProcessingJob
    • CreateTrainingJob
    • CreateTransformJob
    • ExperimentName (string) --

      The name of an existing experiment to associate with the trial component.

    • TrialName (string) --

      The name of an existing trial to associate the trial component with. If not specified, a new trial is created.

    • TrialComponentDisplayName (string) --

      The display name for the trial component. If this key isn't specified, the display name is the trial component name.

    • RunName (string) --

      The name of the experiment run to associate with the trial component.

Return type

dict

Returns

Response Syntax

{
    'TransformJobArn': 'string'
}

Response Structure

  • (dict) --

    • TransformJobArn (string) --

      The Amazon Resource Name (ARN) of the transform job.

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceLimitExceeded
  • SageMaker.Client.exceptions.ResourceNotFound
create_trial(**kwargs)

Creates an SageMaker trial . A trial is a set of steps called trial components that produce a machine learning model. A trial is part of a single SageMaker experiment .

When you use SageMaker Studio or the SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the Amazon Web Services SDK for Python (Boto), you must use the logging APIs provided by the SDK.

You can add tags to a trial and then use the Search API to search for the tags.

To get a list of all your trials, call the ListTrials API. To view a trial's properties, call the DescribeTrial API. To create a trial component, call the CreateTrialComponent API.

See also: AWS API Documentation

Request Syntax

response = client.create_trial(
    TrialName='string',
    DisplayName='string',
    ExperimentName='string',
    MetadataProperties={
        'CommitId': 'string',
        'Repository': 'string',
        'GeneratedBy': 'string',
        'ProjectId': 'string'
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • TrialName (string) --

    [REQUIRED]

    The name of the trial. The name must be unique in your Amazon Web Services account and is not case-sensitive.

  • DisplayName (string) -- The name of the trial as displayed. The name doesn't need to be unique. If DisplayName isn't specified, TrialName is displayed.
  • ExperimentName (string) --

    [REQUIRED]

    The name of the experiment to associate the trial with.

  • MetadataProperties (dict) --

    Metadata properties of the tracking entity, trial, or trial component.

    • CommitId (string) --

      The commit ID.

    • Repository (string) --

      The repository.

    • GeneratedBy (string) --

      The entity this entity was generated by.

    • ProjectId (string) --

      The project ID.

  • Tags (list) --

    A list of tags to associate with the trial. You can use Search API to search on the tags.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'TrialArn': 'string'
}

Response Structure

  • (dict) --

    • TrialArn (string) --

      The Amazon Resource Name (ARN) of the trial.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
  • SageMaker.Client.exceptions.ResourceLimitExceeded
create_trial_component(**kwargs)

Creates a trial component , which is a stage of a machine learning trial . A trial is composed of one or more trial components. A trial component can be used in multiple trials.

Trial components include pre-processing jobs, training jobs, and batch transform jobs.

When you use SageMaker Studio or the SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the Amazon Web Services SDK for Python (Boto), you must use the logging APIs provided by the SDK.

You can add tags to a trial component and then use the Search API to search for the tags.

See also: AWS API Documentation

Request Syntax

response = client.create_trial_component(
    TrialComponentName='string',
    DisplayName='string',
    Status={
        'PrimaryStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
        'Message': 'string'
    },
    StartTime=datetime(2015, 1, 1),
    EndTime=datetime(2015, 1, 1),
    Parameters={
        'string': {
            'StringValue': 'string',
            'NumberValue': 123.0
        }
    },
    InputArtifacts={
        'string': {
            'MediaType': 'string',
            'Value': 'string'
        }
    },
    OutputArtifacts={
        'string': {
            'MediaType': 'string',
            'Value': 'string'
        }
    },
    MetadataProperties={
        'CommitId': 'string',
        'Repository': 'string',
        'GeneratedBy': 'string',
        'ProjectId': 'string'
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • TrialComponentName (string) --

    [REQUIRED]

    The name of the component. The name must be unique in your Amazon Web Services account and is not case-sensitive.

  • DisplayName (string) -- The name of the component as displayed. The name doesn't need to be unique. If DisplayName isn't specified, TrialComponentName is displayed.
  • Status (dict) --

    The status of the component. States include:

    • InProgress
    • Completed
    • Failed
    • PrimaryStatus (string) --

      The status of the trial component.

    • Message (string) --

      If the component failed, a message describing why.

  • StartTime (datetime) -- When the component started.
  • EndTime (datetime) -- When the component ended.
  • Parameters (dict) --

    The hyperparameters for the component.

    • (string) --
      • (dict) --

        The value of a hyperparameter. Only one of NumberValue or StringValue can be specified.

        This object is specified in the CreateTrialComponent request.

        • StringValue (string) --

          The string value of a categorical hyperparameter. If you specify a value for this parameter, you can't specify the NumberValue parameter.

        • NumberValue (float) --

          The numeric value of a numeric hyperparameter. If you specify a value for this parameter, you can't specify the StringValue parameter.

  • InputArtifacts (dict) --

    The input artifacts for the component. Examples of input artifacts are datasets, algorithms, hyperparameters, source code, and instance types.

    • (string) --
      • (dict) --

        Represents an input or output artifact of a trial component. You specify TrialComponentArtifact as part of the InputArtifacts and OutputArtifacts parameters in the CreateTrialComponent request.

        Examples of input artifacts are datasets, algorithms, hyperparameters, source code, and instance types. Examples of output artifacts are metrics, snapshots, logs, and images.

        • MediaType (string) --

          The media type of the artifact, which indicates the type of data in the artifact file. The media type consists of a type and a subtype concatenated with a slash (/) character, for example, text/csv, image/jpeg, and s3/uri. The type specifies the category of the media. The subtype specifies the kind of data.

        • Value (string) -- [REQUIRED]

          The location of the artifact.

  • OutputArtifacts (dict) --

    The output artifacts for the component. Examples of output artifacts are metrics, snapshots, logs, and images.

    • (string) --
      • (dict) --

        Represents an input or output artifact of a trial component. You specify TrialComponentArtifact as part of the InputArtifacts and OutputArtifacts parameters in the CreateTrialComponent request.

        Examples of input artifacts are datasets, algorithms, hyperparameters, source code, and instance types. Examples of output artifacts are metrics, snapshots, logs, and images.

        • MediaType (string) --

          The media type of the artifact, which indicates the type of data in the artifact file. The media type consists of a type and a subtype concatenated with a slash (/) character, for example, text/csv, image/jpeg, and s3/uri. The type specifies the category of the media. The subtype specifies the kind of data.

        • Value (string) -- [REQUIRED]

          The location of the artifact.

  • MetadataProperties (dict) --

    Metadata properties of the tracking entity, trial, or trial component.

    • CommitId (string) --

      The commit ID.

    • Repository (string) --

      The repository.

    • GeneratedBy (string) --

      The entity this entity was generated by.

    • ProjectId (string) --

      The project ID.

  • Tags (list) --

    A list of tags to associate with the component. You can use Search API to search on the tags.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'TrialComponentArn': 'string'
}

Response Structure

  • (dict) --

    • TrialComponentArn (string) --

      The Amazon Resource Name (ARN) of the trial component.

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
create_user_profile(**kwargs)

Creates a user profile. A user profile represents a single user within a domain, and is the main way to reference a "person" for the purposes of sharing, reporting, and other user-oriented features. This entity is created when a user onboards to Amazon SageMaker Studio. If an administrator invites a person by email or imports them from IAM Identity Center, a user profile is automatically created. A user profile is the primary holder of settings for an individual user and has a reference to the user's private Amazon Elastic File System (EFS) home directory.

See also: AWS API Documentation

Request Syntax

response = client.create_user_profile(
    DomainId='string',
    UserProfileName='string',
    SingleSignOnUserIdentifier='string',
    SingleSignOnUserValue='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    UserSettings={
        'ExecutionRole': 'string',
        'SecurityGroups': [
            'string',
        ],
        'SharingSettings': {
            'NotebookOutputOption': 'Allowed'|'Disabled',
            'S3OutputPath': 'string',
            'S3KmsKeyId': 'string'
        },
        'JupyterServerAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'LifecycleConfigArns': [
                'string',
            ],
            'CodeRepositories': [
                {
                    'RepositoryUrl': 'string'
                },
            ]
        },
        'KernelGatewayAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'CustomImages': [
                {
                    'ImageName': 'string',
                    'ImageVersionNumber': 123,
                    'AppImageConfigName': 'string'
                },
            ],
            'LifecycleConfigArns': [
                'string',
            ]
        },
        'TensorBoardAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            }
        },
        'RStudioServerProAppSettings': {
            'AccessStatus': 'ENABLED'|'DISABLED',
            'UserGroup': 'R_STUDIO_ADMIN'|'R_STUDIO_USER'
        },
        'RSessionAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'CustomImages': [
                {
                    'ImageName': 'string',
                    'ImageVersionNumber': 123,
                    'AppImageConfigName': 'string'
                },
            ]
        },
        'CanvasAppSettings': {
            'TimeSeriesForecastingSettings': {
                'Status': 'ENABLED'|'DISABLED',
                'AmazonForecastRoleArn': 'string'
            }
        }
    }
)
Parameters
  • DomainId (string) --

    [REQUIRED]

    The ID of the associated Domain.

  • UserProfileName (string) --

    [REQUIRED]

    A name for the UserProfile. This value is not case sensitive.

  • SingleSignOnUserIdentifier (string) -- A specifier for the type of value specified in SingleSignOnUserValue. Currently, the only supported value is "UserName". If the Domain's AuthMode is IAM Identity Center, this field is required. If the Domain's AuthMode is not IAM Identity Center, this field cannot be specified.
  • SingleSignOnUserValue (string) -- The username of the associated Amazon Web Services Single Sign-On User for this UserProfile. If the Domain's AuthMode is IAM Identity Center, this field is required, and must match a valid username of a user in your directory. If the Domain's AuthMode is not IAM Identity Center, this field cannot be specified.
  • Tags (list) --

    Each tag consists of a key and an optional value. Tag keys must be unique per resource.

    Tags that you specify for the User Profile are also added to all Apps that the User Profile launches.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

  • UserSettings (dict) --

    A collection of settings.

    • ExecutionRole (string) --

      The execution role for the user.

    • SecurityGroups (list) --

      The security groups for the Amazon Virtual Private Cloud (VPC) that Studio uses for communication.

      Optional when the CreateDomain.AppNetworkAccessType parameter is set to PublicInternetOnly .

      Required when the CreateDomain.AppNetworkAccessType parameter is set to VpcOnly .

      Amazon SageMaker adds a security group to allow NFS traffic from SageMaker Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown.

      • (string) --
    • SharingSettings (dict) --

      Specifies options for sharing SageMaker Studio notebooks.

      • NotebookOutputOption (string) --

        Whether to include the notebook cell output when sharing the notebook. The default is Disabled .

      • S3OutputPath (string) --

        When NotebookOutputOption is Allowed , the Amazon S3 bucket used to store the shared notebook snapshots.

      • S3KmsKeyId (string) --

        When NotebookOutputOption is Allowed , the Amazon Web Services Key Management Service (KMS) encryption key ID used to encrypt the notebook cell output in the Amazon S3 bucket.

    • JupyterServerAppSettings (dict) --

      The Jupyter server's app settings.

      • DefaultResourceSpec (dict) --

        The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.

        • SageMakerImageArn (string) --

          The ARN of the SageMaker image that the image version belongs to.

        • SageMakerImageVersionArn (string) --

          The ARN of the image version created on the instance.

        • InstanceType (string) --

          The instance type that the image version runs on.

          Note

          JupyterServer apps only support the system value.

          For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

        • LifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

      • LifecycleConfigArns (list) --

        The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter is also required.

        Note

        To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.

        • (string) --
      • CodeRepositories (list) --

        A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.

        • (dict) --

          A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.

          • RepositoryUrl (string) -- [REQUIRED]

            The URL of the Git repository.

    • KernelGatewayAppSettings (dict) --

      The kernel gateway app settings.

      • DefaultResourceSpec (dict) --

        The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app.

        Note

        The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the Amazon Web Services Command Line Interface or Amazon Web Services CloudFormation and the instance type parameter value is not passed.

        • SageMakerImageArn (string) --

          The ARN of the SageMaker image that the image version belongs to.

        • SageMakerImageVersionArn (string) --

          The ARN of the image version created on the instance.

        • InstanceType (string) --

          The instance type that the image version runs on.

          Note

          JupyterServer apps only support the system value.

          For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

        • LifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

      • CustomImages (list) --

        A list of custom SageMaker images that are configured to run as a KernelGateway app.

        • (dict) --

          A custom SageMaker image. For more information, see Bring your own SageMaker image.

          • ImageName (string) -- [REQUIRED]

            The name of the CustomImage. Must be unique to your account.

          • ImageVersionNumber (integer) --

            The version number of the CustomImage.

          • AppImageConfigName (string) -- [REQUIRED]

            The name of the AppImageConfig.

      • LifecycleConfigArns (list) --

        The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.

        Note

        To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.

        • (string) --
    • TensorBoardAppSettings (dict) --

      The TensorBoard app settings.

      • DefaultResourceSpec (dict) --

        The default instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.

        • SageMakerImageArn (string) --

          The ARN of the SageMaker image that the image version belongs to.

        • SageMakerImageVersionArn (string) --

          The ARN of the image version created on the instance.

        • InstanceType (string) --

          The instance type that the image version runs on.

          Note

          JupyterServer apps only support the system value.

          For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

        • LifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

    • RStudioServerProAppSettings (dict) --

      A collection of settings that configure user interaction with the RStudioServerPro app.

      • AccessStatus (string) --

        Indicates whether the current user has access to the RStudioServerPro app.

      • UserGroup (string) --

        The level of permissions that the user has within the RStudioServerPro app. This value defaults to User. The Admin value allows the user access to the RStudio Administrative Dashboard.

    • RSessionAppSettings (dict) --

      A collection of settings that configure the RSessionGateway app.

      • DefaultResourceSpec (dict) --

        Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that the version runs on.

        • SageMakerImageArn (string) --

          The ARN of the SageMaker image that the image version belongs to.

        • SageMakerImageVersionArn (string) --

          The ARN of the image version created on the instance.

        • InstanceType (string) --

          The instance type that the image version runs on.

          Note

          JupyterServer apps only support the system value.

          For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

        • LifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

      • CustomImages (list) --

        A list of custom SageMaker images that are configured to run as a RSession app.

        • (dict) --

          A custom SageMaker image. For more information, see Bring your own SageMaker image.

          • ImageName (string) -- [REQUIRED]

            The name of the CustomImage. Must be unique to your account.

          • ImageVersionNumber (integer) --

            The version number of the CustomImage.

          • AppImageConfigName (string) -- [REQUIRED]

            The name of the AppImageConfig.

    • CanvasAppSettings (dict) --

      The Canvas app settings.

      • TimeSeriesForecastingSettings (dict) --

        Time series forecast settings for the Canvas app.

        • Status (string) --

          Describes whether time series forecasting is enabled or disabled in the Canvas app.

        • AmazonForecastRoleArn (string) --

          The IAM role that Canvas passes to Amazon Forecast for time series forecasting. By default, Canvas uses the execution role specified in the UserProfile that launches the Canvas app. If an execution role is not specified in the UserProfile , Canvas uses the execution role specified in the Domain that owns the UserProfile . To allow time series forecasting, this IAM role should have the AmazonSageMakerCanvasForecastAccess policy attached and forecast.amazonaws.com added in the trust relationship as a service principal.

Return type

dict

Returns

Response Syntax

{
    'UserProfileArn': 'string'
}

Response Structure

  • (dict) --

    • UserProfileArn (string) --

      The user profile Amazon Resource Name (ARN).

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
  • SageMaker.Client.exceptions.ResourceInUse
create_workforce(**kwargs)

Use this operation to create a workforce. This operation will return an error if a workforce already exists in the Amazon Web Services Region that you specify. You can only create one workforce in each Amazon Web Services Region per Amazon Web Services account.

If you want to create a new workforce in an Amazon Web Services Region where a workforce already exists, use the API operation to delete the existing workforce and then use CreateWorkforce to create a new workforce.

To create a private workforce using Amazon Cognito, you must specify a Cognito user pool in CognitoConfig . You can also create an Amazon Cognito workforce using the Amazon SageMaker console. For more information, see Create a Private Workforce (Amazon Cognito).

To create a private workforce using your own OIDC Identity Provider (IdP), specify your IdP configuration in OidcConfig . Your OIDC IdP must support groups because groups are used by Ground Truth and Amazon A2I to create work teams. For more information, see Create a Private Workforce (OIDC IdP).

See also: AWS API Documentation

Request Syntax

response = client.create_workforce(
    CognitoConfig={
        'UserPool': 'string',
        'ClientId': 'string'
    },
    OidcConfig={
        'ClientId': 'string',
        'ClientSecret': 'string',
        'Issuer': 'string',
        'AuthorizationEndpoint': 'string',
        'TokenEndpoint': 'string',
        'UserInfoEndpoint': 'string',
        'LogoutEndpoint': 'string',
        'JwksUri': 'string'
    },
    SourceIpConfig={
        'Cidrs': [
            'string',
        ]
    },
    WorkforceName='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    WorkforceVpcConfig={
        'VpcId': 'string',
        'SecurityGroupIds': [
            'string',
        ],
        'Subnets': [
            'string',
        ]
    }
)
Parameters
  • CognitoConfig (dict) --

    Use this parameter to configure an Amazon Cognito private workforce. A single Cognito workforce is created using and corresponds to a single Amazon Cognito user pool.

    Do not use OidcConfig if you specify values for CognitoConfig .

    • UserPool (string) -- [REQUIRED]

      A user pool is a user directory in Amazon Cognito. With a user pool, your users can sign in to your web or mobile app through Amazon Cognito. Your users can also sign in through social identity providers like Google, Facebook, Amazon, or Apple, and through SAML identity providers.

    • ClientId (string) -- [REQUIRED]

      The client ID for your Amazon Cognito user pool.

  • OidcConfig (dict) --

    Use this parameter to configure a private workforce using your own OIDC Identity Provider.

    Do not use CognitoConfig if you specify values for OidcConfig .

    • ClientId (string) -- [REQUIRED]

      The OIDC IdP client ID used to configure your private workforce.

    • ClientSecret (string) -- [REQUIRED]

      The OIDC IdP client secret used to configure your private workforce.

    • Issuer (string) -- [REQUIRED]

      The OIDC IdP issuer used to configure your private workforce.

    • AuthorizationEndpoint (string) -- [REQUIRED]

      The OIDC IdP authorization endpoint used to configure your private workforce.

    • TokenEndpoint (string) -- [REQUIRED]

      The OIDC IdP token endpoint used to configure your private workforce.

    • UserInfoEndpoint (string) -- [REQUIRED]

      The OIDC IdP user information endpoint used to configure your private workforce.

    • LogoutEndpoint (string) -- [REQUIRED]

      The OIDC IdP logout endpoint used to configure your private workforce.

    • JwksUri (string) -- [REQUIRED]

      The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your private workforce.

  • SourceIpConfig (dict) --

    A list of IP address ranges ( CIDRs ). Used to create an allow list of IP addresses for a private workforce. Workers will only be able to login to their worker portal from an IP address within this range. By default, a workforce isn't restricted to specific IP addresses.

    • Cidrs (list) -- [REQUIRED]

      A list of one to ten Classless Inter-Domain Routing (CIDR) values.

      Maximum: Ten CIDR values

      Note

      The following Length Constraints apply to individual CIDR values in the CIDR value list.

      • (string) --
  • WorkforceName (string) --

    [REQUIRED]

    The name of the private workforce.

  • Tags (list) --

    An array of key-value pairs that contain metadata to help you categorize and organize our workforce. Each tag consists of a key and a value, both of which you define.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

  • WorkforceVpcConfig (dict) --

    Use this parameter to configure a workforce using VPC.

    • VpcId (string) --

      The ID of the VPC that the workforce uses for communication.

    • SecurityGroupIds (list) --

      The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet.

      • (string) --
    • Subnets (list) --

      The ID of the subnets in the VPC that you want to connect.

      • (string) --
Return type

dict

Returns

Response Syntax

{
    'WorkforceArn': 'string'
}

Response Structure

  • (dict) --

    • WorkforceArn (string) --

      The Amazon Resource Name (ARN) of the workforce.

create_workteam(**kwargs)

Creates a new work team for labeling your data. A work team is defined by one or more Amazon Cognito user pools. You must first create the user pools before you can create a work team.

You cannot create more than 25 work teams in an account and region.

See also: AWS API Documentation

Request Syntax

response = client.create_workteam(
    WorkteamName='string',
    WorkforceName='string',
    MemberDefinitions=[
        {
            'CognitoMemberDefinition': {
                'UserPool': 'string',
                'UserGroup': 'string',
                'ClientId': 'string'
            },
            'OidcMemberDefinition': {
                'Groups': [
                    'string',
                ]
            }
        },
    ],
    Description='string',
    NotificationConfiguration={
        'NotificationTopicArn': 'string'
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • WorkteamName (string) --

    [REQUIRED]

    The name of the work team. Use this name to identify the work team.

  • WorkforceName (string) -- The name of the workforce.
  • MemberDefinitions (list) --

    [REQUIRED]

    A list of MemberDefinition objects that contains objects that identify the workers that make up the work team.

    Workforces can be created using Amazon Cognito or your own OIDC Identity Provider (IdP). For private workforces created using Amazon Cognito use CognitoMemberDefinition . For workforces created using your own OIDC identity provider (IdP) use OidcMemberDefinition . Do not provide input for both of these parameters in a single request.

    For workforces created using Amazon Cognito, private work teams correspond to Amazon Cognito user groups within the user pool used to create a workforce. All of the CognitoMemberDefinition objects that make up the member definition must have the same ClientId and UserPool values. To add a Amazon Cognito user group to an existing worker pool, see Adding groups to a User Pool. For more information about user pools, see `Amazon Cognito User Pools.

    For workforces created using your own OIDC IdP, specify the user groups that you want to include in your private work team in OidcMemberDefinition by listing those groups in Groups .

    • (dict) --

      Defines an Amazon Cognito or your own OIDC IdP user group that is part of a work team.

      • CognitoMemberDefinition (dict) --

        The Amazon Cognito user group that is part of the work team.

        • UserPool (string) -- [REQUIRED]

          An identifier for a user pool. The user pool must be in the same region as the service that you are calling.

        • UserGroup (string) -- [REQUIRED]

          An identifier for a user group.

        • ClientId (string) -- [REQUIRED]

          An identifier for an application client. You must create the app client ID using Amazon Cognito.

      • OidcMemberDefinition (dict) --

        A list user groups that exist in your OIDC Identity Provider (IdP). One to ten groups can be used to create a single private work team. When you add a user group to the list of Groups , you can add that user group to one or more private work teams. If you add a user group to a private work team, all workers in that user group are added to the work team.

        • Groups (list) -- [REQUIRED]

          A list of comma seperated strings that identifies user groups in your OIDC IdP. Each user group is made up of a group of private workers.

          • (string) --
  • Description (string) --

    [REQUIRED]

    A description of the work team.

  • NotificationConfiguration (dict) --

    Configures notification of workers regarding available or expiring work items.

    • NotificationTopicArn (string) --

      The ARN for the Amazon SNS topic to which notifications should be published.

  • Tags (list) --

    An array of key-value pairs.

    For more information, see Resource Tag and Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide .

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'WorkteamArn': 'string'
}

Response Structure

  • (dict) --

    • WorkteamArn (string) --

      The Amazon Resource Name (ARN) of the work team. You can use this ARN to identify the work team.

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceLimitExceeded
delete_action(**kwargs)

Deletes an action.

See also: AWS API Documentation

Request Syntax

response = client.delete_action(
    ActionName='string'
)
Parameters
ActionName (string) --

[REQUIRED]

The name of the action to delete.

Return type
dict
Returns
Response Syntax
{
    'ActionArn': 'string'
}

Response Structure

  • (dict) --
    • ActionArn (string) --

      The Amazon Resource Name (ARN) of the action.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
delete_algorithm(**kwargs)

Removes the specified algorithm from your account.

See also: AWS API Documentation

Request Syntax

response = client.delete_algorithm(
    AlgorithmName='string'
)
Parameters
AlgorithmName (string) --

[REQUIRED]

The name of the algorithm to delete.

Returns
None
delete_app(**kwargs)

Used to stop and delete an app.

See also: AWS API Documentation

Request Syntax

response = client.delete_app(
    DomainId='string',
    UserProfileName='string',
    AppType='JupyterServer'|'KernelGateway'|'TensorBoard'|'RStudioServerPro'|'RSessionGateway',
    AppName='string',
    SpaceName='string'
)
Parameters
  • DomainId (string) --

    [REQUIRED]

    The domain ID.

  • UserProfileName (string) -- The user profile name. If this value is not set, then SpaceName must be set.
  • AppType (string) --

    [REQUIRED]

    The type of app.

  • AppName (string) --

    [REQUIRED]

    The name of the app.

  • SpaceName (string) -- The name of the space. If this value is not set, then UserProfileName must be set.
Returns

None

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceNotFound
delete_app_image_config(**kwargs)

Deletes an AppImageConfig.

See also: AWS API Documentation

Request Syntax

response = client.delete_app_image_config(
    AppImageConfigName='string'
)
Parameters
AppImageConfigName (string) --

[REQUIRED]

The name of the AppImageConfig to delete.

Returns
None

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
delete_artifact(**kwargs)

Deletes an artifact. Either ArtifactArn or Source must be specified.

See also: AWS API Documentation

Request Syntax

response = client.delete_artifact(
    ArtifactArn='string',
    Source={
        'SourceUri': 'string',
        'SourceTypes': [
            {
                'SourceIdType': 'MD5Hash'|'S3ETag'|'S3Version'|'Custom',
                'Value': 'string'
            },
        ]
    }
)
Parameters
  • ArtifactArn (string) -- The Amazon Resource Name (ARN) of the artifact to delete.
  • Source (dict) --

    The URI of the source.

    • SourceUri (string) -- [REQUIRED]

      The URI of the source.

    • SourceTypes (list) --

      A list of source types.

      • (dict) --

        The ID and ID type of an artifact source.

        • SourceIdType (string) -- [REQUIRED]

          The type of ID.

        • Value (string) -- [REQUIRED]

          The ID.

Return type

dict

Returns

Response Syntax

{
    'ArtifactArn': 'string'
}

Response Structure

  • (dict) --

    • ArtifactArn (string) --

      The Amazon Resource Name (ARN) of the artifact.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
delete_association(**kwargs)

Deletes an association.

See also: AWS API Documentation

Request Syntax

response = client.delete_association(
    SourceArn='string',
    DestinationArn='string'
)
Parameters
  • SourceArn (string) --

    [REQUIRED]

    The ARN of the source.

  • DestinationArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of the destination.

Return type

dict

Returns

Response Syntax

{
    'SourceArn': 'string',
    'DestinationArn': 'string'
}

Response Structure

  • (dict) --

    • SourceArn (string) --

      The ARN of the source.

    • DestinationArn (string) --

      The Amazon Resource Name (ARN) of the destination.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
delete_code_repository(**kwargs)

Deletes the specified Git repository from your account.

See also: AWS API Documentation

Request Syntax

response = client.delete_code_repository(
    CodeRepositoryName='string'
)
Parameters
CodeRepositoryName (string) --

[REQUIRED]

The name of the Git repository to delete.

Returns
None
delete_context(**kwargs)

Deletes an context.

See also: AWS API Documentation

Request Syntax

response = client.delete_context(
    ContextName='string'
)
Parameters
ContextName (string) --

[REQUIRED]

The name of the context to delete.

Return type
dict
Returns
Response Syntax
{
    'ContextArn': 'string'
}

Response Structure

  • (dict) --
    • ContextArn (string) --

      The Amazon Resource Name (ARN) of the context.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
delete_data_quality_job_definition(**kwargs)

Deletes a data quality monitoring job definition.

See also: AWS API Documentation

Request Syntax

response = client.delete_data_quality_job_definition(
    JobDefinitionName='string'
)
Parameters
JobDefinitionName (string) --

[REQUIRED]

The name of the data quality monitoring job definition to delete.

Returns
None

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
delete_device_fleet(**kwargs)

Deletes a fleet.

See also: AWS API Documentation

Request Syntax

response = client.delete_device_fleet(
    DeviceFleetName='string'
)
Parameters
DeviceFleetName (string) --

[REQUIRED]

The name of the fleet to delete.

Returns
None

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
delete_domain(**kwargs)

Used to delete a domain. If you onboarded with IAM mode, you will need to delete your domain to onboard again using IAM Identity Center. Use with caution. All of the members of the domain will lose access to their EFS volume, including data, notebooks, and other artifacts.

See also: AWS API Documentation

Request Syntax

response = client.delete_domain(
    DomainId='string',
    RetentionPolicy={
        'HomeEfsFileSystem': 'Retain'|'Delete'
    }
)
Parameters
  • DomainId (string) --

    [REQUIRED]

    The domain ID.

  • RetentionPolicy (dict) --

    The retention policy for this domain, which specifies whether resources will be retained after the Domain is deleted. By default, all resources are retained (not automatically deleted).

    • HomeEfsFileSystem (string) --

      The default is Retain , which specifies to keep the data stored on the EFS volume.

      Specify Delete to delete the data stored on the EFS volume.

Returns

None

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceNotFound
delete_edge_deployment_plan(**kwargs)

Deletes an edge deployment plan if (and only if) all the stages in the plan are inactive or there are no stages in the plan.

See also: AWS API Documentation

Request Syntax

response = client.delete_edge_deployment_plan(
    EdgeDeploymentPlanName='string'
)
Parameters
EdgeDeploymentPlanName (string) --

[REQUIRED]

The name of the edge deployment plan to delete.

Returns
None

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
delete_edge_deployment_stage(**kwargs)

Delete a stage in an edge deployment plan if (and only if) the stage is inactive.

See also: AWS API Documentation

Request Syntax

response = client.delete_edge_deployment_stage(
    EdgeDeploymentPlanName='string',
    StageName='string'
)
Parameters
  • EdgeDeploymentPlanName (string) --

    [REQUIRED]

    The name of the edge deployment plan from which the stage will be deleted.

  • StageName (string) --

    [REQUIRED]

    The name of the stage.

Returns

None

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
delete_endpoint(**kwargs)

Deletes an endpoint. SageMaker frees up all of the resources that were deployed when the endpoint was created.

SageMaker retires any custom KMS key grants associated with the endpoint, meaning you don't need to use the RevokeGrant API call.

When you delete your endpoint, SageMaker asynchronously deletes associated endpoint resources such as KMS key grants. You might still see these resources in your account for a few minutes after deleting your endpoint. Do not delete or revoke the permissions for your ExecutionRoleArn , otherwise SageMaker cannot delete these resources.

See also: AWS API Documentation

Request Syntax

response = client.delete_endpoint(
    EndpointName='string'
)
Parameters
EndpointName (string) --

[REQUIRED]

The name of the endpoint that you want to delete.

Returns
None
delete_endpoint_config(**kwargs)

Deletes an endpoint configuration. The DeleteEndpointConfig API deletes only the specified configuration. It does not delete endpoints created using the configuration.

You must not delete an EndpointConfig in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. If you delete the EndpointConfig of an endpoint that is active or being created or updated you may lose visibility into the instance type the endpoint is using. The endpoint must be deleted in order to stop incurring charges.

See also: AWS API Documentation

Request Syntax

response = client.delete_endpoint_config(
    EndpointConfigName='string'
)
Parameters
EndpointConfigName (string) --

[REQUIRED]

The name of the endpoint configuration that you want to delete.

Returns
None
delete_experiment(**kwargs)

Deletes an SageMaker experiment. All trials associated with the experiment must be deleted first. Use the ListTrials API to get a list of the trials associated with the experiment.

See also: AWS API Documentation

Request Syntax

response = client.delete_experiment(
    ExperimentName='string'
)
Parameters
ExperimentName (string) --

[REQUIRED]

The name of the experiment to delete.

Return type
dict
Returns
Response Syntax
{
    'ExperimentArn': 'string'
}

Response Structure

  • (dict) --
    • ExperimentArn (string) --

      The Amazon Resource Name (ARN) of the experiment that is being deleted.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
delete_feature_group(**kwargs)

Delete the FeatureGroup and any data that was written to the OnlineStore of the FeatureGroup . Data cannot be accessed from the OnlineStore immediately after DeleteFeatureGroup is called.

Data written into the OfflineStore will not be deleted. The Amazon Web Services Glue database and tables that are automatically created for your OfflineStore are not deleted.

See also: AWS API Documentation

Request Syntax

response = client.delete_feature_group(
    FeatureGroupName='string'
)
Parameters
FeatureGroupName (string) --

[REQUIRED]

The name of the FeatureGroup you want to delete. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.

Returns
None

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
delete_flow_definition(**kwargs)

Deletes the specified flow definition.

See also: AWS API Documentation

Request Syntax

response = client.delete_flow_definition(
    FlowDefinitionName='string'
)
Parameters
FlowDefinitionName (string) --

[REQUIRED]

The name of the flow definition you are deleting.

Return type
dict
Returns
Response Syntax
{}

Response Structure

  • (dict) --

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceNotFound
delete_hub(**kwargs)

Delete a hub.

Note

Hub APIs are only callable through SageMaker Studio.

See also: AWS API Documentation

Request Syntax

response = client.delete_hub(
    HubName='string'
)
Parameters
HubName (string) --

[REQUIRED]

The name of the hub to delete.

Returns
None

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceNotFound
delete_hub_content(**kwargs)

Delete the contents of a hub.

Note

Hub APIs are only callable through SageMaker Studio.

See also: AWS API Documentation

Request Syntax

response = client.delete_hub_content(
    HubName='string',
    HubContentType='Model'|'Notebook',
    HubContentName='string',
    HubContentVersion='string'
)
Parameters
  • HubName (string) --

    [REQUIRED]

    The name of the hub that you want to delete content in.

  • HubContentType (string) --

    [REQUIRED]

    The type of content that you want to delete from a hub.

  • HubContentName (string) --

    [REQUIRED]

    The name of the content that you want to delete from a hub.

  • HubContentVersion (string) --

    [REQUIRED]

    The version of the content that you want to delete from a hub.

Returns

None

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceNotFound
delete_human_task_ui(**kwargs)

Use this operation to delete a human task user interface (worker task template).

To see a list of human task user interfaces (work task templates) in your account, use . When you delete a worker task template, it no longer appears when you call ListHumanTaskUis .

See also: AWS API Documentation

Request Syntax

response = client.delete_human_task_ui(
    HumanTaskUiName='string'
)
Parameters
HumanTaskUiName (string) --

[REQUIRED]

The name of the human task user interface (work task template) you want to delete.

Return type
dict
Returns
Response Syntax
{}

Response Structure

  • (dict) --

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
delete_image(**kwargs)

Deletes a SageMaker image and all versions of the image. The container images aren't deleted.

See also: AWS API Documentation

Request Syntax

response = client.delete_image(
    ImageName='string'
)
Parameters
ImageName (string) --

[REQUIRED]

The name of the image to delete.

Return type
dict
Returns
Response Syntax
{}

Response Structure

  • (dict) --

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceNotFound
delete_image_version(**kwargs)

Deletes a version of a SageMaker image. The container image the version represents isn't deleted.

See also: AWS API Documentation

Request Syntax

response = client.delete_image_version(
    ImageName='string',
    Version=123,
    Alias='string'
)
Parameters
  • ImageName (string) --

    [REQUIRED]

    The name of the image to delete.

  • Version (integer) -- The version to delete.
  • Alias (string) -- The alias of the image to delete.
Return type

dict

Returns

Response Syntax

{}

Response Structure

  • (dict) --

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceNotFound
delete_inference_experiment(**kwargs)

Deletes an inference experiment.

Note

This operation does not delete your endpoint, variants, or any underlying resources. This operation only deletes the metadata of your experiment.

See also: AWS API Documentation

Request Syntax

response = client.delete_inference_experiment(
    Name='string'
)
Parameters
Name (string) --

[REQUIRED]

The name of the inference experiment you want to delete.

Return type
dict
Returns
Response Syntax
{
    'InferenceExperimentArn': 'string'
}

Response Structure

  • (dict) --
    • InferenceExperimentArn (string) --

      The ARN of the deleted inference experiment.

Exceptions

  • SageMaker.Client.exceptions.ConflictException
  • SageMaker.Client.exceptions.ResourceNotFound
delete_model(**kwargs)

Deletes a model. The DeleteModel API deletes only the model entry that was created in SageMaker when you called the CreateModel API. It does not delete model artifacts, inference code, or the IAM role that you specified when creating the model.

See also: AWS API Documentation

Request Syntax

response = client.delete_model(
    ModelName='string'
)
Parameters
ModelName (string) --

[REQUIRED]

The name of the model to delete.

Returns
None
delete_model_bias_job_definition(**kwargs)

Deletes an Amazon SageMaker model bias job definition.

See also: AWS API Documentation

Request Syntax

response = client.delete_model_bias_job_definition(
    JobDefinitionName='string'
)
Parameters
JobDefinitionName (string) --

[REQUIRED]

The name of the model bias job definition to delete.

Returns
None

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
delete_model_card(**kwargs)

Deletes an Amazon SageMaker Model Card.

See also: AWS API Documentation

Request Syntax

response = client.delete_model_card(
    ModelCardName='string'
)
Parameters
ModelCardName (string) --

[REQUIRED]

The name of the model card to delete.

Returns
None

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
  • SageMaker.Client.exceptions.ConflictException
delete_model_explainability_job_definition(**kwargs)

Deletes an Amazon SageMaker model explainability job definition.

See also: AWS API Documentation

Request Syntax

response = client.delete_model_explainability_job_definition(
    JobDefinitionName='string'
)
Parameters
JobDefinitionName (string) --

[REQUIRED]

The name of the model explainability job definition to delete.

Returns
None

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
delete_model_package(**kwargs)

Deletes a model package.

A model package is used to create SageMaker models or list on Amazon Web Services Marketplace. Buyers can subscribe to model packages listed on Amazon Web Services Marketplace to create models in SageMaker.

See also: AWS API Documentation

Request Syntax

response = client.delete_model_package(
    ModelPackageName='string'
)
Parameters
ModelPackageName (string) --

[REQUIRED]

The name or Amazon Resource Name (ARN) of the model package to delete.

When you specify a name, the name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).

Returns
None

Exceptions

  • SageMaker.Client.exceptions.ConflictException
delete_model_package_group(**kwargs)

Deletes the specified model group.

See also: AWS API Documentation

Request Syntax

response = client.delete_model_package_group(
    ModelPackageGroupName='string'
)
Parameters
ModelPackageGroupName (string) --

[REQUIRED]

The name of the model group to delete.

Returns
None

Exceptions

  • SageMaker.Client.exceptions.ConflictException
delete_model_package_group_policy(**kwargs)

Deletes a model group resource policy.

See also: AWS API Documentation

Request Syntax

response = client.delete_model_package_group_policy(
    ModelPackageGroupName='string'
)
Parameters
ModelPackageGroupName (string) --

[REQUIRED]

The name of the model group for which to delete the policy.

Returns
None
delete_model_quality_job_definition(**kwargs)

Deletes the secified model quality monitoring job definition.

See also: AWS API Documentation

Request Syntax

response = client.delete_model_quality_job_definition(
    JobDefinitionName='string'
)
Parameters
JobDefinitionName (string) --

[REQUIRED]

The name of the model quality monitoring job definition to delete.

Returns
None

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
delete_monitoring_schedule(**kwargs)

Deletes a monitoring schedule. Also stops the schedule had not already been stopped. This does not delete the job execution history of the monitoring schedule.

See also: AWS API Documentation

Request Syntax

response = client.delete_monitoring_schedule(
    MonitoringScheduleName='string'
)
Parameters
MonitoringScheduleName (string) --

[REQUIRED]

The name of the monitoring schedule to delete.

Returns
None

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
delete_notebook_instance(**kwargs)

Deletes an SageMaker notebook instance. Before you can delete a notebook instance, you must call the StopNotebookInstance API.

Warning

When you delete a notebook instance, you lose all of your data. SageMaker removes the ML compute instance, and deletes the ML storage volume and the network interface associated with the notebook instance.

See also: AWS API Documentation

Request Syntax

response = client.delete_notebook_instance(
    NotebookInstanceName='string'
)
Parameters
NotebookInstanceName (string) --

[REQUIRED]

The name of the SageMaker notebook instance to delete.

Returns
None
delete_notebook_instance_lifecycle_config(**kwargs)

Deletes a notebook instance lifecycle configuration.

See also: AWS API Documentation

Request Syntax

response = client.delete_notebook_instance_lifecycle_config(
    NotebookInstanceLifecycleConfigName='string'
)
Parameters
NotebookInstanceLifecycleConfigName (string) --

[REQUIRED]

The name of the lifecycle configuration to delete.

Returns
None
delete_pipeline(**kwargs)

Deletes a pipeline if there are no running instances of the pipeline. To delete a pipeline, you must stop all running instances of the pipeline using the StopPipelineExecution API. When you delete a pipeline, all instances of the pipeline are deleted.

See also: AWS API Documentation

Request Syntax

response = client.delete_pipeline(
    PipelineName='string',
    ClientRequestToken='string'
)
Parameters
  • PipelineName (string) --

    [REQUIRED]

    The name of the pipeline to delete.

  • ClientRequestToken (string) --

    [REQUIRED]

    A unique, case-sensitive identifier that you provide to ensure the idempotency of the operation. An idempotent operation completes no more than one time.

    This field is autopopulated if not provided.

Return type

dict

Returns

Response Syntax

{
    'PipelineArn': 'string'
}

Response Structure

  • (dict) --

    • PipelineArn (string) --

      The Amazon Resource Name (ARN) of the pipeline to delete.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
delete_project(**kwargs)

Delete the specified project.

See also: AWS API Documentation

Request Syntax

response = client.delete_project(
    ProjectName='string'
)
Parameters
ProjectName (string) --

[REQUIRED]

The name of the project to delete.

Returns
None

Exceptions

  • SageMaker.Client.exceptions.ConflictException
delete_space(**kwargs)

Used to delete a space.

See also: AWS API Documentation

Request Syntax

response = client.delete_space(
    DomainId='string',
    SpaceName='string'
)
Parameters
  • DomainId (string) --

    [REQUIRED]

    The ID of the associated Domain.

  • SpaceName (string) --

    [REQUIRED]

    The name of the space.

Returns

None

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceNotFound
delete_studio_lifecycle_config(**kwargs)

Deletes the Studio Lifecycle Configuration. In order to delete the Lifecycle Configuration, there must be no running apps using the Lifecycle Configuration. You must also remove the Lifecycle Configuration from UserSettings in all Domains and UserProfiles.

See also: AWS API Documentation

Request Syntax

response = client.delete_studio_lifecycle_config(
    StudioLifecycleConfigName='string'
)
Parameters
StudioLifecycleConfigName (string) --

[REQUIRED]

The name of the Studio Lifecycle Configuration to delete.

Returns
None

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
  • SageMaker.Client.exceptions.ResourceInUse
delete_tags(**kwargs)

Deletes the specified tags from an SageMaker resource.

To list a resource's tags, use the ListTags API.

Note

When you call this API to delete tags from a hyperparameter tuning job, the deleted tags are not removed from training jobs that the hyperparameter tuning job launched before you called this API.

Note

When you call this API to delete tags from a SageMaker Studio Domain or User Profile, the deleted tags are not removed from Apps that the SageMaker Studio Domain or User Profile launched before you called this API.

See also: AWS API Documentation

Request Syntax

response = client.delete_tags(
    ResourceArn='string',
    TagKeys=[
        'string',
    ]
)
Parameters
  • ResourceArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of the resource whose tags you want to delete.

  • TagKeys (list) --

    [REQUIRED]

    An array or one or more tag keys to delete.

    • (string) --
Return type

dict

Returns

Response Syntax

{}

Response Structure

  • (dict) --

delete_trial(**kwargs)

Deletes the specified trial. All trial components that make up the trial must be deleted first. Use the DescribeTrialComponent API to get the list of trial components.

See also: AWS API Documentation

Request Syntax

response = client.delete_trial(
    TrialName='string'
)
Parameters
TrialName (string) --

[REQUIRED]

The name of the trial to delete.

Return type
dict
Returns
Response Syntax
{
    'TrialArn': 'string'
}

Response Structure

  • (dict) --
    • TrialArn (string) --

      The Amazon Resource Name (ARN) of the trial that is being deleted.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
delete_trial_component(**kwargs)

Deletes the specified trial component. A trial component must be disassociated from all trials before the trial component can be deleted. To disassociate a trial component from a trial, call the DisassociateTrialComponent API.

See also: AWS API Documentation

Request Syntax

response = client.delete_trial_component(
    TrialComponentName='string'
)
Parameters
TrialComponentName (string) --

[REQUIRED]

The name of the component to delete.

Return type
dict
Returns
Response Syntax
{
    'TrialComponentArn': 'string'
}

Response Structure

  • (dict) --
    • TrialComponentArn (string) --

      The Amazon Resource Name (ARN) of the component is being deleted.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
delete_user_profile(**kwargs)

Deletes a user profile. When a user profile is deleted, the user loses access to their EFS volume, including data, notebooks, and other artifacts.

See also: AWS API Documentation

Request Syntax

response = client.delete_user_profile(
    DomainId='string',
    UserProfileName='string'
)
Parameters
  • DomainId (string) --

    [REQUIRED]

    The domain ID.

  • UserProfileName (string) --

    [REQUIRED]

    The user profile name.

Returns

None

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceNotFound
delete_workforce(**kwargs)

Use this operation to delete a workforce.

If you want to create a new workforce in an Amazon Web Services Region where a workforce already exists, use this operation to delete the existing workforce and then use to create a new workforce.

Warning

If a private workforce contains one or more work teams, you must use the operation to delete all work teams before you delete the workforce. If you try to delete a workforce that contains one or more work teams, you will recieve a ResourceInUse error.

See also: AWS API Documentation

Request Syntax

response = client.delete_workforce(
    WorkforceName='string'
)
Parameters
WorkforceName (string) --

[REQUIRED]

The name of the workforce.

Return type
dict
Returns
Response Syntax
{}

Response Structure

  • (dict) --
delete_workteam(**kwargs)

Deletes an existing work team. This operation can't be undone.

See also: AWS API Documentation

Request Syntax

response = client.delete_workteam(
    WorkteamName='string'
)
Parameters
WorkteamName (string) --

[REQUIRED]

The name of the work team to delete.

Return type
dict
Returns
Response Syntax
{
    'Success': True|False
}

Response Structure

  • (dict) --
    • Success (boolean) --

      Returns true if the work team was successfully deleted; otherwise, returns false .

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
deregister_devices(**kwargs)

Deregisters the specified devices. After you deregister a device, you will need to re-register the devices.

See also: AWS API Documentation

Request Syntax

response = client.deregister_devices(
    DeviceFleetName='string',
    DeviceNames=[
        'string',
    ]
)
Parameters
  • DeviceFleetName (string) --

    [REQUIRED]

    The name of the fleet the devices belong to.

  • DeviceNames (list) --

    [REQUIRED]

    The unique IDs of the devices.

    • (string) --
Returns

None

describe_action(**kwargs)

Describes an action.

See also: AWS API Documentation

Request Syntax

response = client.describe_action(
    ActionName='string'
)
Parameters
ActionName (string) --

[REQUIRED]

The name of the action to describe.

Return type
dict
Returns
Response Syntax
{
    'ActionName': 'string',
    'ActionArn': 'string',
    'Source': {
        'SourceUri': 'string',
        'SourceType': 'string',
        'SourceId': 'string'
    },
    'ActionType': 'string',
    'Description': 'string',
    'Status': 'Unknown'|'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
    'Properties': {
        'string': 'string'
    },
    'CreationTime': datetime(2015, 1, 1),
    'CreatedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    },
    'LastModifiedTime': datetime(2015, 1, 1),
    'LastModifiedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    },
    'MetadataProperties': {
        'CommitId': 'string',
        'Repository': 'string',
        'GeneratedBy': 'string',
        'ProjectId': 'string'
    },
    'LineageGroupArn': 'string'
}

Response Structure

  • (dict) --
    • ActionName (string) --

      The name of the action.

    • ActionArn (string) --

      The Amazon Resource Name (ARN) of the action.

    • Source (dict) --

      The source of the action.

      • SourceUri (string) --

        The URI of the source.

      • SourceType (string) --

        The type of the source.

      • SourceId (string) --

        The ID of the source.

    • ActionType (string) --

      The type of the action.

    • Description (string) --

      The description of the action.

    • Status (string) --

      The status of the action.

    • Properties (dict) --

      A list of the action's properties.

      • (string) --
        • (string) --
    • CreationTime (datetime) --

      When the action was created.

    • CreatedBy (dict) --

      Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

    • LastModifiedTime (datetime) --

      When the action was last modified.

    • LastModifiedBy (dict) --

      Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

    • MetadataProperties (dict) --

      Metadata properties of the tracking entity, trial, or trial component.

      • CommitId (string) --

        The commit ID.

      • Repository (string) --

        The repository.

      • GeneratedBy (string) --

        The entity this entity was generated by.

      • ProjectId (string) --

        The project ID.

    • LineageGroupArn (string) --

      The Amazon Resource Name (ARN) of the lineage group.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_algorithm(**kwargs)

Returns a description of the specified algorithm that is in your account.

See also: AWS API Documentation

Request Syntax

response = client.describe_algorithm(
    AlgorithmName='string'
)
Parameters
AlgorithmName (string) --

[REQUIRED]

The name of the algorithm to describe.

Return type
dict
Returns
Response Syntax
{
    'AlgorithmName': 'string',
    'AlgorithmArn': 'string',
    'AlgorithmDescription': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'TrainingSpecification': {
        'TrainingImage': 'string',
        'TrainingImageDigest': 'string',
        'SupportedHyperParameters': [
            {
                'Name': 'string',
                'Description': 'string',
                'Type': 'Integer'|'Continuous'|'Categorical'|'FreeText',
                'Range': {
                    'IntegerParameterRangeSpecification': {
                        'MinValue': 'string',
                        'MaxValue': 'string'
                    },
                    'ContinuousParameterRangeSpecification': {
                        'MinValue': 'string',
                        'MaxValue': 'string'
                    },
                    'CategoricalParameterRangeSpecification': {
                        'Values': [
                            'string',
                        ]
                    }
                },
                'IsTunable': True|False,
                'IsRequired': True|False,
                'DefaultValue': 'string'
            },
        ],
        'SupportedTrainingInstanceTypes': [
            'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge',
        ],
        'SupportsDistributedTraining': True|False,
        'MetricDefinitions': [
            {
                'Name': 'string',
                'Regex': 'string'
            },
        ],
        'TrainingChannels': [
            {
                'Name': 'string',
                'Description': 'string',
                'IsRequired': True|False,
                'SupportedContentTypes': [
                    'string',
                ],
                'SupportedCompressionTypes': [
                    'None'|'Gzip',
                ],
                'SupportedInputModes': [
                    'Pipe'|'File'|'FastFile',
                ]
            },
        ],
        'SupportedTuningJobObjectiveMetrics': [
            {
                'Type': 'Maximize'|'Minimize',
                'MetricName': 'string'
            },
        ]
    },
    'InferenceSpecification': {
        'Containers': [
            {
                'ContainerHostname': 'string',
                'Image': 'string',
                'ImageDigest': 'string',
                'ModelDataUrl': 'string',
                'ProductId': 'string',
                'Environment': {
                    'string': 'string'
                },
                'ModelInput': {
                    'DataInputConfig': 'string'
                },
                'Framework': 'string',
                'FrameworkVersion': 'string',
                'NearestModelName': 'string'
            },
        ],
        'SupportedTransformInstanceTypes': [
            'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
        ],
        'SupportedRealtimeInferenceInstanceTypes': [
            'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge',
        ],
        'SupportedContentTypes': [
            'string',
        ],
        'SupportedResponseMIMETypes': [
            'string',
        ]
    },
    'ValidationSpecification': {
        'ValidationRole': 'string',
        'ValidationProfiles': [
            {
                'ProfileName': 'string',
                'TrainingJobDefinition': {
                    'TrainingInputMode': 'Pipe'|'File'|'FastFile',
                    'HyperParameters': {
                        'string': 'string'
                    },
                    'InputDataConfig': [
                        {
                            'ChannelName': 'string',
                            'DataSource': {
                                'S3DataSource': {
                                    'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                                    'S3Uri': 'string',
                                    'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                                    'AttributeNames': [
                                        'string',
                                    ],
                                    'InstanceGroupNames': [
                                        'string',
                                    ]
                                },
                                'FileSystemDataSource': {
                                    'FileSystemId': 'string',
                                    'FileSystemAccessMode': 'rw'|'ro',
                                    'FileSystemType': 'EFS'|'FSxLustre',
                                    'DirectoryPath': 'string'
                                }
                            },
                            'ContentType': 'string',
                            'CompressionType': 'None'|'Gzip',
                            'RecordWrapperType': 'None'|'RecordIO',
                            'InputMode': 'Pipe'|'File'|'FastFile',
                            'ShuffleConfig': {
                                'Seed': 123
                            }
                        },
                    ],
                    'OutputDataConfig': {
                        'KmsKeyId': 'string',
                        'S3OutputPath': 'string'
                    },
                    'ResourceConfig': {
                        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge',
                        'InstanceCount': 123,
                        'VolumeSizeInGB': 123,
                        'VolumeKmsKeyId': 'string',
                        'InstanceGroups': [
                            {
                                'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge',
                                'InstanceCount': 123,
                                'InstanceGroupName': 'string'
                            },
                        ],
                        'KeepAlivePeriodInSeconds': 123
                    },
                    'StoppingCondition': {
                        'MaxRuntimeInSeconds': 123,
                        'MaxWaitTimeInSeconds': 123
                    }
                },
                'TransformJobDefinition': {
                    'MaxConcurrentTransforms': 123,
                    'MaxPayloadInMB': 123,
                    'BatchStrategy': 'MultiRecord'|'SingleRecord',
                    'Environment': {
                        'string': 'string'
                    },
                    'TransformInput': {
                        'DataSource': {
                            'S3DataSource': {
                                'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                                'S3Uri': 'string'
                            }
                        },
                        'ContentType': 'string',
                        'CompressionType': 'None'|'Gzip',
                        'SplitType': 'None'|'Line'|'RecordIO'|'TFRecord'
                    },
                    'TransformOutput': {
                        'S3OutputPath': 'string',
                        'Accept': 'string',
                        'AssembleWith': 'None'|'Line',
                        'KmsKeyId': 'string'
                    },
                    'TransformResources': {
                        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
                        'InstanceCount': 123,
                        'VolumeKmsKeyId': 'string'
                    }
                }
            },
        ]
    },
    'AlgorithmStatus': 'Pending'|'InProgress'|'Completed'|'Failed'|'Deleting',
    'AlgorithmStatusDetails': {
        'ValidationStatuses': [
            {
                'Name': 'string',
                'Status': 'NotStarted'|'InProgress'|'Completed'|'Failed',
                'FailureReason': 'string'
            },
        ],
        'ImageScanStatuses': [
            {
                'Name': 'string',
                'Status': 'NotStarted'|'InProgress'|'Completed'|'Failed',
                'FailureReason': 'string'
            },
        ]
    },
    'ProductId': 'string',
    'CertifyForMarketplace': True|False
}

Response Structure

  • (dict) --
    • AlgorithmName (string) --

      The name of the algorithm being described.

    • AlgorithmArn (string) --

      The Amazon Resource Name (ARN) of the algorithm.

    • AlgorithmDescription (string) --

      A brief summary about the algorithm.

    • CreationTime (datetime) --

      A timestamp specifying when the algorithm was created.

    • TrainingSpecification (dict) --

      Details about training jobs run by this algorithm.

      • TrainingImage (string) --

        The Amazon ECR registry path of the Docker image that contains the training algorithm.

      • TrainingImageDigest (string) --

        An MD5 hash of the training algorithm that identifies the Docker image used for training.

      • SupportedHyperParameters (list) --

        A list of the HyperParameterSpecification objects, that define the supported hyperparameters. This is required if the algorithm supports automatic model tuning.>

        • (dict) --

          Defines a hyperparameter to be used by an algorithm.

          • Name (string) --

            The name of this hyperparameter. The name must be unique.

          • Description (string) --

            A brief description of the hyperparameter.

          • Type (string) --

            The type of this hyperparameter. The valid types are Integer , Continuous , Categorical , and FreeText .

          • Range (dict) --

            The allowed range for this hyperparameter.

            • IntegerParameterRangeSpecification (dict) --

              A IntegerParameterRangeSpecification object that defines the possible values for an integer hyperparameter.

              • MinValue (string) --

                The minimum integer value allowed.

              • MaxValue (string) --

                The maximum integer value allowed.

            • ContinuousParameterRangeSpecification (dict) --

              A ContinuousParameterRangeSpecification object that defines the possible values for a continuous hyperparameter.

              • MinValue (string) --

                The minimum floating-point value allowed.

              • MaxValue (string) --

                The maximum floating-point value allowed.

            • CategoricalParameterRangeSpecification (dict) --

              A CategoricalParameterRangeSpecification object that defines the possible values for a categorical hyperparameter.

              • Values (list) --

                The allowed categories for the hyperparameter.

                • (string) --
          • IsTunable (boolean) --

            Indicates whether this hyperparameter is tunable in a hyperparameter tuning job.

          • IsRequired (boolean) --

            Indicates whether this hyperparameter is required.

          • DefaultValue (string) --

            The default value for this hyperparameter. If a default value is specified, a hyperparameter cannot be required.

      • SupportedTrainingInstanceTypes (list) --

        A list of the instance types that this algorithm can use for training.

        • (string) --
      • SupportsDistributedTraining (boolean) --

        Indicates whether the algorithm supports distributed training. If set to false, buyers can't request more than one instance during training.

      • MetricDefinitions (list) --

        A list of MetricDefinition objects, which are used for parsing metrics generated by the algorithm.

        • (dict) --

          Specifies a metric that the training algorithm writes to stderr or stdout . SageMakerhyperparameter tuning captures all defined metrics. You specify one metric that a hyperparameter tuning job uses as its objective metric to choose the best training job.

          • Name (string) --

            The name of the metric.

          • Regex (string) --

            A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining Objective Metrics.

      • TrainingChannels (list) --

        A list of ChannelSpecification objects, which specify the input sources to be used by the algorithm.

        • (dict) --

          Defines a named input source, called a channel, to be used by an algorithm.

          • Name (string) --

            The name of the channel.

          • Description (string) --

            A brief description of the channel.

          • IsRequired (boolean) --

            Indicates whether the channel is required by the algorithm.

          • SupportedContentTypes (list) --

            The supported MIME types for the data.

            • (string) --
          • SupportedCompressionTypes (list) --

            The allowed compression types, if data compression is used.

            • (string) --
          • SupportedInputModes (list) --

            The allowed input mode, either FILE or PIPE.

            In FILE mode, Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used input mode.

            In PIPE mode, Amazon SageMaker streams input data from the source directly to your algorithm without using the EBS volume.

            • (string) --

              The training input mode that the algorithm supports. For more information about input modes, see Algorithms.

              Pipe mode

              If an algorithm supports Pipe mode, Amazon SageMaker streams data directly from Amazon S3 to the container.

              File mode

              If an algorithm supports File mode, SageMaker downloads the training data from S3 to the provisioned ML storage volume, and mounts the directory to the Docker volume for the training container.

              You must provision the ML storage volume with sufficient capacity to accommodate the data downloaded from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container uses the ML storage volume to also store intermediate information, if any.

              For distributed algorithms, training data is distributed uniformly. Your training duration is predictable if the input data objects sizes are approximately the same. SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed when one host in a training cluster is overloaded, thus becoming a bottleneck in training.

              FastFile mode

              If an algorithm supports FastFile mode, SageMaker streams data directly from S3 to the container with no code changes, and provides file system access to the data. Users can author their training script to interact with these files as if they were stored on disk.

              FastFile mode works best when the data is read sequentially. Augmented manifest files aren't supported. The startup time is lower when there are fewer files in the S3 bucket provided.
      • SupportedTuningJobObjectiveMetrics (list) --

        A list of the metrics that the algorithm emits that can be used as the objective metric in a hyperparameter tuning job.

        • (dict) --

          Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the Type parameter.

          • Type (string) --

            Whether to minimize or maximize the objective metric.

          • MetricName (string) --

            The name of the metric to use for the objective metric.

    • InferenceSpecification (dict) --

      Details about inference jobs that the algorithm runs.

      • Containers (list) --

        The Amazon ECR registry path of the Docker image that contains the inference code.

        • (dict) --

          Describes the Docker container for the model package.

          • ContainerHostname (string) --

            The DNS host name for the Docker container.

          • Image (string) --

            The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.

            If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

          • ImageDigest (string) --

            An MD5 hash of the training algorithm that identifies the Docker image used for training.

          • ModelDataUrl (string) --

            The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).

            Note

            The model artifacts must be in an S3 bucket that is in the same region as the model package.

          • ProductId (string) --

            The Amazon Web Services Marketplace product ID of the model package.

          • Environment (dict) --

            The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.

            • (string) --
              • (string) --
          • ModelInput (dict) --

            A structure with Model Input details.

            • DataInputConfig (string) --

              The input configuration object for the model.

          • Framework (string) --

            The machine learning framework of the model package container image.

          • FrameworkVersion (string) --

            The framework version of the Model Package Container Image.

          • NearestModelName (string) --

            The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata .

      • SupportedTransformInstanceTypes (list) --

        A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.

        This parameter is required for unversioned models, and optional for versioned models.

        • (string) --
      • SupportedRealtimeInferenceInstanceTypes (list) --

        A list of the instance types that are used to generate inferences in real-time.

        This parameter is required for unversioned models, and optional for versioned models.

        • (string) --
      • SupportedContentTypes (list) --

        The supported MIME types for the input data.

        • (string) --
      • SupportedResponseMIMETypes (list) --

        The supported MIME types for the output data.

        • (string) --
    • ValidationSpecification (dict) --

      Details about configurations for one or more training jobs that SageMaker runs to test the algorithm.

      • ValidationRole (string) --

        The IAM roles that SageMaker uses to run the training jobs.

      • ValidationProfiles (list) --

        An array of AlgorithmValidationProfile objects, each of which specifies a training job and batch transform job that SageMaker runs to validate your algorithm.

        • (dict) --

          Defines a training job and a batch transform job that SageMaker runs to validate your algorithm.

          The data provided in the validation profile is made available to your buyers on Amazon Web Services Marketplace.

          • ProfileName (string) --

            The name of the profile for the algorithm. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).

          • TrainingJobDefinition (dict) --

            The TrainingJobDefinition object that describes the training job that SageMaker runs to validate your algorithm.

            • TrainingInputMode (string) --

              The training input mode that the algorithm supports. For more information about input modes, see Algorithms.

              Pipe mode

              If an algorithm supports Pipe mode, Amazon SageMaker streams data directly from Amazon S3 to the container.

              File mode

              If an algorithm supports File mode, SageMaker downloads the training data from S3 to the provisioned ML storage volume, and mounts the directory to the Docker volume for the training container.

              You must provision the ML storage volume with sufficient capacity to accommodate the data downloaded from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container uses the ML storage volume to also store intermediate information, if any.

              For distributed algorithms, training data is distributed uniformly. Your training duration is predictable if the input data objects sizes are approximately the same. SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed when one host in a training cluster is overloaded, thus becoming a bottleneck in training.

              FastFile mode

              If an algorithm supports FastFile mode, SageMaker streams data directly from S3 to the container with no code changes, and provides file system access to the data. Users can author their training script to interact with these files as if they were stored on disk.

              FastFile mode works best when the data is read sequentially. Augmented manifest files aren't supported. The startup time is lower when there are fewer files in the S3 bucket provided.
            • HyperParameters (dict) --

              The hyperparameters used for the training job.

              • (string) --
                • (string) --
            • InputDataConfig (list) --

              An array of Channel objects, each of which specifies an input source.

              • (dict) --

                A channel is a named input source that training algorithms can consume.

                • ChannelName (string) --

                  The name of the channel.

                • DataSource (dict) --

                  The location of the channel data.

                  • S3DataSource (dict) --

                    The S3 location of the data source that is associated with a channel.

                    • S3DataType (string) --

                      If you choose S3Prefix , S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix for model training.

                      If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want SageMaker to use for model training.

                      If you choose AugmentedManifestFile , S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel's input mode is Pipe .

                    • S3Uri (string) --

                      Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

                      • A key name prefix might look like this: s3://bucketname/exampleprefix
                      • A manifest might look like this: s3://bucketname/example.manifest A manifest is an S3 object which is a JSON file consisting of an array of elements. The first element is a prefix which is followed by one or more suffixes. SageMaker appends the suffix elements to the prefix to get a full set of S3Uri . Note that the prefix must be a valid non-empty S3Uri that precludes users from specifying a manifest whose individual S3Uri is sourced from different S3 buckets. The following code example shows a valid manifest format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] This JSON is equivalent to the following S3Uri list: s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uri in this manifest is the input data for the channel for this data source. The object that each S3Uri points to must be readable by the IAM role that SageMaker uses to perform tasks on your behalf.
                    • S3DataDistributionType (string) --

                      If you want SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated .

                      If you want SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key . If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.

                      Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.

                      In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key . If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File ), this copies 1/n of the number of objects.

                    • AttributeNames (list) --

                      A list of one or more attribute names to use that are found in a specified augmented manifest file.

                      • (string) --
                    • InstanceGroupNames (list) --

                      A list of names of instance groups that get data from the S3 data source.

                      • (string) --
                  • FileSystemDataSource (dict) --

                    The file system that is associated with a channel.

                    • FileSystemId (string) --

                      The file system id.

                    • FileSystemAccessMode (string) --

                      The access mode of the mount of the directory associated with the channel. A directory can be mounted either in ro (read-only) or rw (read-write) mode.

                    • FileSystemType (string) --

                      The file system type.

                    • DirectoryPath (string) --

                      The full path to the directory to associate with the channel.

                • ContentType (string) --

                  The MIME type of the data.

                • CompressionType (string) --

                  If training data is compressed, the compression type. The default value is None . CompressionType is used only in Pipe input mode. In File mode, leave this field unset or set it to None.

                • RecordWrapperType (string) --

                  Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.

                  In File mode, leave this field unset or set it to None.

                • InputMode (string) --

                  (Optional) The input mode to use for the data channel in a training job. If you don't set a value for InputMode , SageMaker uses the value set for TrainingInputMode . Use this parameter to override the TrainingInputMode setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use File input mode. To stream data directly from Amazon S3 to the container, choose Pipe input mode.

                  To use a model for incremental training, choose File input model.

                • ShuffleConfig (dict) --

                  A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType , this shuffles the results of the S3 key prefix matches. If you use ManifestFile , the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile , the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value.

                  For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key , the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.

                  • Seed (integer) --

                    Determines the shuffling order in ShuffleConfig value.

            • OutputDataConfig (dict) --

              the path to the S3 bucket where you want to store model artifacts. SageMaker creates subfolders for the artifacts.

              • KmsKeyId (string) --

                The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

                • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
                • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
                • // KMS Key Alias "alias/ExampleAlias"
                • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

                If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

                The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob , CreateTransformJob , or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .

              • S3OutputPath (string) --

                Identifies the S3 path where you want SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix .

            • ResourceConfig (dict) --

              The resources, including the ML compute instances and ML storage volumes, to use for model training.

              • InstanceType (string) --

                The ML compute instance type.

                Note

                SageMaker Training on Amazon Elastic Compute Cloud (EC2) P4de instances is in preview release starting December 9th, 2022.

                Amazon EC2 P4de instances (currently in preview) are powered by 8 NVIDIA A100 GPUs with 80GB high-performance HBM2e GPU memory, which accelerate the speed of training ML models that need to be trained on large datasets of high-resolution data. In this preview release, Amazon SageMaker supports ML training jobs on P4de instances ( ml.p4de.24xlarge ) to reduce model training time. The ml.p4de.24xlarge instances are available in the following Amazon Web Services Regions.
                • US East (N. Virginia) (us-east-1)
                • US West (Oregon) (us-west-2)

                To request quota limit increase and start using P4de instances, contact the SageMaker Training service team through your account team.

              • InstanceCount (integer) --

                The number of ML compute instances to use. For distributed training, provide a value greater than 1.

              • VolumeSizeInGB (integer) --

                The size of the ML storage volume that you want to provision.

                ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.

                When using an ML instance with NVMe SSD volumes, SageMaker doesn't provision Amazon EBS General Purpose SSD (gp2) storage. Available storage is fixed to the NVMe-type instance's storage capacity. SageMaker configures storage paths for training datasets, checkpoints, model artifacts, and outputs to use the entire capacity of the instance storage. For example, ML instance families with the NVMe-type instance storage include ml.p4d , ml.g4dn , and ml.g5 .

                When using an ML instance with the EBS-only storage option and without instance storage, you must define the size of EBS volume through VolumeSizeInGB in the ResourceConfig API. For example, ML instance families that use EBS volumes include ml.c5 and ml.p2 .

                To look up instance types and their instance storage types and volumes, see Amazon EC2 Instance Types.

                To find the default local paths defined by the SageMaker training platform, see Amazon SageMaker Training Storage Folders for Training Datasets, Checkpoints, Model Artifacts, and Outputs.

              • VolumeKmsKeyId (string) --

                The Amazon Web Services KMS key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.

                Note

                Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

                For a list of instance types that support local instance storage, see Instance Store Volumes.

                For more information about local instance storage encryption, see SSD Instance Store Volumes.

                The VolumeKmsKeyId can be in any of the following formats:

                • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
                • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
              • InstanceGroups (list) --

                The configuration of a heterogeneous cluster in JSON format.

                • (dict) --

                  Defines an instance group for heterogeneous cluster training. When requesting a training job using the CreateTrainingJob API, you can configure multiple instance groups .

                  • InstanceType (string) --

                    Specifies the instance type of the instance group.

                  • InstanceCount (integer) --

                    Specifies the number of instances of the instance group.

                  • InstanceGroupName (string) --

                    Specifies the name of the instance group.

              • KeepAlivePeriodInSeconds (integer) --

                The duration of time in seconds to retain configured resources in a warm pool for subsequent training jobs.

            • StoppingCondition (dict) --

              Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.

              To stop a job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts.

              • MaxRuntimeInSeconds (integer) --

                The maximum length of time, in seconds, that a training or compilation job can run before it is stopped.

                For compilation jobs, if the job does not complete during this time, a TimeOut error is generated. We recommend starting with 900 seconds and increasing as necessary based on your model.

                For all other jobs, if the job does not complete during this time, SageMaker ends the job. When RetryStrategy is specified in the job request, MaxRuntimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt. The default value is 1 day. The maximum value is 28 days.

                The maximum time that a TrainingJob can run in total, including any time spent publishing metrics or archiving and uploading models after it has been stopped, is 30 days.

              • MaxWaitTimeInSeconds (integer) --

                The maximum length of time, in seconds, that a managed Spot training job has to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the job can run. It must be equal to or greater than MaxRuntimeInSeconds . If the job does not complete during this time, SageMaker ends the job.

                When RetryStrategy is specified in the job request, MaxWaitTimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt.

          • TransformJobDefinition (dict) --

            The TransformJobDefinition object that describes the transform job that SageMaker runs to validate your algorithm.

            • MaxConcurrentTransforms (integer) --

              The maximum number of parallel requests that can be sent to each instance in a transform job. The default value is 1.

            • MaxPayloadInMB (integer) --

              The maximum payload size allowed, in MB. A payload is the data portion of a record (without metadata).

            • BatchStrategy (string) --

              A string that determines the number of records included in a single mini-batch.

              SingleRecord means only one record is used per mini-batch. MultiRecord means a mini-batch is set to contain as many records that can fit within the MaxPayloadInMB limit.
            • Environment (dict) --

              The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.

              • (string) --
                • (string) --
            • TransformInput (dict) --

              A description of the input source and the way the transform job consumes it.

              • DataSource (dict) --

                Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.

                • S3DataSource (dict) --

                  The S3 location of the data source that is associated with a channel.

                  • S3DataType (string) --

                    If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.

                    If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.

                    The following values are compatible: ManifestFile , S3Prefix

                    The following value is not compatible: AugmentedManifestFile

                  • S3Uri (string) --

                    Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

                    • A key name prefix might look like this: s3://bucketname/exampleprefix .
                    • A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following S3Uris : s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uris in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.
              • ContentType (string) --

                The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.

              • CompressionType (string) --

                If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None .

              • SplitType (string) --

                The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType is None , which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line to split records on a newline character boundary. SplitType also supports a number of record-oriented binary data formats. Currently, the supported record formats are:

                • RecordIO
                • TFRecord

                When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord , Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord , Amazon SageMaker sends individual records in each request.

                Note

                Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of BatchStrategy is set to SingleRecord . Padding is not removed if the value of BatchStrategy is set to MultiRecord .

                For more information about RecordIO , see Create a Dataset Using RecordIO in the MXNet documentation. For more information about TFRecord , see Consuming TFRecord data in the TensorFlow documentation.

            • TransformOutput (dict) --

              Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.

              • S3OutputPath (string) --

                The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix .

                For every S3 object used as input for the transform job, batch transform stores the transformed data with an . out suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv , batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out . Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an . out file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.

              • Accept (string) --

                The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.

              • AssembleWith (string) --

                Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None . To add a newline character at the end of every transformed record, specify Line .

              • KmsKeyId (string) --

                The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

                • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
                • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
                • Alias name: alias/ExampleAlias
                • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

                If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

                The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .

            • TransformResources (dict) --

              Identifies the ML compute instances for the transform job.

              • InstanceType (string) --

                The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ml.m5.large instance types.

              • InstanceCount (integer) --

                The number of ML compute instances to use in the transform job. The default value is 1 , and the maximum is 100 . For distributed transform jobs, specify a value greater than 1 .

              • VolumeKmsKeyId (string) --

                The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job.

                Note

                Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

                For a list of instance types that support local instance storage, see Instance Store Volumes.

                For more information about local instance storage encryption, see SSD Instance Store Volumes.

                The VolumeKmsKeyId can be any of the following formats:

                • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
                • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
                • Alias name: alias/ExampleAlias
                • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
    • AlgorithmStatus (string) --

      The current status of the algorithm.

    • AlgorithmStatusDetails (dict) --

      Details about the current status of the algorithm.

      • ValidationStatuses (list) --

        The status of algorithm validation.

        • (dict) --

          Represents the overall status of an algorithm.

          • Name (string) --

            The name of the algorithm for which the overall status is being reported.

          • Status (string) --

            The current status.

          • FailureReason (string) --

            if the overall status is Failed , the reason for the failure.

      • ImageScanStatuses (list) --

        The status of the scan of the algorithm's Docker image container.

        • (dict) --

          Represents the overall status of an algorithm.

          • Name (string) --

            The name of the algorithm for which the overall status is being reported.

          • Status (string) --

            The current status.

          • FailureReason (string) --

            if the overall status is Failed , the reason for the failure.

    • ProductId (string) --

      The product identifier of the algorithm.

    • CertifyForMarketplace (boolean) --

      Whether the algorithm is certified to be listed in Amazon Web Services Marketplace.

describe_app(**kwargs)

Describes the app.

See also: AWS API Documentation

Request Syntax

response = client.describe_app(
    DomainId='string',
    UserProfileName='string',
    AppType='JupyterServer'|'KernelGateway'|'TensorBoard'|'RStudioServerPro'|'RSessionGateway',
    AppName='string',
    SpaceName='string'
)
Parameters
  • DomainId (string) --

    [REQUIRED]

    The domain ID.

  • UserProfileName (string) -- The user profile name. If this value is not set, then SpaceName must be set.
  • AppType (string) --

    [REQUIRED]

    The type of app.

  • AppName (string) --

    [REQUIRED]

    The name of the app.

  • SpaceName (string) -- The name of the space.
Return type

dict

Returns

Response Syntax

{
    'AppArn': 'string',
    'AppType': 'JupyterServer'|'KernelGateway'|'TensorBoard'|'RStudioServerPro'|'RSessionGateway',
    'AppName': 'string',
    'DomainId': 'string',
    'UserProfileName': 'string',
    'Status': 'Deleted'|'Deleting'|'Failed'|'InService'|'Pending',
    'LastHealthCheckTimestamp': datetime(2015, 1, 1),
    'LastUserActivityTimestamp': datetime(2015, 1, 1),
    'CreationTime': datetime(2015, 1, 1),
    'FailureReason': 'string',
    'ResourceSpec': {
        'SageMakerImageArn': 'string',
        'SageMakerImageVersionArn': 'string',
        'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
        'LifecycleConfigArn': 'string'
    },
    'SpaceName': 'string'
}

Response Structure

  • (dict) --

    • AppArn (string) --

      The Amazon Resource Name (ARN) of the app.

    • AppType (string) --

      The type of app.

    • AppName (string) --

      The name of the app.

    • DomainId (string) --

      The domain ID.

    • UserProfileName (string) --

      The user profile name.

    • Status (string) --

      The status.

    • LastHealthCheckTimestamp (datetime) --

      The timestamp of the last health check.

    • LastUserActivityTimestamp (datetime) --

      The timestamp of the last user's activity. LastUserActivityTimestamp is also updated when SageMaker performs health checks without user activity. As a result, this value is set to the same value as LastHealthCheckTimestamp .

    • CreationTime (datetime) --

      The creation time.

    • FailureReason (string) --

      The failure reason.

    • ResourceSpec (dict) --

      The instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.

      • SageMakerImageArn (string) --

        The ARN of the SageMaker image that the image version belongs to.

      • SageMakerImageVersionArn (string) --

        The ARN of the image version created on the instance.

      • InstanceType (string) --

        The instance type that the image version runs on.

        Note

        JupyterServer apps only support the system value.

        For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

      • LifecycleConfigArn (string) --

        The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

    • SpaceName (string) --

      The name of the space. If this value is not set, then UserProfileName must be set.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_app_image_config(**kwargs)

Describes an AppImageConfig.

See also: AWS API Documentation

Request Syntax

response = client.describe_app_image_config(
    AppImageConfigName='string'
)
Parameters
AppImageConfigName (string) --

[REQUIRED]

The name of the AppImageConfig to describe.

Return type
dict
Returns
Response Syntax
{
    'AppImageConfigArn': 'string',
    'AppImageConfigName': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'KernelGatewayImageConfig': {
        'KernelSpecs': [
            {
                'Name': 'string',
                'DisplayName': 'string'
            },
        ],
        'FileSystemConfig': {
            'MountPath': 'string',
            'DefaultUid': 123,
            'DefaultGid': 123
        }
    }
}

Response Structure

  • (dict) --
    • AppImageConfigArn (string) --

      The Amazon Resource Name (ARN) of the AppImageConfig.

    • AppImageConfigName (string) --

      The name of the AppImageConfig.

    • CreationTime (datetime) --

      When the AppImageConfig was created.

    • LastModifiedTime (datetime) --

      When the AppImageConfig was last modified.

    • KernelGatewayImageConfig (dict) --

      The configuration of a KernelGateway app.

      • KernelSpecs (list) --

        The specification of the Jupyter kernels in the image.

        • (dict) --

          The specification of a Jupyter kernel.

          • Name (string) --

            The name of the Jupyter kernel in the image. This value is case sensitive.

          • DisplayName (string) --

            The display name of the kernel.

      • FileSystemConfig (dict) --

        The Amazon Elastic File System (EFS) storage configuration for a SageMaker image.

        • MountPath (string) --

          The path within the image to mount the user's EFS home directory. The directory should be empty. If not specified, defaults to /home/sagemaker-user .

        • DefaultUid (integer) --

          The default POSIX user ID (UID). If not specified, defaults to 1000 .

        • DefaultGid (integer) --

          The default POSIX group ID (GID). If not specified, defaults to 100 .

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_artifact(**kwargs)

Describes an artifact.

See also: AWS API Documentation

Request Syntax

response = client.describe_artifact(
    ArtifactArn='string'
)
Parameters
ArtifactArn (string) --

[REQUIRED]

The Amazon Resource Name (ARN) of the artifact to describe.

Return type
dict
Returns
Response Syntax
{
    'ArtifactName': 'string',
    'ArtifactArn': 'string',
    'Source': {
        'SourceUri': 'string',
        'SourceTypes': [
            {
                'SourceIdType': 'MD5Hash'|'S3ETag'|'S3Version'|'Custom',
                'Value': 'string'
            },
        ]
    },
    'ArtifactType': 'string',
    'Properties': {
        'string': 'string'
    },
    'CreationTime': datetime(2015, 1, 1),
    'CreatedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    },
    'LastModifiedTime': datetime(2015, 1, 1),
    'LastModifiedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    },
    'MetadataProperties': {
        'CommitId': 'string',
        'Repository': 'string',
        'GeneratedBy': 'string',
        'ProjectId': 'string'
    },
    'LineageGroupArn': 'string'
}

Response Structure

  • (dict) --
    • ArtifactName (string) --

      The name of the artifact.

    • ArtifactArn (string) --

      The Amazon Resource Name (ARN) of the artifact.

    • Source (dict) --

      The source of the artifact.

      • SourceUri (string) --

        The URI of the source.

      • SourceTypes (list) --

        A list of source types.

        • (dict) --

          The ID and ID type of an artifact source.

          • SourceIdType (string) --

            The type of ID.

          • Value (string) --

            The ID.

    • ArtifactType (string) --

      The type of the artifact.

    • Properties (dict) --

      A list of the artifact's properties.

      • (string) --
        • (string) --
    • CreationTime (datetime) --

      When the artifact was created.

    • CreatedBy (dict) --

      Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

    • LastModifiedTime (datetime) --

      When the artifact was last modified.

    • LastModifiedBy (dict) --

      Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

    • MetadataProperties (dict) --

      Metadata properties of the tracking entity, trial, or trial component.

      • CommitId (string) --

        The commit ID.

      • Repository (string) --

        The repository.

      • GeneratedBy (string) --

        The entity this entity was generated by.

      • ProjectId (string) --

        The project ID.

    • LineageGroupArn (string) --

      The Amazon Resource Name (ARN) of the lineage group.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_auto_ml_job(**kwargs)

Returns information about an Amazon SageMaker AutoML job.

See also: AWS API Documentation

Request Syntax

response = client.describe_auto_ml_job(
    AutoMLJobName='string'
)
Parameters
AutoMLJobName (string) --

[REQUIRED]

Requests information about an AutoML job using its unique name.

Return type
dict
Returns
Response Syntax
{
    'AutoMLJobName': 'string',
    'AutoMLJobArn': 'string',
    'InputDataConfig': [
        {
            'DataSource': {
                'S3DataSource': {
                    'S3DataType': 'ManifestFile'|'S3Prefix',
                    'S3Uri': 'string'
                }
            },
            'CompressionType': 'None'|'Gzip',
            'TargetAttributeName': 'string',
            'ContentType': 'string',
            'ChannelType': 'training'|'validation'
        },
    ],
    'OutputDataConfig': {
        'KmsKeyId': 'string',
        'S3OutputPath': 'string'
    },
    'RoleArn': 'string',
    'AutoMLJobObjective': {
        'MetricName': 'Accuracy'|'MSE'|'F1'|'F1macro'|'AUC'|'RMSE'|'MAE'|'R2'|'BalancedAccuracy'|'Precision'|'PrecisionMacro'|'Recall'|'RecallMacro'
    },
    'ProblemType': 'BinaryClassification'|'MulticlassClassification'|'Regression',
    'AutoMLJobConfig': {
        'CompletionCriteria': {
            'MaxCandidates': 123,
            'MaxRuntimePerTrainingJobInSeconds': 123,
            'MaxAutoMLJobRuntimeInSeconds': 123
        },
        'SecurityConfig': {
            'VolumeKmsKeyId': 'string',
            'EnableInterContainerTrafficEncryption': True|False,
            'VpcConfig': {
                'SecurityGroupIds': [
                    'string',
                ],
                'Subnets': [
                    'string',
                ]
            }
        },
        'DataSplitConfig': {
            'ValidationFraction': ...
        },
        'CandidateGenerationConfig': {
            'FeatureSpecificationS3Uri': 'string',
            'AlgorithmsConfig': [
                {
                    'AutoMLAlgorithms': [
                        'xgboost'|'linear-learner'|'mlp'|'lightgbm'|'catboost'|'randomforest'|'extra-trees'|'nn-torch'|'fastai',
                    ]
                },
            ]
        },
        'Mode': 'AUTO'|'ENSEMBLING'|'HYPERPARAMETER_TUNING'
    },
    'CreationTime': datetime(2015, 1, 1),
    'EndTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'FailureReason': 'string',
    'PartialFailureReasons': [
        {
            'PartialFailureMessage': 'string'
        },
    ],
    'BestCandidate': {
        'CandidateName': 'string',
        'FinalAutoMLJobObjectiveMetric': {
            'Type': 'Maximize'|'Minimize',
            'MetricName': 'Accuracy'|'MSE'|'F1'|'F1macro'|'AUC'|'RMSE'|'MAE'|'R2'|'BalancedAccuracy'|'Precision'|'PrecisionMacro'|'Recall'|'RecallMacro',
            'Value': ...,
            'StandardMetricName': 'Accuracy'|'MSE'|'F1'|'F1macro'|'AUC'|'RMSE'|'MAE'|'R2'|'BalancedAccuracy'|'Precision'|'PrecisionMacro'|'Recall'|'RecallMacro'
        },
        'ObjectiveStatus': 'Succeeded'|'Pending'|'Failed',
        'CandidateSteps': [
            {
                'CandidateStepType': 'AWS::SageMaker::TrainingJob'|'AWS::SageMaker::TransformJob'|'AWS::SageMaker::ProcessingJob',
                'CandidateStepArn': 'string',
                'CandidateStepName': 'string'
            },
        ],
        'CandidateStatus': 'Completed'|'InProgress'|'Failed'|'Stopped'|'Stopping',
        'InferenceContainers': [
            {
                'Image': 'string',
                'ModelDataUrl': 'string',
                'Environment': {
                    'string': 'string'
                }
            },
        ],
        'CreationTime': datetime(2015, 1, 1),
        'EndTime': datetime(2015, 1, 1),
        'LastModifiedTime': datetime(2015, 1, 1),
        'FailureReason': 'string',
        'CandidateProperties': {
            'CandidateArtifactLocations': {
                'Explainability': 'string',
                'ModelInsights': 'string'
            },
            'CandidateMetrics': [
                {
                    'MetricName': 'Accuracy'|'MSE'|'F1'|'F1macro'|'AUC'|'RMSE'|'MAE'|'R2'|'BalancedAccuracy'|'Precision'|'PrecisionMacro'|'Recall'|'RecallMacro',
                    'Value': ...,
                    'Set': 'Train'|'Validation'|'Test',
                    'StandardMetricName': 'Accuracy'|'MSE'|'F1'|'F1macro'|'AUC'|'RMSE'|'MAE'|'R2'|'BalancedAccuracy'|'Precision'|'PrecisionMacro'|'Recall'|'RecallMacro'|'LogLoss'|'InferenceLatency'
                },
            ]
        }
    },
    'AutoMLJobStatus': 'Completed'|'InProgress'|'Failed'|'Stopped'|'Stopping',
    'AutoMLJobSecondaryStatus': 'Starting'|'AnalyzingData'|'FeatureEngineering'|'ModelTuning'|'MaxCandidatesReached'|'Failed'|'Stopped'|'MaxAutoMLJobRuntimeReached'|'Stopping'|'CandidateDefinitionsGenerated'|'GeneratingExplainabilityReport'|'Completed'|'ExplainabilityError'|'DeployingModel'|'ModelDeploymentError'|'GeneratingModelInsightsReport'|'ModelInsightsError',
    'GenerateCandidateDefinitionsOnly': True|False,
    'AutoMLJobArtifacts': {
        'CandidateDefinitionNotebookLocation': 'string',
        'DataExplorationNotebookLocation': 'string'
    },
    'ResolvedAttributes': {
        'AutoMLJobObjective': {
            'MetricName': 'Accuracy'|'MSE'|'F1'|'F1macro'|'AUC'|'RMSE'|'MAE'|'R2'|'BalancedAccuracy'|'Precision'|'PrecisionMacro'|'Recall'|'RecallMacro'
        },
        'ProblemType': 'BinaryClassification'|'MulticlassClassification'|'Regression',
        'CompletionCriteria': {
            'MaxCandidates': 123,
            'MaxRuntimePerTrainingJobInSeconds': 123,
            'MaxAutoMLJobRuntimeInSeconds': 123
        }
    },
    'ModelDeployConfig': {
        'AutoGenerateEndpointName': True|False,
        'EndpointName': 'string'
    },
    'ModelDeployResult': {
        'EndpointName': 'string'
    }
}

Response Structure

  • (dict) --
    • AutoMLJobName (string) --

      Returns the name of the AutoML job.

    • AutoMLJobArn (string) --

      Returns the ARN of the AutoML job.

    • InputDataConfig (list) --

      Returns the input data configuration for the AutoML job.

      • (dict) --

        A channel is a named input source that training algorithms can consume. The validation dataset size is limited to less than 2 GB. The training dataset size must be less than 100 GB. For more information, see .

        Note

        A validation dataset must contain the same headers as the training dataset.

        • DataSource (dict) --

          The data source for an AutoML channel.

          • S3DataSource (dict) --

            The Amazon S3 location of the input data.

            • S3DataType (string) --

              The data type.

              A ManifestFile should have the format shown below:

              [ {"prefix": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"},

              "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1",

              "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2",

              ... "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ]

              An S3Prefix should have the following format:

              s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE
            • S3Uri (string) --

              The URL to the Amazon S3 data source.

        • CompressionType (string) --

          You can use Gzip or None . The default value is None .

        • TargetAttributeName (string) --

          The name of the target variable in supervised learning, usually represented by 'y'.

        • ContentType (string) --

          The content type of the data from the input source. You can use text/csv;header=present or x-application/vnd.amazon+parquet . The default value is text/csv;header=present .

        • ChannelType (string) --

          The channel type (optional) is an enum string. The default value is training . Channels for training and validation must share the same ContentType and TargetAttributeName . For information on specifying training and validation channel types, see How to specify training and validation datasets.

    • OutputDataConfig (dict) --

      Returns the job's output data config.

      • KmsKeyId (string) --

        The Key Management Service (KMS) encryption key ID.

      • S3OutputPath (string) --

        The Amazon S3 output path. Must be 128 characters or less.

    • RoleArn (string) --

      The Amazon Resource Name (ARN) of the Identity and Access Management (IAM) role that has read permission to the input data location and write permission to the output data location in Amazon S3.

    • AutoMLJobObjective (dict) --

      Returns the job's objective.

      • MetricName (string) --

        The name of the objective metric used to measure the predictive quality of a machine learning system. This metric is optimized during training to provide the best estimate for model parameter values from data.

        Here are the options:

        Accuracy

        The ratio of the number of correctly classified items to the total number of (correctly and incorrectly) classified items. It is used for both binary and multiclass classification. Accuracy measures how close the predicted class values are to the actual values. Values for accuracy metrics vary between zero (0) and one (1). A value of 1 indicates perfect accuracy, and 0 indicates perfect inaccuracy.

        AUC

        The area under the curve (AUC) metric is used to compare and evaluate binary classification by algorithms that return probabilities, such as logistic regression. To map the probabilities into classifications, these are compared against a threshold value.

        The relevant curve is the receiver operating characteristic curve (ROC curve). The ROC curve plots the true positive rate (TPR) of predictions (or recall) against the false positive rate (FPR) as a function of the threshold value, above which a prediction is considered positive. Increasing the threshold results in fewer false positives, but more false negatives.

        AUC is the area under this ROC curve. Therefore, AUC provides an aggregated measure of the model performance across all possible classification thresholds. AUC scores vary between 0 and 1. A score of 1 indicates perfect accuracy, and a score of one half (0.5) indicates that the prediction is not better than a random classifier.

        BalancedAccuracy

        BalancedAccuracy is a metric that measures the ratio of accurate predictions to all predictions. This ratio is calculated after normalizing true positives (TP) and true negatives (TN) by the total number of positive (P) and negative (N) values. It is used in both binary and multiclass classification and is defined as follows: 0.5*((TP/P)+(TN/N)), with values ranging from 0 to 1. BalancedAccuracy gives a better measure of accuracy when the number of positives or negatives differ greatly from each other in an imbalanced dataset. For example, when only 1% of email is spam.

        F1

        The F1 score is the harmonic mean of the precision and recall, defined as follows: F1 = 2 * (precision * recall) / (precision + recall). It is used for binary classification into classes traditionally referred to as positive and negative. Predictions are said to be true when they match their actual (correct) class, and false when they do not.

        Precision is the ratio of the true positive predictions to all positive predictions, and it includes the false positives in a dataset. Precision measures the quality of the prediction when it predicts the positive class.

        Recall (or sensitivity) is the ratio of the true positive predictions to all actual positive instances. Recall measures how completely a model predicts the actual class members in a dataset.

        F1 scores vary between 0 and 1. A score of 1 indicates the best possible performance, and 0 indicates the worst.

        F1macro

        The F1macro score applies F1 scoring to multiclass classification problems. It does this by calculating the precision and recall, and then taking their harmonic mean to calculate the F1 score for each class. Lastly, the F1macro averages the individual scores to obtain the F1macro score. F1macro scores vary between 0 and 1. A score of 1 indicates the best possible performance, and 0 indicates the worst.

        MAE

        The mean absolute error (MAE) is a measure of how different the predicted and actual values are, when they're averaged over all values. MAE is commonly used in regression analysis to understand model prediction error. If there is linear regression, MAE represents the average distance from a predicted line to the actual value. MAE is defined as the sum of absolute errors divided by the number of observations. Values range from 0 to infinity, with smaller numbers indicating a better model fit to the data.

        MSE

        The mean squared error (MSE) is the average of the squared differences between the predicted and actual values. It is used for regression. MSE values are always positive. The better a model is at predicting the actual values, the smaller the MSE value is

        Precision

        Precision measures how well an algorithm predicts the true positives (TP) out of all of the positives that it identifies. It is defined as follows: Precision = TP/(TP+FP), with values ranging from zero (0) to one (1), and is used in binary classification. Precision is an important metric when the cost of a false positive is high. For example, the cost of a false positive is very high if an airplane safety system is falsely deemed safe to fly. A false positive (FP) reflects a positive prediction that is actually negative in the data.

        PrecisionMacro

        The precision macro computes precision for multiclass classification problems. It does this by calculating precision for each class and averaging scores to obtain precision for several classes. PrecisionMacro scores range from zero (0) to one (1). Higher scores reflect the model's ability to predict true positives (TP) out of all of the positives that it identifies, averaged across multiple classes.

        R2

        R2, also known as the coefficient of determination, is used in regression to quantify how much a model can explain the variance of a dependent variable. Values range from one (1) to negative one (-1). Higher numbers indicate a higher fraction of explained variability. R2 values close to zero (0) indicate that very little of the dependent variable can be explained by the model. Negative values indicate a poor fit and that the model is outperformed by a constant function. For linear regression, this is a horizontal line.

        Recall

        Recall measures how well an algorithm correctly predicts all of the true positives (TP) in a dataset. A true positive is a positive prediction that is also an actual positive value in the data. Recall is defined as follows: Recall = TP/(TP+FN), with values ranging from 0 to 1. Higher scores reflect a better ability of the model to predict true positives (TP) in the data, and is used in binary classification.

        Recall is important when testing for cancer because it's used to find all of the true positives. A false positive (FP) reflects a positive prediction that is actually negative in the data. It is often insufficient to measure only recall, because predicting every output as a true positive yield a perfect recall score.

        RecallMacro

        The RecallMacro computes recall for multiclass classification problems by calculating recall for each class and averaging scores to obtain recall for several classes. RecallMacro scores range from 0 to 1. Higher scores reflect the model's ability to predict true positives (TP) in a dataset. Whereas, a true positive reflects a positive prediction that is also an actual positive value in the data. It is often insufficient to measure only recall, because predicting every output as a true positive yields a perfect recall score.

        RMSE

        Root mean squared error (RMSE) measures the square root of the squared difference between predicted and actual values, and it's averaged over all values. It is used in regression analysis to understand model prediction error. It's an important metric to indicate the presence of large model errors and outliers. Values range from zero (0) to infinity, with smaller numbers indicating a better model fit to the data. RMSE is dependent on scale, and should not be used to compare datasets of different sizes.

        If you do not specify a metric explicitly, the default behavior is to automatically use:

        • MSE : for regression.
        • F1 : for binary classification
        • Accuracy : for multiclass classification.
    • ProblemType (string) --

      Returns the job's problem type.

    • AutoMLJobConfig (dict) --

      Returns the configuration for the AutoML job.

      • CompletionCriteria (dict) --

        How long an AutoML job is allowed to run, or how many candidates a job is allowed to generate.

        • MaxCandidates (integer) --

          The maximum number of times a training job is allowed to run.

        • MaxRuntimePerTrainingJobInSeconds (integer) --

          The maximum time, in seconds, that each training job executed inside hyperparameter tuning is allowed to run as part of a hyperparameter tuning job. For more information, see the used by the action.

        • MaxAutoMLJobRuntimeInSeconds (integer) --

          The maximum runtime, in seconds, an AutoML job has to complete.

          If an AutoML job exceeds the maximum runtime, the job is stopped automatically and its processing is ended gracefully. The AutoML job identifies the best model whose training was completed and marks it as the best-performing model. Any unfinished steps of the job, such as automatic one-click Autopilot model deployment, are not completed.

      • SecurityConfig (dict) --

        The security configuration for traffic encryption or Amazon VPC settings.

        • VolumeKmsKeyId (string) --

          The key used to encrypt stored data.

        • EnableInterContainerTrafficEncryption (boolean) --

          Whether to use traffic encryption between the container layers.

        • VpcConfig (dict) --

          The VPC configuration.

          • SecurityGroupIds (list) --

            The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

            • (string) --
          • Subnets (list) --

            The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.

            • (string) --
      • DataSplitConfig (dict) --

        The configuration for splitting the input training dataset.

        Type: AutoMLDataSplitConfig

        • ValidationFraction (float) --

          The validation fraction (optional) is a float that specifies the portion of the training dataset to be used for validation. The default value is 0.2, and values must be greater than 0 and less than 1. We recommend setting this value to be less than 0.5.

      • CandidateGenerationConfig (dict) --

        The configuration for generating a candidate for an AutoML job (optional).

        • FeatureSpecificationS3Uri (string) --

          A URL to the Amazon S3 data source containing selected features from the input data source to run an Autopilot job. You can input FeatureAttributeNames (optional) in JSON format as shown below:

          { "FeatureAttributeNames":["col1", "col2", ...] } .

          You can also specify the data type of the feature (optional) in the format shown below:

          { "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... } }

          Note

          These column keys may not include the target column.

          In ensembling mode, Autopilot only supports the following data types: numeric , categorical , text , and datetime . In HPO mode, Autopilot can support numeric , categorical , text , datetime , and sequence .

          If only FeatureDataTypes is provided, the column keys ( col1 , col2 ,..) should be a subset of the column names in the input data.

          If both FeatureDataTypes and FeatureAttributeNames are provided, then the column keys should be a subset of the column names provided in FeatureAttributeNames .

          The key name FeatureAttributeNames is fixed. The values listed in ["col1", "col2", ...] are case sensitive and should be a list of strings containing unique values that are a subset of the column names in the input data. The list of columns provided must not include the target column.

        • AlgorithmsConfig (list) --

          Stores the configuration information for the selection of algorithms used to train the model candidates.

          The list of available algorithms to choose from depends on the training mode set in AutoMLJobConfig.Mode.

          • AlgorithmsConfig should not be set in AUTO training mode.
          • When AlgorithmsConfig is provided, one AutoMLAlgorithms attribute must be set and one only. If the list of algorithms provided as values for AutoMLAlgorithms is empty, AutoMLCandidateGenerationConfig uses the full set of algorithms for the given training mode.
          • When AlgorithmsConfig is not provided, AutoMLCandidateGenerationConfig uses the full set of algorithms for the given training mode.

          For the list of all algorithms per training mode, see .

          For more information on each algorithm, see the Algorithm support section in Autopilot developer guide.

          • (dict) --

            The collection of algorithms run on a dataset for training the model candidates of an Autopilot job.

            • AutoMLAlgorithms (list) --

              The selection of algorithms run on a dataset to train the model candidates of an Autopilot job.

              Note

              Selected algorithms must belong to the list corresponding to the training mode set in AutoMLJobConfig.Mode ( ENSEMBLING or HYPERPARAMETER_TUNING ). Choose a minimum of 1 algorithm.

              • In ENSEMBLING mode:
                • "catboost"
                • "extra-trees"
                • "fastai"
                • "lightgbm"
                • "linear-learner"
                • "nn-torch"
                • "randomforest"
                • "xgboost"
              • In HYPERPARAMETER_TUNING mode:
                • "linear-learner"
                • "mlp"
                • "xgboost"
              • (string) --
      • Mode (string) --

        The method that Autopilot uses to train the data. You can either specify the mode manually or let Autopilot choose for you based on the dataset size by selecting AUTO . In AUTO mode, Autopilot chooses ENSEMBLING for datasets smaller than 100 MB, and HYPERPARAMETER_TUNING for larger ones.

        The ENSEMBLING mode uses a multi-stack ensemble model to predict classification and regression tasks directly from your dataset. This machine learning mode combines several base models to produce an optimal predictive model. It then uses a stacking ensemble method to combine predictions from contributing members. A multi-stack ensemble model can provide better performance over a single model by combining the predictive capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING mode.

        The HYPERPARAMETER_TUNING (HPO) mode uses the best hyperparameters to train the best version of a model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO finds the best hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING mode.

    • CreationTime (datetime) --

      Returns the creation time of the AutoML job.

    • EndTime (datetime) --

      Returns the end time of the AutoML job.

    • LastModifiedTime (datetime) --

      Returns the job's last modified time.

    • FailureReason (string) --

      Returns the failure reason for an AutoML job, when applicable.

    • PartialFailureReasons (list) --

      Returns a list of reasons for partial failures within an AutoML job.

      • (dict) --

        The reason for a partial failure of an AutoML job.

        • PartialFailureMessage (string) --

          The message containing the reason for a partial failure of an AutoML job.

    • BestCandidate (dict) --

      The best model candidate selected by SageMaker Autopilot using both the best objective metric and lowest InferenceLatency for an experiment.

      • CandidateName (string) --

        The name of the candidate.

      • FinalAutoMLJobObjectiveMetric (dict) --

        The best candidate result from an AutoML training job.

        • Type (string) --

          The type of metric with the best result.

        • MetricName (string) --

          The name of the metric with the best result. For a description of the possible objective metrics, see AutoMLJobObjective$MetricName.

        • Value (float) --

          The value of the metric with the best result.

        • StandardMetricName (string) --

          The name of the standard metric. For a description of the standard metrics, see Autopilot candidate metrics.

      • ObjectiveStatus (string) --

        The objective's status.

      • CandidateSteps (list) --

        Information about the candidate's steps.

        • (dict) --

          Information about the steps for a candidate and what step it is working on.

          • CandidateStepType (string) --

            Whether the candidate is at the transform, training, or processing step.

          • CandidateStepArn (string) --

            The ARN for the candidate's step.

          • CandidateStepName (string) --

            The name for the candidate's step.

      • CandidateStatus (string) --

        The candidate's status.

      • InferenceContainers (list) --

        Information about the inference container definitions.

        • (dict) --

          A list of container definitions that describe the different containers that make up an AutoML candidate. For more information, see .

          • Image (string) --

            The Amazon Elastic Container Registry (Amazon ECR) path of the container. For more information, see .

          • ModelDataUrl (string) --

            The location of the model artifacts. For more information, see .

          • Environment (dict) --

            The environment variables to set in the container. For more information, see .

            • (string) --
              • (string) --
      • CreationTime (datetime) --

        The creation time.

      • EndTime (datetime) --

        The end time.

      • LastModifiedTime (datetime) --

        The last modified time.

      • FailureReason (string) --

        The failure reason.

      • CandidateProperties (dict) --

        The properties of an AutoML candidate job.

        • CandidateArtifactLocations (dict) --

          The Amazon S3 prefix to the artifacts generated for an AutoML candidate.

          • Explainability (string) --

            The Amazon S3 prefix to the explainability artifacts generated for the AutoML candidate.

          • ModelInsights (string) --

            The Amazon S3 prefix to the model insight artifacts generated for the AutoML candidate.

        • CandidateMetrics (list) --

          Information about the candidate metrics for an AutoML job.

          • (dict) --

            Information about the metric for a candidate produced by an AutoML job.

            • MetricName (string) --

              The name of the metric.

            • Value (float) --

              The value of the metric.

            • Set (string) --

              The dataset split from which the AutoML job produced the metric.

            • StandardMetricName (string) --

              The name of the standard metric.

              Note

              For definitions of the standard metrics, see Autopilot candidate metrics.

    • AutoMLJobStatus (string) --

      Returns the status of the AutoML job.

    • AutoMLJobSecondaryStatus (string) --

      Returns the secondary status of the AutoML job.

    • GenerateCandidateDefinitionsOnly (boolean) --

      Indicates whether the output for an AutoML job generates candidate definitions only.

    • AutoMLJobArtifacts (dict) --

      Returns information on the job's artifacts found in AutoMLJobArtifacts .

      • CandidateDefinitionNotebookLocation (string) --

        The URL of the notebook location.

      • DataExplorationNotebookLocation (string) --

        The URL of the notebook location.

    • ResolvedAttributes (dict) --

      Contains ProblemType , AutoMLJobObjective , and CompletionCriteria . If you do not provide these values, they are auto-inferred. If you do provide them, the values used are the ones you provide.

      • AutoMLJobObjective (dict) --

        Specifies a metric to minimize or maximize as the objective of a job.

        • MetricName (string) --

          The name of the objective metric used to measure the predictive quality of a machine learning system. This metric is optimized during training to provide the best estimate for model parameter values from data.

          Here are the options:

          Accuracy

          The ratio of the number of correctly classified items to the total number of (correctly and incorrectly) classified items. It is used for both binary and multiclass classification. Accuracy measures how close the predicted class values are to the actual values. Values for accuracy metrics vary between zero (0) and one (1). A value of 1 indicates perfect accuracy, and 0 indicates perfect inaccuracy.

          AUC

          The area under the curve (AUC) metric is used to compare and evaluate binary classification by algorithms that return probabilities, such as logistic regression. To map the probabilities into classifications, these are compared against a threshold value.

          The relevant curve is the receiver operating characteristic curve (ROC curve). The ROC curve plots the true positive rate (TPR) of predictions (or recall) against the false positive rate (FPR) as a function of the threshold value, above which a prediction is considered positive. Increasing the threshold results in fewer false positives, but more false negatives.

          AUC is the area under this ROC curve. Therefore, AUC provides an aggregated measure of the model performance across all possible classification thresholds. AUC scores vary between 0 and 1. A score of 1 indicates perfect accuracy, and a score of one half (0.5) indicates that the prediction is not better than a random classifier.

          BalancedAccuracy

          BalancedAccuracy is a metric that measures the ratio of accurate predictions to all predictions. This ratio is calculated after normalizing true positives (TP) and true negatives (TN) by the total number of positive (P) and negative (N) values. It is used in both binary and multiclass classification and is defined as follows: 0.5*((TP/P)+(TN/N)), with values ranging from 0 to 1. BalancedAccuracy gives a better measure of accuracy when the number of positives or negatives differ greatly from each other in an imbalanced dataset. For example, when only 1% of email is spam.

          F1

          The F1 score is the harmonic mean of the precision and recall, defined as follows: F1 = 2 * (precision * recall) / (precision + recall). It is used for binary classification into classes traditionally referred to as positive and negative. Predictions are said to be true when they match their actual (correct) class, and false when they do not.

          Precision is the ratio of the true positive predictions to all positive predictions, and it includes the false positives in a dataset. Precision measures the quality of the prediction when it predicts the positive class.

          Recall (or sensitivity) is the ratio of the true positive predictions to all actual positive instances. Recall measures how completely a model predicts the actual class members in a dataset.

          F1 scores vary between 0 and 1. A score of 1 indicates the best possible performance, and 0 indicates the worst.

          F1macro

          The F1macro score applies F1 scoring to multiclass classification problems. It does this by calculating the precision and recall, and then taking their harmonic mean to calculate the F1 score for each class. Lastly, the F1macro averages the individual scores to obtain the F1macro score. F1macro scores vary between 0 and 1. A score of 1 indicates the best possible performance, and 0 indicates the worst.

          MAE

          The mean absolute error (MAE) is a measure of how different the predicted and actual values are, when they're averaged over all values. MAE is commonly used in regression analysis to understand model prediction error. If there is linear regression, MAE represents the average distance from a predicted line to the actual value. MAE is defined as the sum of absolute errors divided by the number of observations. Values range from 0 to infinity, with smaller numbers indicating a better model fit to the data.

          MSE

          The mean squared error (MSE) is the average of the squared differences between the predicted and actual values. It is used for regression. MSE values are always positive. The better a model is at predicting the actual values, the smaller the MSE value is

          Precision

          Precision measures how well an algorithm predicts the true positives (TP) out of all of the positives that it identifies. It is defined as follows: Precision = TP/(TP+FP), with values ranging from zero (0) to one (1), and is used in binary classification. Precision is an important metric when the cost of a false positive is high. For example, the cost of a false positive is very high if an airplane safety system is falsely deemed safe to fly. A false positive (FP) reflects a positive prediction that is actually negative in the data.

          PrecisionMacro

          The precision macro computes precision for multiclass classification problems. It does this by calculating precision for each class and averaging scores to obtain precision for several classes. PrecisionMacro scores range from zero (0) to one (1). Higher scores reflect the model's ability to predict true positives (TP) out of all of the positives that it identifies, averaged across multiple classes.

          R2

          R2, also known as the coefficient of determination, is used in regression to quantify how much a model can explain the variance of a dependent variable. Values range from one (1) to negative one (-1). Higher numbers indicate a higher fraction of explained variability. R2 values close to zero (0) indicate that very little of the dependent variable can be explained by the model. Negative values indicate a poor fit and that the model is outperformed by a constant function. For linear regression, this is a horizontal line.

          Recall

          Recall measures how well an algorithm correctly predicts all of the true positives (TP) in a dataset. A true positive is a positive prediction that is also an actual positive value in the data. Recall is defined as follows: Recall = TP/(TP+FN), with values ranging from 0 to 1. Higher scores reflect a better ability of the model to predict true positives (TP) in the data, and is used in binary classification.

          Recall is important when testing for cancer because it's used to find all of the true positives. A false positive (FP) reflects a positive prediction that is actually negative in the data. It is often insufficient to measure only recall, because predicting every output as a true positive yield a perfect recall score.

          RecallMacro

          The RecallMacro computes recall for multiclass classification problems by calculating recall for each class and averaging scores to obtain recall for several classes. RecallMacro scores range from 0 to 1. Higher scores reflect the model's ability to predict true positives (TP) in a dataset. Whereas, a true positive reflects a positive prediction that is also an actual positive value in the data. It is often insufficient to measure only recall, because predicting every output as a true positive yields a perfect recall score.

          RMSE

          Root mean squared error (RMSE) measures the square root of the squared difference between predicted and actual values, and it's averaged over all values. It is used in regression analysis to understand model prediction error. It's an important metric to indicate the presence of large model errors and outliers. Values range from zero (0) to infinity, with smaller numbers indicating a better model fit to the data. RMSE is dependent on scale, and should not be used to compare datasets of different sizes.

          If you do not specify a metric explicitly, the default behavior is to automatically use:

          • MSE : for regression.
          • F1 : for binary classification
          • Accuracy : for multiclass classification.
      • ProblemType (string) --

        The problem type.

      • CompletionCriteria (dict) --

        How long a job is allowed to run, or how many candidates a job is allowed to generate.

        • MaxCandidates (integer) --

          The maximum number of times a training job is allowed to run.

        • MaxRuntimePerTrainingJobInSeconds (integer) --

          The maximum time, in seconds, that each training job executed inside hyperparameter tuning is allowed to run as part of a hyperparameter tuning job. For more information, see the used by the action.

        • MaxAutoMLJobRuntimeInSeconds (integer) --

          The maximum runtime, in seconds, an AutoML job has to complete.

          If an AutoML job exceeds the maximum runtime, the job is stopped automatically and its processing is ended gracefully. The AutoML job identifies the best model whose training was completed and marks it as the best-performing model. Any unfinished steps of the job, such as automatic one-click Autopilot model deployment, are not completed.

    • ModelDeployConfig (dict) --

      Indicates whether the model was deployed automatically to an endpoint and the name of that endpoint if deployed automatically.

      • AutoGenerateEndpointName (boolean) --

        Set to True to automatically generate an endpoint name for a one-click Autopilot model deployment; set to False otherwise. The default value is False .

        Note

        If you set AutoGenerateEndpointName to True , do not specify the EndpointName ; otherwise a 400 error is thrown.

      • EndpointName (string) --

        Specifies the endpoint name to use for a one-click Autopilot model deployment if the endpoint name is not generated automatically.

        Note

        Specify the EndpointName if and only if you set AutoGenerateEndpointName to False ; otherwise a 400 error is thrown.

    • ModelDeployResult (dict) --

      Provides information about endpoint for the model deployment.

      • EndpointName (string) --

        The name of the endpoint to which the model has been deployed.

        Note

        If model deployment fails, this field is omitted from the response.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_code_repository(**kwargs)

Gets details about the specified Git repository.

See also: AWS API Documentation

Request Syntax

response = client.describe_code_repository(
    CodeRepositoryName='string'
)
Parameters
CodeRepositoryName (string) --

[REQUIRED]

The name of the Git repository to describe.

Return type
dict
Returns
Response Syntax
{
    'CodeRepositoryName': 'string',
    'CodeRepositoryArn': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'GitConfig': {
        'RepositoryUrl': 'string',
        'Branch': 'string',
        'SecretArn': 'string'
    }
}

Response Structure

  • (dict) --
    • CodeRepositoryName (string) --

      The name of the Git repository.

    • CodeRepositoryArn (string) --

      The Amazon Resource Name (ARN) of the Git repository.

    • CreationTime (datetime) --

      The date and time that the repository was created.

    • LastModifiedTime (datetime) --

      The date and time that the repository was last changed.

    • GitConfig (dict) --

      Configuration details about the repository, including the URL where the repository is located, the default branch, and the Amazon Resource Name (ARN) of the Amazon Web Services Secrets Manager secret that contains the credentials used to access the repository.

      • RepositoryUrl (string) --

        The URL where the Git repository is located.

      • Branch (string) --

        The default branch for the Git repository.

      • SecretArn (string) --

        The Amazon Resource Name (ARN) of the Amazon Web Services Secrets Manager secret that contains the credentials used to access the git repository. The secret must have a staging label of AWSCURRENT and must be in the following format:

        {"username": UserName, "password": Password}
describe_compilation_job(**kwargs)

Returns information about a model compilation job.

To create a model compilation job, use CreateCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.

See also: AWS API Documentation

Request Syntax

response = client.describe_compilation_job(
    CompilationJobName='string'
)
Parameters
CompilationJobName (string) --

[REQUIRED]

The name of the model compilation job that you want information about.

Return type
dict
Returns
Response Syntax
{
    'CompilationJobName': 'string',
    'CompilationJobArn': 'string',
    'CompilationJobStatus': 'INPROGRESS'|'COMPLETED'|'FAILED'|'STARTING'|'STOPPING'|'STOPPED',
    'CompilationStartTime': datetime(2015, 1, 1),
    'CompilationEndTime': datetime(2015, 1, 1),
    'StoppingCondition': {
        'MaxRuntimeInSeconds': 123,
        'MaxWaitTimeInSeconds': 123
    },
    'InferenceImage': 'string',
    'ModelPackageVersionArn': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'FailureReason': 'string',
    'ModelArtifacts': {
        'S3ModelArtifacts': 'string'
    },
    'ModelDigests': {
        'ArtifactDigest': 'string'
    },
    'RoleArn': 'string',
    'InputConfig': {
        'S3Uri': 'string',
        'DataInputConfig': 'string',
        'Framework': 'TENSORFLOW'|'KERAS'|'MXNET'|'ONNX'|'PYTORCH'|'XGBOOST'|'TFLITE'|'DARKNET'|'SKLEARN',
        'FrameworkVersion': 'string'
    },
    'OutputConfig': {
        'S3OutputLocation': 'string',
        'TargetDevice': 'lambda'|'ml_m4'|'ml_m5'|'ml_c4'|'ml_c5'|'ml_p2'|'ml_p3'|'ml_g4dn'|'ml_inf1'|'ml_eia2'|'jetson_tx1'|'jetson_tx2'|'jetson_nano'|'jetson_xavier'|'rasp3b'|'imx8qm'|'deeplens'|'rk3399'|'rk3288'|'aisage'|'sbe_c'|'qcs605'|'qcs603'|'sitara_am57x'|'amba_cv2'|'amba_cv22'|'amba_cv25'|'x86_win32'|'x86_win64'|'coreml'|'jacinto_tda4vm'|'imx8mplus',
        'TargetPlatform': {
            'Os': 'ANDROID'|'LINUX',
            'Arch': 'X86_64'|'X86'|'ARM64'|'ARM_EABI'|'ARM_EABIHF',
            'Accelerator': 'INTEL_GRAPHICS'|'MALI'|'NVIDIA'|'NNA'
        },
        'CompilerOptions': 'string',
        'KmsKeyId': 'string'
    },
    'VpcConfig': {
        'SecurityGroupIds': [
            'string',
        ],
        'Subnets': [
            'string',
        ]
    }
}

Response Structure

  • (dict) --
    • CompilationJobName (string) --

      The name of the model compilation job.

    • CompilationJobArn (string) --

      The Amazon Resource Name (ARN) of the model compilation job.

    • CompilationJobStatus (string) --

      The status of the model compilation job.

    • CompilationStartTime (datetime) --

      The time when the model compilation job started the CompilationJob instances.

      You are billed for the time between this timestamp and the timestamp in the DescribeCompilationJobResponse$CompilationEndTime field. In Amazon CloudWatch Logs, the start time might be later than this time. That's because it takes time to download the compilation job, which depends on the size of the compilation job container.

    • CompilationEndTime (datetime) --

      The time when the model compilation job on a compilation job instance ended. For a successful or stopped job, this is when the job's model artifacts have finished uploading. For a failed job, this is when Amazon SageMaker detected that the job failed.

    • StoppingCondition (dict) --

      Specifies a limit to how long a model compilation job can run. When the job reaches the time limit, Amazon SageMaker ends the compilation job. Use this API to cap model training costs.

      • MaxRuntimeInSeconds (integer) --

        The maximum length of time, in seconds, that a training or compilation job can run before it is stopped.

        For compilation jobs, if the job does not complete during this time, a TimeOut error is generated. We recommend starting with 900 seconds and increasing as necessary based on your model.

        For all other jobs, if the job does not complete during this time, SageMaker ends the job. When RetryStrategy is specified in the job request, MaxRuntimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt. The default value is 1 day. The maximum value is 28 days.

        The maximum time that a TrainingJob can run in total, including any time spent publishing metrics or archiving and uploading models after it has been stopped, is 30 days.

      • MaxWaitTimeInSeconds (integer) --

        The maximum length of time, in seconds, that a managed Spot training job has to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the job can run. It must be equal to or greater than MaxRuntimeInSeconds . If the job does not complete during this time, SageMaker ends the job.

        When RetryStrategy is specified in the job request, MaxWaitTimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt.

    • InferenceImage (string) --

      The inference image to use when compiling a model. Specify an image only if the target device is a cloud instance.

    • ModelPackageVersionArn (string) --

      The Amazon Resource Name (ARN) of the versioned model package that was provided to SageMaker Neo when you initiated a compilation job.

    • CreationTime (datetime) --

      The time that the model compilation job was created.

    • LastModifiedTime (datetime) --

      The time that the status of the model compilation job was last modified.

    • FailureReason (string) --

      If a model compilation job failed, the reason it failed.

    • ModelArtifacts (dict) --

      Information about the location in Amazon S3 that has been configured for storing the model artifacts used in the compilation job.

      • S3ModelArtifacts (string) --

        The path of the S3 object that contains the model artifacts. For example, s3://bucket-name/keynameprefix/model.tar.gz .

    • ModelDigests (dict) --

      Provides a BLAKE2 hash value that identifies the compiled model artifacts in Amazon S3.

      • ArtifactDigest (string) --

        Provides a hash value that uniquely identifies the stored model artifacts.

    • RoleArn (string) --

      The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker assumes to perform the model compilation job.

    • InputConfig (dict) --

      Information about the location in Amazon S3 of the input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.

      • S3Uri (string) --

        The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).

      • DataInputConfig (string) --

        Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are InputConfig$Framework specific.

        • TensorFlow : You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.
          • Examples for one input:
            • If using the console, {"input":[1,1024,1024,3]}
            • If using the CLI, {\"input\":[1,1024,1024,3]}
          • Examples for two inputs:
            • If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}
            • If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
        • KERAS : You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format, DataInputConfig should be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different.
          • Examples for one input:
            • If using the console, {"input_1":[1,3,224,224]}
            • If using the CLI, {\"input_1\":[1,3,224,224]}
          • Examples for two inputs:
            • If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
            • If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
        • MXNET/ONNX/DARKNET : You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.
          • Examples for one input:
            • If using the console, {"data":[1,3,1024,1024]}
            • If using the CLI, {\"data\":[1,3,1024,1024]}
          • Examples for two inputs:
            • If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}
            • If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
        • PyTorch : You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.
          • Examples for one input in dictionary format:
            • If using the console, {"input0":[1,3,224,224]}
            • If using the CLI, {\"input0\":[1,3,224,224]}
          • Example for one input in list format: [[1,3,224,224]]
          • Examples for two inputs in dictionary format:
            • If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
            • If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
          • Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]
        • XGBOOST : input data name and shape are not needed.
        DataInputConfig supports the following parameters for CoreML OutputConfig$TargetDevice (ML Model format):
        • shape : Input shape, for example {"input_1": {"shape": [1,224,224,3]}} . In addition to static input shapes, CoreML converter supports Flexible input shapes:
          • Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific interval in that dimension, for example: {"input_1": {"shape": ["1..10", 224, 224, 3]}}
          • Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate all supported input shapes, for example: {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
        • default_shape : Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}
        • type : Input type. Allowed values: Image and Tensor . By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such as bias and scale .
        • bias : If the input type is an Image, you need to provide the bias vector.
        • scale : If the input type is an Image, you need to provide a scale factor.

        CoreML ClassifierConfig parameters can be specified using OutputConfig$CompilerOptions. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples:

        • Tensor type input:
          • "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}
        • Tensor type input without input name (PyTorch):
          • "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]
        • Image type input:
          • "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}
          • "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
        • Image type input without input name (PyTorch):
          • "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]
          • "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}

        Depending on the model format, DataInputConfig requires the following parameters for ml_eia2 OutputConfig:TargetDevice.

        • For TensorFlow models saved in the SavedModel format, specify the input names from signature_def_key and the input model shapes for DataInputConfig . Specify the signature_def_key in OutputConfig:CompilerOptions if the model does not use TensorFlow's default signature def key. For example:
          • "DataInputConfig": {"inputs": [1, 224, 224, 3]}
          • "CompilerOptions": {"signature_def_key": "serving_custom"}
        • For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in DataInputConfig and the output tensor names for output_names in OutputConfig:CompilerOptions. For example:
          • "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
          • "CompilerOptions": {"output_names": ["output_tensor:0"]}
      • Framework (string) --

        Identifies the framework in which the model was trained. For example: TENSORFLOW.

      • FrameworkVersion (string) --

        Specifies the framework version to use. This API field is only supported for the MXNet, PyTorch, TensorFlow and TensorFlow Lite frameworks.

        For information about framework versions supported for cloud targets and edge devices, see Cloud Supported Instance Types and Frameworks and Edge Supported Frameworks.

    • OutputConfig (dict) --

      Information about the output location for the compiled model and the target device that the model runs on.

      • S3OutputLocation (string) --

        Identifies the S3 bucket where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix .

      • TargetDevice (string) --

        Identifies the target device or the machine learning instance that you want to run your model on after the compilation has completed. Alternatively, you can specify OS, architecture, and accelerator using TargetPlatform fields. It can be used instead of TargetPlatform .

      • TargetPlatform (dict) --

        Contains information about a target platform that you want your model to run on, such as OS, architecture, and accelerators. It is an alternative of TargetDevice .

        The following examples show how to configure the TargetPlatform and CompilerOptions JSON strings for popular target platforms:

        • Raspberry Pi 3 Model B+ "TargetPlatform": {"Os": "LINUX", "Arch": "ARM_EABIHF"}, "CompilerOptions": {'mattr': ['+neon']}
        • Jetson TX2 "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "NVIDIA"}, "CompilerOptions": {'gpu-code': 'sm_62', 'trt-ver': '6.0.1', 'cuda-ver': '10.0'}
        • EC2 m5.2xlarge instance OS "TargetPlatform": {"Os": "LINUX", "Arch": "X86_64", "Accelerator": "NVIDIA"}, "CompilerOptions": {'mcpu': 'skylake-avx512'}
        • RK3399 "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "MALI"}
        • ARMv7 phone (CPU) "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM_EABI"}, "CompilerOptions": {'ANDROID_PLATFORM': 25, 'mattr': ['+neon']}
        • ARMv8 phone (CPU) "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM64"}, "CompilerOptions": {'ANDROID_PLATFORM': 29}
        • Os (string) --

          Specifies a target platform OS.

          • LINUX : Linux-based operating systems.
          • ANDROID : Android operating systems. Android API level can be specified using the ANDROID_PLATFORM compiler option. For example, "CompilerOptions": {'ANDROID_PLATFORM': 28}
        • Arch (string) --

          Specifies a target platform architecture.

          • X86_64 : 64-bit version of the x86 instruction set.
          • X86 : 32-bit version of the x86 instruction set.
          • ARM64 : ARMv8 64-bit CPU.
          • ARM_EABIHF : ARMv7 32-bit, Hard Float.
          • ARM_EABI : ARMv7 32-bit, Soft Float. Used by Android 32-bit ARM platform.
        • Accelerator (string) --

          Specifies a target platform accelerator (optional).

          • NVIDIA : Nvidia graphics processing unit. It also requires gpu-code , trt-ver , cuda-ver compiler options
          • MALI : ARM Mali graphics processor
          • INTEL_GRAPHICS : Integrated Intel graphics
      • CompilerOptions (string) --

        Specifies additional parameters for compiler options in JSON format. The compiler options are TargetPlatform specific. It is required for NVIDIA accelerators and highly recommended for CPU compilations. For any other cases, it is optional to specify CompilerOptions.

        • DTYPE : Specifies the data type for the input. When compiling for ml_* (except for ml_inf ) instances using PyTorch framework, provide the data type (dtype) of the model's input. "float32" is used if "DTYPE" is not specified. Options for data type are:
          • float32: Use either "float" or "float32" .
          • int64: Use either "int64" or "long" .

        For example, {"dtype" : "float32"} .

        • CPU : Compilation for CPU supports the following compiler options.
          • mcpu : CPU micro-architecture. For example, {'mcpu': 'skylake-avx512'}
          • mattr : CPU flags. For example, {'mattr': ['+neon', '+vfpv4']}
        • ARM : Details of ARM CPU compilations.
          • NEON : NEON is an implementation of the Advanced SIMD extension used in ARMv7 processors. For example, add {'mattr': ['+neon']} to the compiler options if compiling for ARM 32-bit platform with the NEON support.
        • NVIDIA : Compilation for NVIDIA GPU supports the following compiler options.
          • gpu_code : Specifies the targeted architecture.
          • trt-ver : Specifies the TensorRT versions in x.y.z. format.
          • cuda-ver : Specifies the CUDA version in x.y format.

        For example, {'gpu-code': 'sm_72', 'trt-ver': '6.0.1', 'cuda-ver': '10.1'}

        • ANDROID : Compilation for the Android OS supports the following compiler options:
          • ANDROID_PLATFORM : Specifies the Android API levels. Available levels range from 21 to 29. For example, {'ANDROID_PLATFORM': 28} .
          • mattr : Add {'mattr': ['+neon']} to compiler options if compiling for ARM 32-bit platform with NEON support.
        • INFERENTIA : Compilation for target ml_inf1 uses compiler options passed in as a JSON string. For example, "CompilerOptions": "\"--verbose 1 --num-neuroncores 2 -O2\"" . For information about supported compiler options, see Neuron Compiler CLI.
        • CoreML : Compilation for the CoreML OutputConfig$TargetDevice supports the following compiler options:
          • class_labels : Specifies the classification labels file name inside input tar.gz file. For example, {"class_labels": "imagenet_labels_1000.txt"} . Labels inside the txt file should be separated by newlines.
        • EIA : Compilation for the Elastic Inference Accelerator supports the following compiler options:
          • precision_mode : Specifies the precision of compiled artifacts. Supported values are "FP16" and "FP32" . Default is "FP32" .
          • signature_def_key : Specifies the signature to use for models in SavedModel format. Defaults is TensorFlow's default signature def key.
          • output_names : Specifies a list of output tensor names for models in FrozenGraph format. Set at most one API field, either: signature_def_key or output_names .

        For example: {"precision_mode": "FP32", "output_names": ["output:0"]}

      • KmsKeyId (string) --

        The Amazon Web Services Key Management Service key (Amazon Web Services KMS) that Amazon SageMaker uses to encrypt your output models with Amazon S3 server-side encryption after compilation job. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

        The KmsKeyId can be any of the following formats:

        • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
        • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
        • Alias name: alias/ExampleAlias
        • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
    • VpcConfig (dict) --

      A VpcConfig object that specifies the VPC that you want your compilation job to connect to. Control access to your models by configuring the VPC. For more information, see Protect Compilation Jobs by Using an Amazon Virtual Private Cloud.

      • SecurityGroupIds (list) --

        The VPC security group IDs. IDs have the form of sg-xxxxxxxx . Specify the security groups for the VPC that is specified in the Subnets field.

        • (string) --
      • Subnets (list) --

        The ID of the subnets in the VPC that you want to connect the compilation job to for accessing the model in Amazon S3.

        • (string) --

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_context(**kwargs)

Describes a context.

See also: AWS API Documentation

Request Syntax

response = client.describe_context(
    ContextName='string'
)
Parameters
ContextName (string) --

[REQUIRED]

The name of the context to describe.

Return type
dict
Returns
Response Syntax
{
    'ContextName': 'string',
    'ContextArn': 'string',
    'Source': {
        'SourceUri': 'string',
        'SourceType': 'string',
        'SourceId': 'string'
    },
    'ContextType': 'string',
    'Description': 'string',
    'Properties': {
        'string': 'string'
    },
    'CreationTime': datetime(2015, 1, 1),
    'CreatedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    },
    'LastModifiedTime': datetime(2015, 1, 1),
    'LastModifiedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    },
    'LineageGroupArn': 'string'
}

Response Structure

  • (dict) --
    • ContextName (string) --

      The name of the context.

    • ContextArn (string) --

      The Amazon Resource Name (ARN) of the context.

    • Source (dict) --

      The source of the context.

      • SourceUri (string) --

        The URI of the source.

      • SourceType (string) --

        The type of the source.

      • SourceId (string) --

        The ID of the source.

    • ContextType (string) --

      The type of the context.

    • Description (string) --

      The description of the context.

    • Properties (dict) --

      A list of the context's properties.

      • (string) --
        • (string) --
    • CreationTime (datetime) --

      When the context was created.

    • CreatedBy (dict) --

      Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

    • LastModifiedTime (datetime) --

      When the context was last modified.

    • LastModifiedBy (dict) --

      Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

    • LineageGroupArn (string) --

      The Amazon Resource Name (ARN) of the lineage group.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_data_quality_job_definition(**kwargs)

Gets the details of a data quality monitoring job definition.

See also: AWS API Documentation

Request Syntax

response = client.describe_data_quality_job_definition(
    JobDefinitionName='string'
)
Parameters
JobDefinitionName (string) --

[REQUIRED]

The name of the data quality monitoring job definition to describe.

Return type
dict
Returns
Response Syntax
{
    'JobDefinitionArn': 'string',
    'JobDefinitionName': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'DataQualityBaselineConfig': {
        'BaseliningJobName': 'string',
        'ConstraintsResource': {
            'S3Uri': 'string'
        },
        'StatisticsResource': {
            'S3Uri': 'string'
        }
    },
    'DataQualityAppSpecification': {
        'ImageUri': 'string',
        'ContainerEntrypoint': [
            'string',
        ],
        'ContainerArguments': [
            'string',
        ],
        'RecordPreprocessorSourceUri': 'string',
        'PostAnalyticsProcessorSourceUri': 'string',
        'Environment': {
            'string': 'string'
        }
    },
    'DataQualityJobInput': {
        'EndpointInput': {
            'EndpointName': 'string',
            'LocalPath': 'string',
            'S3InputMode': 'Pipe'|'File',
            'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
            'FeaturesAttribute': 'string',
            'InferenceAttribute': 'string',
            'ProbabilityAttribute': 'string',
            'ProbabilityThresholdAttribute': 123.0,
            'StartTimeOffset': 'string',
            'EndTimeOffset': 'string'
        },
        'BatchTransformInput': {
            'DataCapturedDestinationS3Uri': 'string',
            'DatasetFormat': {
                'Csv': {
                    'Header': True|False
                },
                'Json': {
                    'Line': True|False
                },
                'Parquet': {}
            },
            'LocalPath': 'string',
            'S3InputMode': 'Pipe'|'File',
            'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
            'FeaturesAttribute': 'string',
            'InferenceAttribute': 'string',
            'ProbabilityAttribute': 'string',
            'ProbabilityThresholdAttribute': 123.0,
            'StartTimeOffset': 'string',
            'EndTimeOffset': 'string'
        }
    },
    'DataQualityJobOutputConfig': {
        'MonitoringOutputs': [
            {
                'S3Output': {
                    'S3Uri': 'string',
                    'LocalPath': 'string',
                    'S3UploadMode': 'Continuous'|'EndOfJob'
                }
            },
        ],
        'KmsKeyId': 'string'
    },
    'JobResources': {
        'ClusterConfig': {
            'InstanceCount': 123,
            'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
            'VolumeSizeInGB': 123,
            'VolumeKmsKeyId': 'string'
        }
    },
    'NetworkConfig': {
        'EnableInterContainerTrafficEncryption': True|False,
        'EnableNetworkIsolation': True|False,
        'VpcConfig': {
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ]
        }
    },
    'RoleArn': 'string',
    'StoppingCondition': {
        'MaxRuntimeInSeconds': 123
    }
}

Response Structure

  • (dict) --
    • JobDefinitionArn (string) --

      The Amazon Resource Name (ARN) of the data quality monitoring job definition.

    • JobDefinitionName (string) --

      The name of the data quality monitoring job definition.

    • CreationTime (datetime) --

      The time that the data quality monitoring job definition was created.

    • DataQualityBaselineConfig (dict) --

      The constraints and baselines for the data quality monitoring job definition.

      • BaseliningJobName (string) --

        The name of the job that performs baselining for the data quality monitoring job.

      • ConstraintsResource (dict) --

        The constraints resource for a monitoring job.

        • S3Uri (string) --

          The Amazon S3 URI for the constraints resource.

      • StatisticsResource (dict) --

        The statistics resource for a monitoring job.

        • S3Uri (string) --

          The Amazon S3 URI for the statistics resource.

    • DataQualityAppSpecification (dict) --

      Information about the container that runs the data quality monitoring job.

      • ImageUri (string) --

        The container image that the data quality monitoring job runs.

      • ContainerEntrypoint (list) --

        The entrypoint for a container used to run a monitoring job.

        • (string) --
      • ContainerArguments (list) --

        The arguments to send to the container that the monitoring job runs.

        • (string) --
      • RecordPreprocessorSourceUri (string) --

        An Amazon S3 URI to a script that is called per row prior to running analysis. It can base64 decode the payload and convert it into a flatted json so that the built-in container can use the converted data. Applicable only for the built-in (first party) containers.

      • PostAnalyticsProcessorSourceUri (string) --

        An Amazon S3 URI to a script that is called after analysis has been performed. Applicable only for the built-in (first party) containers.

      • Environment (dict) --

        Sets the environment variables in the container that the monitoring job runs.

        • (string) --
          • (string) --
    • DataQualityJobInput (dict) --

      The list of inputs for the data quality monitoring job. Currently endpoints are supported.

      • EndpointInput (dict) --

        Input object for the endpoint

        • EndpointName (string) --

          An endpoint in customer's account which has enabled DataCaptureConfig enabled.

        • LocalPath (string) --

          Path to the filesystem where the endpoint data is available to the container.

        • S3InputMode (string) --

          Whether the Pipe or File is used as the input mode for transferring data for the monitoring job. Pipe mode is recommended for large datasets. File mode is useful for small files that fit in memory. Defaults to File .

        • S3DataDistributionType (string) --

          Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defaults to FullyReplicated

        • FeaturesAttribute (string) --

          The attributes of the input data that are the input features.

        • InferenceAttribute (string) --

          The attribute of the input data that represents the ground truth label.

        • ProbabilityAttribute (string) --

          In a classification problem, the attribute that represents the class probability.

        • ProbabilityThresholdAttribute (float) --

          The threshold for the class probability to be evaluated as a positive result.

        • StartTimeOffset (string) --

          If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

        • EndTimeOffset (string) --

          If specified, monitoring jobs substract this time from the end time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

      • BatchTransformInput (dict) --

        Input object for the batch transform job.

        • DataCapturedDestinationS3Uri (string) --

          The Amazon S3 location being used to capture the data.

        • DatasetFormat (dict) --

          The dataset format for your batch transform job.

          • Csv (dict) --

            The CSV dataset used in the monitoring job.

            • Header (boolean) --

              Indicates if the CSV data has a header.

          • Json (dict) --

            The JSON dataset used in the monitoring job

            • Line (boolean) --

              Indicates if the file should be read as a json object per line.

          • Parquet (dict) --

            The Parquet dataset used in the monitoring job

        • LocalPath (string) --

          Path to the filesystem where the batch transform data is available to the container.

        • S3InputMode (string) --

          Whether the Pipe or File is used as the input mode for transferring data for the monitoring job. Pipe mode is recommended for large datasets. File mode is useful for small files that fit in memory. Defaults to File .

        • S3DataDistributionType (string) --

          Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defaults to FullyReplicated

        • FeaturesAttribute (string) --

          The attributes of the input data that are the input features.

        • InferenceAttribute (string) --

          The attribute of the input data that represents the ground truth label.

        • ProbabilityAttribute (string) --

          In a classification problem, the attribute that represents the class probability.

        • ProbabilityThresholdAttribute (float) --

          The threshold for the class probability to be evaluated as a positive result.

        • StartTimeOffset (string) --

          If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

        • EndTimeOffset (string) --

          If specified, monitoring jobs substract this time from the end time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

    • DataQualityJobOutputConfig (dict) --

      The output configuration for monitoring jobs.

      • MonitoringOutputs (list) --

        Monitoring outputs for monitoring jobs. This is where the output of the periodic monitoring jobs is uploaded.

        • (dict) --

          The output object for a monitoring job.

          • S3Output (dict) --

            The Amazon S3 storage location where the results of a monitoring job are saved.

            • S3Uri (string) --

              A URI that identifies the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job.

            • LocalPath (string) --

              The local path to the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job. LocalPath is an absolute path for the output data.

            • S3UploadMode (string) --

              Whether to upload the results of the monitoring job continuously or after the job completes.

      • KmsKeyId (string) --

        The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.

    • JobResources (dict) --

      Identifies the resources to deploy for a monitoring job.

      • ClusterConfig (dict) --

        The configuration for the cluster resources used to run the processing job.

        • InstanceCount (integer) --

          The number of ML compute instances to use in the model monitoring job. For distributed processing jobs, specify a value greater than 1. The default value is 1.

        • InstanceType (string) --

          The ML compute instance type for the processing job.

        • VolumeSizeInGB (integer) --

          The size of the ML storage volume, in gigabytes, that you want to provision. You must specify sufficient ML storage for your scenario.

        • VolumeKmsKeyId (string) --

          The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.

    • NetworkConfig (dict) --

      The networking configuration for the data quality monitoring job.

      • EnableInterContainerTrafficEncryption (boolean) --

        Whether to encrypt all communications between the instances used for the monitoring jobs. Choose True to encrypt communications. Encryption provides greater security for distributed jobs, but the processing might take longer.

      • EnableNetworkIsolation (boolean) --

        Whether to allow inbound and outbound network calls to and from the containers used for the monitoring job.

      • VpcConfig (dict) --

        Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud.

        • SecurityGroupIds (list) --

          The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

          • (string) --
        • Subnets (list) --

          The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.

          • (string) --
    • RoleArn (string) --

      The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.

    • StoppingCondition (dict) --

      A time limit for how long the monitoring job is allowed to run before stopping.

      • MaxRuntimeInSeconds (integer) --

        The maximum runtime allowed in seconds.

        Note

        The MaxRuntimeInSeconds cannot exceed the frequency of the job. For data quality and model explainability, this can be up to 3600 seconds for an hourly schedule. For model bias and model quality hourly schedules, this can be up to 1800 seconds.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_device(**kwargs)

Describes the device.

See also: AWS API Documentation

Request Syntax

response = client.describe_device(
    NextToken='string',
    DeviceName='string',
    DeviceFleetName='string'
)
Parameters
  • NextToken (string) -- Next token of device description.
  • DeviceName (string) --

    [REQUIRED]

    The unique ID of the device.

  • DeviceFleetName (string) --

    [REQUIRED]

    The name of the fleet the devices belong to.

Return type

dict

Returns

Response Syntax

{
    'DeviceArn': 'string',
    'DeviceName': 'string',
    'Description': 'string',
    'DeviceFleetName': 'string',
    'IotThingName': 'string',
    'RegistrationTime': datetime(2015, 1, 1),
    'LatestHeartbeat': datetime(2015, 1, 1),
    'Models': [
        {
            'ModelName': 'string',
            'ModelVersion': 'string',
            'LatestSampleTime': datetime(2015, 1, 1),
            'LatestInference': datetime(2015, 1, 1)
        },
    ],
    'MaxModels': 123,
    'NextToken': 'string',
    'AgentVersion': 'string'
}

Response Structure

  • (dict) --

    • DeviceArn (string) --

      The Amazon Resource Name (ARN) of the device.

    • DeviceName (string) --

      The unique identifier of the device.

    • Description (string) --

      A description of the device.

    • DeviceFleetName (string) --

      The name of the fleet the device belongs to.

    • IotThingName (string) --

      The Amazon Web Services Internet of Things (IoT) object thing name associated with the device.

    • RegistrationTime (datetime) --

      The timestamp of the last registration or de-reregistration.

    • LatestHeartbeat (datetime) --

      The last heartbeat received from the device.

    • Models (list) --

      Models on the device.

      • (dict) --

        The model on the edge device.

        • ModelName (string) --

          The name of the model.

        • ModelVersion (string) --

          The model version.

        • LatestSampleTime (datetime) --

          The timestamp of the last data sample taken.

        • LatestInference (datetime) --

          The timestamp of the last inference that was made.

    • MaxModels (integer) --

      The maximum number of models.

    • NextToken (string) --

      The response from the last list when returning a list large enough to need tokening.

    • AgentVersion (string) --

      Edge Manager agent version.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_device_fleet(**kwargs)

A description of the fleet the device belongs to.

See also: AWS API Documentation

Request Syntax

response = client.describe_device_fleet(
    DeviceFleetName='string'
)
Parameters
DeviceFleetName (string) --

[REQUIRED]

The name of the fleet.

Return type
dict
Returns
Response Syntax
{
    'DeviceFleetName': 'string',
    'DeviceFleetArn': 'string',
    'OutputConfig': {
        'S3OutputLocation': 'string',
        'KmsKeyId': 'string',
        'PresetDeploymentType': 'GreengrassV2Component',
        'PresetDeploymentConfig': 'string'
    },
    'Description': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'RoleArn': 'string',
    'IotRoleAlias': 'string'
}

Response Structure

  • (dict) --
    • DeviceFleetName (string) --

      The name of the fleet.

    • DeviceFleetArn (string) --

      The The Amazon Resource Name (ARN) of the fleet.

    • OutputConfig (dict) --

      The output configuration for storing sampled data.

      • S3OutputLocation (string) --

        The Amazon Simple Storage (S3) bucker URI.

      • KmsKeyId (string) --

        The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume after compilation job. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account.

      • PresetDeploymentType (string) --

        The deployment type SageMaker Edge Manager will create. Currently only supports Amazon Web Services IoT Greengrass Version 2 components.

      • PresetDeploymentConfig (string) --

        The configuration used to create deployment artifacts. Specify configuration options with a JSON string. The available configuration options for each type are:

        • ComponentName (optional) - Name of the GreenGrass V2 component. If not specified, the default name generated consists of "SagemakerEdgeManager" and the name of your SageMaker Edge Manager packaging job.
        • ComponentDescription (optional) - Description of the component.
        • ComponentVersion (optional) - The version of the component.

        Note

        Amazon Web Services IoT Greengrass uses semantic versions for components. Semantic versions follow a*major.minor.patch* number system. For example, version 1.0.0 represents the first major release for a component. For more information, see the semantic version specification.

        • PlatformOS (optional) - The name of the operating system for the platform. Supported platforms include Windows and Linux.
        • PlatformArchitecture (optional) - The processor architecture for the platform. Supported architectures Windows include: Windows32_x86, Windows64_x64. Supported architectures for Linux include: Linux x86_64, Linux ARMV8.
    • Description (string) --

      A description of the fleet.

    • CreationTime (datetime) --

      Timestamp of when the device fleet was created.

    • LastModifiedTime (datetime) --

      Timestamp of when the device fleet was last updated.

    • RoleArn (string) --

      The Amazon Resource Name (ARN) that has access to Amazon Web Services Internet of Things (IoT).

    • IotRoleAlias (string) --

      The Amazon Resource Name (ARN) alias created in Amazon Web Services Internet of Things (IoT).

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_domain(**kwargs)

The description of the domain.

See also: AWS API Documentation

Request Syntax

response = client.describe_domain(
    DomainId='string'
)
Parameters
DomainId (string) --

[REQUIRED]

The domain ID.

Return type
dict
Returns
Response Syntax
{
    'DomainArn': 'string',
    'DomainId': 'string',
    'DomainName': 'string',
    'HomeEfsFileSystemId': 'string',
    'SingleSignOnManagedApplicationInstanceId': 'string',
    'Status': 'Deleting'|'Failed'|'InService'|'Pending'|'Updating'|'Update_Failed'|'Delete_Failed',
    'CreationTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'FailureReason': 'string',
    'AuthMode': 'SSO'|'IAM',
    'DefaultUserSettings': {
        'ExecutionRole': 'string',
        'SecurityGroups': [
            'string',
        ],
        'SharingSettings': {
            'NotebookOutputOption': 'Allowed'|'Disabled',
            'S3OutputPath': 'string',
            'S3KmsKeyId': 'string'
        },
        'JupyterServerAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'LifecycleConfigArns': [
                'string',
            ],
            'CodeRepositories': [
                {
                    'RepositoryUrl': 'string'
                },
            ]
        },
        'KernelGatewayAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'CustomImages': [
                {
                    'ImageName': 'string',
                    'ImageVersionNumber': 123,
                    'AppImageConfigName': 'string'
                },
            ],
            'LifecycleConfigArns': [
                'string',
            ]
        },
        'TensorBoardAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            }
        },
        'RStudioServerProAppSettings': {
            'AccessStatus': 'ENABLED'|'DISABLED',
            'UserGroup': 'R_STUDIO_ADMIN'|'R_STUDIO_USER'
        },
        'RSessionAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'CustomImages': [
                {
                    'ImageName': 'string',
                    'ImageVersionNumber': 123,
                    'AppImageConfigName': 'string'
                },
            ]
        },
        'CanvasAppSettings': {
            'TimeSeriesForecastingSettings': {
                'Status': 'ENABLED'|'DISABLED',
                'AmazonForecastRoleArn': 'string'
            }
        }
    },
    'AppNetworkAccessType': 'PublicInternetOnly'|'VpcOnly',
    'HomeEfsFileSystemKmsKeyId': 'string',
    'SubnetIds': [
        'string',
    ],
    'Url': 'string',
    'VpcId': 'string',
    'KmsKeyId': 'string',
    'DomainSettings': {
        'SecurityGroupIds': [
            'string',
        ],
        'RStudioServerProDomainSettings': {
            'DomainExecutionRoleArn': 'string',
            'RStudioConnectUrl': 'string',
            'RStudioPackageManagerUrl': 'string',
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            }
        },
        'ExecutionRoleIdentityConfig': 'USER_PROFILE_NAME'|'DISABLED'
    },
    'AppSecurityGroupManagement': 'Service'|'Customer',
    'SecurityGroupIdForDomainBoundary': 'string',
    'DefaultSpaceSettings': {
        'ExecutionRole': 'string',
        'SecurityGroups': [
            'string',
        ],
        'JupyterServerAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'LifecycleConfigArns': [
                'string',
            ],
            'CodeRepositories': [
                {
                    'RepositoryUrl': 'string'
                },
            ]
        },
        'KernelGatewayAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'CustomImages': [
                {
                    'ImageName': 'string',
                    'ImageVersionNumber': 123,
                    'AppImageConfigName': 'string'
                },
            ],
            'LifecycleConfigArns': [
                'string',
            ]
        }
    }
}

Response Structure

  • (dict) --
    • DomainArn (string) --

      The domain's Amazon Resource Name (ARN).

    • DomainId (string) --

      The domain ID.

    • DomainName (string) --

      The domain name.

    • HomeEfsFileSystemId (string) --

      The ID of the Amazon Elastic File System (EFS) managed by this Domain.

    • SingleSignOnManagedApplicationInstanceId (string) --

      The IAM Identity Center managed application instance ID.

    • Status (string) --

      The status.

    • CreationTime (datetime) --

      The creation time.

    • LastModifiedTime (datetime) --

      The last modified time.

    • FailureReason (string) --

      The failure reason.

    • AuthMode (string) --

      The domain's authentication mode.

    • DefaultUserSettings (dict) --

      Settings which are applied to UserProfiles in this domain if settings are not explicitly specified in a given UserProfile.

      • ExecutionRole (string) --

        The execution role for the user.

      • SecurityGroups (list) --

        The security groups for the Amazon Virtual Private Cloud (VPC) that Studio uses for communication.

        Optional when the CreateDomain.AppNetworkAccessType parameter is set to PublicInternetOnly .

        Required when the CreateDomain.AppNetworkAccessType parameter is set to VpcOnly .

        Amazon SageMaker adds a security group to allow NFS traffic from SageMaker Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown.

        • (string) --
      • SharingSettings (dict) --

        Specifies options for sharing SageMaker Studio notebooks.

        • NotebookOutputOption (string) --

          Whether to include the notebook cell output when sharing the notebook. The default is Disabled .

        • S3OutputPath (string) --

          When NotebookOutputOption is Allowed , the Amazon S3 bucket used to store the shared notebook snapshots.

        • S3KmsKeyId (string) --

          When NotebookOutputOption is Allowed , the Amazon Web Services Key Management Service (KMS) encryption key ID used to encrypt the notebook cell output in the Amazon S3 bucket.

      • JupyterServerAppSettings (dict) --

        The Jupyter server's app settings.

        • DefaultResourceSpec (dict) --

          The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.

          • SageMakerImageArn (string) --

            The ARN of the SageMaker image that the image version belongs to.

          • SageMakerImageVersionArn (string) --

            The ARN of the image version created on the instance.

          • InstanceType (string) --

            The instance type that the image version runs on.

            Note

            JupyterServer apps only support the system value.

            For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

          • LifecycleConfigArn (string) --

            The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

        • LifecycleConfigArns (list) --

          The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter is also required.

          Note

          To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.

          • (string) --
        • CodeRepositories (list) --

          A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.

          • (dict) --

            A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.

            • RepositoryUrl (string) --

              The URL of the Git repository.

      • KernelGatewayAppSettings (dict) --

        The kernel gateway app settings.

        • DefaultResourceSpec (dict) --

          The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app.

          Note

          The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the Amazon Web Services Command Line Interface or Amazon Web Services CloudFormation and the instance type parameter value is not passed.

          • SageMakerImageArn (string) --

            The ARN of the SageMaker image that the image version belongs to.

          • SageMakerImageVersionArn (string) --

            The ARN of the image version created on the instance.

          • InstanceType (string) --

            The instance type that the image version runs on.

            Note

            JupyterServer apps only support the system value.

            For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

          • LifecycleConfigArn (string) --

            The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

        • CustomImages (list) --

          A list of custom SageMaker images that are configured to run as a KernelGateway app.

          • (dict) --

            A custom SageMaker image. For more information, see Bring your own SageMaker image.

            • ImageName (string) --

              The name of the CustomImage. Must be unique to your account.

            • ImageVersionNumber (integer) --

              The version number of the CustomImage.

            • AppImageConfigName (string) --

              The name of the AppImageConfig.

        • LifecycleConfigArns (list) --

          The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.

          Note

          To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.

          • (string) --
      • TensorBoardAppSettings (dict) --

        The TensorBoard app settings.

        • DefaultResourceSpec (dict) --

          The default instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.

          • SageMakerImageArn (string) --

            The ARN of the SageMaker image that the image version belongs to.

          • SageMakerImageVersionArn (string) --

            The ARN of the image version created on the instance.

          • InstanceType (string) --

            The instance type that the image version runs on.

            Note

            JupyterServer apps only support the system value.

            For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

          • LifecycleConfigArn (string) --

            The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

      • RStudioServerProAppSettings (dict) --

        A collection of settings that configure user interaction with the RStudioServerPro app.

        • AccessStatus (string) --

          Indicates whether the current user has access to the RStudioServerPro app.

        • UserGroup (string) --

          The level of permissions that the user has within the RStudioServerPro app. This value defaults to User. The Admin value allows the user access to the RStudio Administrative Dashboard.

      • RSessionAppSettings (dict) --

        A collection of settings that configure the RSessionGateway app.

        • DefaultResourceSpec (dict) --

          Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that the version runs on.

          • SageMakerImageArn (string) --

            The ARN of the SageMaker image that the image version belongs to.

          • SageMakerImageVersionArn (string) --

            The ARN of the image version created on the instance.

          • InstanceType (string) --

            The instance type that the image version runs on.

            Note

            JupyterServer apps only support the system value.

            For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

          • LifecycleConfigArn (string) --

            The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

        • CustomImages (list) --

          A list of custom SageMaker images that are configured to run as a RSession app.

          • (dict) --

            A custom SageMaker image. For more information, see Bring your own SageMaker image.

            • ImageName (string) --

              The name of the CustomImage. Must be unique to your account.

            • ImageVersionNumber (integer) --

              The version number of the CustomImage.

            • AppImageConfigName (string) --

              The name of the AppImageConfig.

      • CanvasAppSettings (dict) --

        The Canvas app settings.

        • TimeSeriesForecastingSettings (dict) --

          Time series forecast settings for the Canvas app.

          • Status (string) --

            Describes whether time series forecasting is enabled or disabled in the Canvas app.

          • AmazonForecastRoleArn (string) --

            The IAM role that Canvas passes to Amazon Forecast for time series forecasting. By default, Canvas uses the execution role specified in the UserProfile that launches the Canvas app. If an execution role is not specified in the UserProfile , Canvas uses the execution role specified in the Domain that owns the UserProfile . To allow time series forecasting, this IAM role should have the AmazonSageMakerCanvasForecastAccess policy attached and forecast.amazonaws.com added in the trust relationship as a service principal.

    • AppNetworkAccessType (string) --

      Specifies the VPC used for non-EFS traffic. The default value is PublicInternetOnly .

      • PublicInternetOnly - Non-EFS traffic is through a VPC managed by Amazon SageMaker, which allows direct internet access
      • VpcOnly - All Studio traffic is through the specified VPC and subnets
    • HomeEfsFileSystemKmsKeyId (string) --

      Use KmsKeyId .

    • SubnetIds (list) --

      The VPC subnets that Studio uses for communication.

      • (string) --
    • Url (string) --

      The domain's URL.

    • VpcId (string) --

      The ID of the Amazon Virtual Private Cloud (VPC) that Studio uses for communication.

    • KmsKeyId (string) --

      The Amazon Web Services KMS customer managed key used to encrypt the EFS volume attached to the domain.

    • DomainSettings (dict) --

      A collection of Domain settings.

      • SecurityGroupIds (list) --

        The security groups for the Amazon Virtual Private Cloud that the Domain uses for communication between Domain-level apps and user apps.

        • (string) --
      • RStudioServerProDomainSettings (dict) --

        A collection of settings that configure the RStudioServerPro Domain-level app.

        • DomainExecutionRoleArn (string) --

          The ARN of the execution role for the RStudioServerPro Domain-level app.

        • RStudioConnectUrl (string) --

          A URL pointing to an RStudio Connect server.

        • RStudioPackageManagerUrl (string) --

          A URL pointing to an RStudio Package Manager server.

        • DefaultResourceSpec (dict) --

          Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that the version runs on.

          • SageMakerImageArn (string) --

            The ARN of the SageMaker image that the image version belongs to.

          • SageMakerImageVersionArn (string) --

            The ARN of the image version created on the instance.

          • InstanceType (string) --

            The instance type that the image version runs on.

            Note

            JupyterServer apps only support the system value.

            For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

          • LifecycleConfigArn (string) --

            The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

      • ExecutionRoleIdentityConfig (string) --

        The configuration for attaching a SageMaker user profile name to the execution role as a sts:SourceIdentity key.

    • AppSecurityGroupManagement (string) --

      The entity that creates and manages the required security groups for inter-app communication in VPCOnly mode. Required when CreateDomain.AppNetworkAccessType is VPCOnly and DomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn is provided.

    • SecurityGroupIdForDomainBoundary (string) --

      The ID of the security group that authorizes traffic between the RSessionGateway apps and the RStudioServerPro app.

    • DefaultSpaceSettings (dict) --

      The default settings used to create a space.

      • ExecutionRole (string) --

        The execution role for the space.

      • SecurityGroups (list) --

        The security groups for the Amazon Virtual Private Cloud that the space uses for communication.

        • (string) --
      • JupyterServerAppSettings (dict) --

        The JupyterServer app settings.

        • DefaultResourceSpec (dict) --

          The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.

          • SageMakerImageArn (string) --

            The ARN of the SageMaker image that the image version belongs to.

          • SageMakerImageVersionArn (string) --

            The ARN of the image version created on the instance.

          • InstanceType (string) --

            The instance type that the image version runs on.

            Note

            JupyterServer apps only support the system value.

            For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

          • LifecycleConfigArn (string) --

            The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

        • LifecycleConfigArns (list) --

          The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter is also required.

          Note

          To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.

          • (string) --
        • CodeRepositories (list) --

          A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.

          • (dict) --

            A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.

            • RepositoryUrl (string) --

              The URL of the Git repository.

      • KernelGatewayAppSettings (dict) --

        The KernelGateway app settings.

        • DefaultResourceSpec (dict) --

          The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app.

          Note

          The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the Amazon Web Services Command Line Interface or Amazon Web Services CloudFormation and the instance type parameter value is not passed.

          • SageMakerImageArn (string) --

            The ARN of the SageMaker image that the image version belongs to.

          • SageMakerImageVersionArn (string) --

            The ARN of the image version created on the instance.

          • InstanceType (string) --

            The instance type that the image version runs on.

            Note

            JupyterServer apps only support the system value.

            For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

          • LifecycleConfigArn (string) --

            The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

        • CustomImages (list) --

          A list of custom SageMaker images that are configured to run as a KernelGateway app.

          • (dict) --

            A custom SageMaker image. For more information, see Bring your own SageMaker image.

            • ImageName (string) --

              The name of the CustomImage. Must be unique to your account.

            • ImageVersionNumber (integer) --

              The version number of the CustomImage.

            • AppImageConfigName (string) --

              The name of the AppImageConfig.

        • LifecycleConfigArns (list) --

          The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.

          Note

          To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.

          • (string) --

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_edge_deployment_plan(**kwargs)

Describes an edge deployment plan with deployment status per stage.

See also: AWS API Documentation

Request Syntax

response = client.describe_edge_deployment_plan(
    EdgeDeploymentPlanName='string',
    NextToken='string',
    MaxResults=123
)
Parameters
  • EdgeDeploymentPlanName (string) --

    [REQUIRED]

    The name of the deployment plan to describe.

  • NextToken (string) -- If the edge deployment plan has enough stages to require tokening, then this is the response from the last list of stages returned.
  • MaxResults (integer) -- The maximum number of results to select (50 by default).
Return type

dict

Returns

Response Syntax

{
    'EdgeDeploymentPlanArn': 'string',
    'EdgeDeploymentPlanName': 'string',
    'ModelConfigs': [
        {
            'ModelHandle': 'string',
            'EdgePackagingJobName': 'string'
        },
    ],
    'DeviceFleetName': 'string',
    'EdgeDeploymentSuccess': 123,
    'EdgeDeploymentPending': 123,
    'EdgeDeploymentFailed': 123,
    'Stages': [
        {
            'StageName': 'string',
            'DeviceSelectionConfig': {
                'DeviceSubsetType': 'PERCENTAGE'|'SELECTION'|'NAMECONTAINS',
                'Percentage': 123,
                'DeviceNames': [
                    'string',
                ],
                'DeviceNameContains': 'string'
            },
            'DeploymentConfig': {
                'FailureHandlingPolicy': 'ROLLBACK_ON_FAILURE'|'DO_NOTHING'
            },
            'DeploymentStatus': {
                'StageStatus': 'CREATING'|'READYTODEPLOY'|'STARTING'|'INPROGRESS'|'DEPLOYED'|'FAILED'|'STOPPING'|'STOPPED',
                'EdgeDeploymentSuccessInStage': 123,
                'EdgeDeploymentPendingInStage': 123,
                'EdgeDeploymentFailedInStage': 123,
                'EdgeDeploymentStatusMessage': 'string',
                'EdgeDeploymentStageStartTime': datetime(2015, 1, 1)
            }
        },
    ],
    'NextToken': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1)
}

Response Structure

  • (dict) --

    • EdgeDeploymentPlanArn (string) --

      The ARN of edge deployment plan.

    • EdgeDeploymentPlanName (string) --

      The name of the edge deployment plan.

    • ModelConfigs (list) --

      List of models associated with the edge deployment plan.

      • (dict) --

        Contains information about the configuration of a model in a deployment.

        • ModelHandle (string) --

          The name the device application uses to reference this model.

        • EdgePackagingJobName (string) --

          The edge packaging job associated with this deployment.

    • DeviceFleetName (string) --

      The device fleet used for this edge deployment plan.

    • EdgeDeploymentSuccess (integer) --

      The number of edge devices with the successful deployment.

    • EdgeDeploymentPending (integer) --

      The number of edge devices yet to pick up deployment, or in progress.

    • EdgeDeploymentFailed (integer) --

      The number of edge devices that failed the deployment.

    • Stages (list) --

      List of stages in the edge deployment plan.

      • (dict) --

        Contains information summarizing the deployment stage results.

        • StageName (string) --

          The name of the stage.

        • DeviceSelectionConfig (dict) --

          Configuration of the devices in the stage.

          • DeviceSubsetType (string) --

            Type of device subsets to deploy to the current stage.

          • Percentage (integer) --

            Percentage of devices in the fleet to deploy to the current stage.

          • DeviceNames (list) --

            List of devices chosen to deploy.

            • (string) --
          • DeviceNameContains (string) --

            A filter to select devices with names containing this name.

        • DeploymentConfig (dict) --

          Configuration of the deployment details.

          • FailureHandlingPolicy (string) --

            Toggle that determines whether to rollback to previous configuration if the current deployment fails. By default this is turned on. You may turn this off if you want to investigate the errors yourself.

        • DeploymentStatus (dict) --

          General status of the current state.

          • StageStatus (string) --

            The general status of the current stage.

          • EdgeDeploymentSuccessInStage (integer) --

            The number of edge devices with the successful deployment in the current stage.

          • EdgeDeploymentPendingInStage (integer) --

            The number of edge devices yet to pick up the deployment in current stage, or in progress.

          • EdgeDeploymentFailedInStage (integer) --

            The number of edge devices that failed the deployment in current stage.

          • EdgeDeploymentStatusMessage (string) --

            A detailed message about deployment status in current stage.

          • EdgeDeploymentStageStartTime (datetime) --

            The time when the deployment API started.

    • NextToken (string) --

      Token to use when calling the next set of stages in the edge deployment plan.

    • CreationTime (datetime) --

      The time when the edge deployment plan was created.

    • LastModifiedTime (datetime) --

      The time when the edge deployment plan was last updated.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_edge_packaging_job(**kwargs)

A description of edge packaging jobs.

See also: AWS API Documentation

Request Syntax

response = client.describe_edge_packaging_job(
    EdgePackagingJobName='string'
)
Parameters
EdgePackagingJobName (string) --

[REQUIRED]

The name of the edge packaging job.

Return type
dict
Returns
Response Syntax
{
    'EdgePackagingJobArn': 'string',
    'EdgePackagingJobName': 'string',
    'CompilationJobName': 'string',
    'ModelName': 'string',
    'ModelVersion': 'string',
    'RoleArn': 'string',
    'OutputConfig': {
        'S3OutputLocation': 'string',
        'KmsKeyId': 'string',
        'PresetDeploymentType': 'GreengrassV2Component',
        'PresetDeploymentConfig': 'string'
    },
    'ResourceKey': 'string',
    'EdgePackagingJobStatus': 'STARTING'|'INPROGRESS'|'COMPLETED'|'FAILED'|'STOPPING'|'STOPPED',
    'EdgePackagingJobStatusMessage': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'ModelArtifact': 'string',
    'ModelSignature': 'string',
    'PresetDeploymentOutput': {
        'Type': 'GreengrassV2Component',
        'Artifact': 'string',
        'Status': 'COMPLETED'|'FAILED',
        'StatusMessage': 'string'
    }
}

Response Structure

  • (dict) --
    • EdgePackagingJobArn (string) --

      The Amazon Resource Name (ARN) of the edge packaging job.

    • EdgePackagingJobName (string) --

      The name of the edge packaging job.

    • CompilationJobName (string) --

      The name of the SageMaker Neo compilation job that is used to locate model artifacts that are being packaged.

    • ModelName (string) --

      The name of the model.

    • ModelVersion (string) --

      The version of the model.

    • RoleArn (string) --

      The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to download and upload the model, and to contact Neo.

    • OutputConfig (dict) --

      The output configuration for the edge packaging job.

      • S3OutputLocation (string) --

        The Amazon Simple Storage (S3) bucker URI.

      • KmsKeyId (string) --

        The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume after compilation job. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account.

      • PresetDeploymentType (string) --

        The deployment type SageMaker Edge Manager will create. Currently only supports Amazon Web Services IoT Greengrass Version 2 components.

      • PresetDeploymentConfig (string) --

        The configuration used to create deployment artifacts. Specify configuration options with a JSON string. The available configuration options for each type are:

        • ComponentName (optional) - Name of the GreenGrass V2 component. If not specified, the default name generated consists of "SagemakerEdgeManager" and the name of your SageMaker Edge Manager packaging job.
        • ComponentDescription (optional) - Description of the component.
        • ComponentVersion (optional) - The version of the component.

        Note

        Amazon Web Services IoT Greengrass uses semantic versions for components. Semantic versions follow a*major.minor.patch* number system. For example, version 1.0.0 represents the first major release for a component. For more information, see the semantic version specification.

        • PlatformOS (optional) - The name of the operating system for the platform. Supported platforms include Windows and Linux.
        • PlatformArchitecture (optional) - The processor architecture for the platform. Supported architectures Windows include: Windows32_x86, Windows64_x64. Supported architectures for Linux include: Linux x86_64, Linux ARMV8.
    • ResourceKey (string) --

      The Amazon Web Services KMS key to use when encrypting the EBS volume the job run on.

    • EdgePackagingJobStatus (string) --

      The current status of the packaging job.

    • EdgePackagingJobStatusMessage (string) --

      Returns a message describing the job status and error messages.

    • CreationTime (datetime) --

      The timestamp of when the packaging job was created.

    • LastModifiedTime (datetime) --

      The timestamp of when the job was last updated.

    • ModelArtifact (string) --

      The Amazon Simple Storage (S3) URI where model artifacts ares stored.

    • ModelSignature (string) --

      The signature document of files in the model artifact.

    • PresetDeploymentOutput (dict) --

      The output of a SageMaker Edge Manager deployable resource.

      • Type (string) --

        The deployment type created by SageMaker Edge Manager. Currently only supports Amazon Web Services IoT Greengrass Version 2 components.

      • Artifact (string) --

        The Amazon Resource Name (ARN) of the generated deployable resource.

      • Status (string) --

        The status of the deployable resource.

      • StatusMessage (string) --

        Returns a message describing the status of the deployed resource.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_endpoint(**kwargs)

Returns the description of an endpoint.

See also: AWS API Documentation

Request Syntax

response = client.describe_endpoint(
    EndpointName='string'
)
Parameters
EndpointName (string) --

[REQUIRED]

The name of the endpoint.

Return type
dict
Returns
Response Syntax
{
    'EndpointName': 'string',
    'EndpointArn': 'string',
    'EndpointConfigName': 'string',
    'ProductionVariants': [
        {
            'VariantName': 'string',
            'DeployedImages': [
                {
                    'SpecifiedImage': 'string',
                    'ResolvedImage': 'string',
                    'ResolutionTime': datetime(2015, 1, 1)
                },
            ],
            'CurrentWeight': ...,
            'DesiredWeight': ...,
            'CurrentInstanceCount': 123,
            'DesiredInstanceCount': 123,
            'VariantStatus': [
                {
                    'Status': 'Creating'|'Updating'|'Deleting'|'ActivatingTraffic'|'Baking',
                    'StatusMessage': 'string',
                    'StartTime': datetime(2015, 1, 1)
                },
            ],
            'CurrentServerlessConfig': {
                'MemorySizeInMB': 123,
                'MaxConcurrency': 123
            },
            'DesiredServerlessConfig': {
                'MemorySizeInMB': 123,
                'MaxConcurrency': 123
            }
        },
    ],
    'DataCaptureConfig': {
        'EnableCapture': True|False,
        'CaptureStatus': 'Started'|'Stopped',
        'CurrentSamplingPercentage': 123,
        'DestinationS3Uri': 'string',
        'KmsKeyId': 'string'
    },
    'EndpointStatus': 'OutOfService'|'Creating'|'Updating'|'SystemUpdating'|'RollingBack'|'InService'|'Deleting'|'Failed',
    'FailureReason': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'LastDeploymentConfig': {
        'BlueGreenUpdatePolicy': {
            'TrafficRoutingConfiguration': {
                'Type': 'ALL_AT_ONCE'|'CANARY'|'LINEAR',
                'WaitIntervalInSeconds': 123,
                'CanarySize': {
                    'Type': 'INSTANCE_COUNT'|'CAPACITY_PERCENT',
                    'Value': 123
                },
                'LinearStepSize': {
                    'Type': 'INSTANCE_COUNT'|'CAPACITY_PERCENT',
                    'Value': 123
                }
            },
            'TerminationWaitInSeconds': 123,
            'MaximumExecutionTimeoutInSeconds': 123
        },
        'AutoRollbackConfiguration': {
            'Alarms': [
                {
                    'AlarmName': 'string'
                },
            ]
        }
    },
    'AsyncInferenceConfig': {
        'ClientConfig': {
            'MaxConcurrentInvocationsPerInstance': 123
        },
        'OutputConfig': {
            'KmsKeyId': 'string',
            'S3OutputPath': 'string',
            'NotificationConfig': {
                'SuccessTopic': 'string',
                'ErrorTopic': 'string'
            }
        }
    },
    'PendingDeploymentSummary': {
        'EndpointConfigName': 'string',
        'ProductionVariants': [
            {
                'VariantName': 'string',
                'DeployedImages': [
                    {
                        'SpecifiedImage': 'string',
                        'ResolvedImage': 'string',
                        'ResolutionTime': datetime(2015, 1, 1)
                    },
                ],
                'CurrentWeight': ...,
                'DesiredWeight': ...,
                'CurrentInstanceCount': 123,
                'DesiredInstanceCount': 123,
                'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge',
                'AcceleratorType': 'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge',
                'VariantStatus': [
                    {
                        'Status': 'Creating'|'Updating'|'Deleting'|'ActivatingTraffic'|'Baking',
                        'StatusMessage': 'string',
                        'StartTime': datetime(2015, 1, 1)
                    },
                ],
                'CurrentServerlessConfig': {
                    'MemorySizeInMB': 123,
                    'MaxConcurrency': 123
                },
                'DesiredServerlessConfig': {
                    'MemorySizeInMB': 123,
                    'MaxConcurrency': 123
                }
            },
        ],
        'StartTime': datetime(2015, 1, 1),
        'ShadowProductionVariants': [
            {
                'VariantName': 'string',
                'DeployedImages': [
                    {
                        'SpecifiedImage': 'string',
                        'ResolvedImage': 'string',
                        'ResolutionTime': datetime(2015, 1, 1)
                    },
                ],
                'CurrentWeight': ...,
                'DesiredWeight': ...,
                'CurrentInstanceCount': 123,
                'DesiredInstanceCount': 123,
                'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge',
                'AcceleratorType': 'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge',
                'VariantStatus': [
                    {
                        'Status': 'Creating'|'Updating'|'Deleting'|'ActivatingTraffic'|'Baking',
                        'StatusMessage': 'string',
                        'StartTime': datetime(2015, 1, 1)
                    },
                ],
                'CurrentServerlessConfig': {
                    'MemorySizeInMB': 123,
                    'MaxConcurrency': 123
                },
                'DesiredServerlessConfig': {
                    'MemorySizeInMB': 123,
                    'MaxConcurrency': 123
                }
            },
        ]
    },
    'ExplainerConfig': {
        'ClarifyExplainerConfig': {
            'EnableExplanations': 'string',
            'InferenceConfig': {
                'FeaturesAttribute': 'string',
                'ContentTemplate': 'string',
                'MaxRecordCount': 123,
                'MaxPayloadInMB': 123,
                'ProbabilityIndex': 123,
                'LabelIndex': 123,
                'ProbabilityAttribute': 'string',
                'LabelAttribute': 'string',
                'LabelHeaders': [
                    'string',
                ],
                'FeatureHeaders': [
                    'string',
                ],
                'FeatureTypes': [
                    'numerical'|'categorical'|'text',
                ]
            },
            'ShapConfig': {
                'ShapBaselineConfig': {
                    'MimeType': 'string',
                    'ShapBaseline': 'string',
                    'ShapBaselineUri': 'string'
                },
                'NumberOfSamples': 123,
                'UseLogit': True|False,
                'Seed': 123,
                'TextConfig': {
                    'Language': 'af'|'sq'|'ar'|'hy'|'eu'|'bn'|'bg'|'ca'|'zh'|'hr'|'cs'|'da'|'nl'|'en'|'et'|'fi'|'fr'|'de'|'el'|'gu'|'he'|'hi'|'hu'|'is'|'id'|'ga'|'it'|'kn'|'ky'|'lv'|'lt'|'lb'|'mk'|'ml'|'mr'|'ne'|'nb'|'fa'|'pl'|'pt'|'ro'|'ru'|'sa'|'sr'|'tn'|'si'|'sk'|'sl'|'es'|'sv'|'tl'|'ta'|'tt'|'te'|'tr'|'uk'|'ur'|'yo'|'lij'|'xx',
                    'Granularity': 'token'|'sentence'|'paragraph'
                }
            }
        }
    },
    'ShadowProductionVariants': [
        {
            'VariantName': 'string',
            'DeployedImages': [
                {
                    'SpecifiedImage': 'string',
                    'ResolvedImage': 'string',
                    'ResolutionTime': datetime(2015, 1, 1)
                },
            ],
            'CurrentWeight': ...,
            'DesiredWeight': ...,
            'CurrentInstanceCount': 123,
            'DesiredInstanceCount': 123,
            'VariantStatus': [
                {
                    'Status': 'Creating'|'Updating'|'Deleting'|'ActivatingTraffic'|'Baking',
                    'StatusMessage': 'string',
                    'StartTime': datetime(2015, 1, 1)
                },
            ],
            'CurrentServerlessConfig': {
                'MemorySizeInMB': 123,
                'MaxConcurrency': 123
            },
            'DesiredServerlessConfig': {
                'MemorySizeInMB': 123,
                'MaxConcurrency': 123
            }
        },
    ]
}

Response Structure

  • (dict) --
    • EndpointName (string) --

      Name of the endpoint.

    • EndpointArn (string) --

      The Amazon Resource Name (ARN) of the endpoint.

    • EndpointConfigName (string) --

      The name of the endpoint configuration associated with this endpoint.

    • ProductionVariants (list) --

      An array of ProductionVariantSummary objects, one for each model hosted behind this endpoint.

      • (dict) --

        Describes weight and capacities for a production variant associated with an endpoint. If you sent a request to the UpdateEndpointWeightsAndCapacities API and the endpoint status is Updating , you get different desired and current values.

        • VariantName (string) --

          The name of the variant.

        • DeployedImages (list) --

          An array of DeployedImage objects that specify the Amazon EC2 Container Registry paths of the inference images deployed on instances of this ProductionVariant .

          • (dict) --

            Gets the Amazon EC2 Container Registry path of the docker image of the model that is hosted in this ProductionVariant.

            If you used the registry/repository[:tag] form to specify the image path of the primary container when you created the model hosted in this ProductionVariant , the path resolves to a path of the form registry/repository[@digest] . A digest is a hash value that identifies a specific version of an image. For information about Amazon ECR paths, see Pulling an Image in the Amazon ECR User Guide .

            • SpecifiedImage (string) --

              The image path you specified when you created the model.

            • ResolvedImage (string) --

              The specific digest path of the image hosted in this ProductionVariant .

            • ResolutionTime (datetime) --

              The date and time when the image path for the model resolved to the ResolvedImage

        • CurrentWeight (float) --

          The weight associated with the variant.

        • DesiredWeight (float) --

          The requested weight, as specified in the UpdateEndpointWeightsAndCapacities request.

        • CurrentInstanceCount (integer) --

          The number of instances associated with the variant.

        • DesiredInstanceCount (integer) --

          The number of instances requested in the UpdateEndpointWeightsAndCapacities request.

        • VariantStatus (list) --

          The endpoint variant status which describes the current deployment stage status or operational status.

          • (dict) --

            Describes the status of the production variant.

            • Status (string) --

              The endpoint variant status which describes the current deployment stage status or operational status.

              • Creating : Creating inference resources for the production variant.
              • Deleting : Terminating inference resources for the production variant.
              • Updating : Updating capacity for the production variant.
              • ActivatingTraffic : Turning on traffic for the production variant.
              • Baking : Waiting period to monitor the CloudWatch alarms in the automatic rollback configuration.
            • StatusMessage (string) --

              A message that describes the status of the production variant.

            • StartTime (datetime) --

              The start time of the current status change.

        • CurrentServerlessConfig (dict) --

          The serverless configuration for the endpoint.

          • MemorySizeInMB (integer) --

            The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

          • MaxConcurrency (integer) --

            The maximum number of concurrent invocations your serverless endpoint can process.

        • DesiredServerlessConfig (dict) --

          The serverless configuration requested for the endpoint update.

          • MemorySizeInMB (integer) --

            The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

          • MaxConcurrency (integer) --

            The maximum number of concurrent invocations your serverless endpoint can process.

    • DataCaptureConfig (dict) --

      The currently active data capture configuration used by your Endpoint.

      • EnableCapture (boolean) --

        Whether data capture is enabled or disabled.

      • CaptureStatus (string) --

        Whether data capture is currently functional.

      • CurrentSamplingPercentage (integer) --

        The percentage of requests being captured by your Endpoint.

      • DestinationS3Uri (string) --

        The Amazon S3 location being used to capture the data.

      • KmsKeyId (string) --

        The KMS key being used to encrypt the data in Amazon S3.

    • EndpointStatus (string) --

      The status of the endpoint.

      • OutOfService : Endpoint is not available to take incoming requests.
      • Creating : CreateEndpoint is executing.
      • Updating : UpdateEndpoint or UpdateEndpointWeightsAndCapacities is executing.
      • SystemUpdating : Endpoint is undergoing maintenance and cannot be updated or deleted or re-scaled until it has completed. This maintenance operation does not change any customer-specified values such as VPC config, KMS encryption, model, instance type, or instance count.
      • RollingBack : Endpoint fails to scale up or down or change its variant weight and is in the process of rolling back to its previous configuration. Once the rollback completes, endpoint returns to an InService status. This transitional status only applies to an endpoint that has autoscaling enabled and is undergoing variant weight or capacity changes as part of an UpdateEndpointWeightsAndCapacities call or when the UpdateEndpointWeightsAndCapacities operation is called explicitly.
      • InService : Endpoint is available to process incoming requests.
      • Deleting : DeleteEndpoint is executing.
      • Failed : Endpoint could not be created, updated, or re-scaled. Use DescribeEndpointOutput$FailureReason for information about the failure. DeleteEndpoint is the only operation that can be performed on a failed endpoint.
    • FailureReason (string) --

      If the status of the endpoint is Failed , the reason why it failed.

    • CreationTime (datetime) --

      A timestamp that shows when the endpoint was created.

    • LastModifiedTime (datetime) --

      A timestamp that shows when the endpoint was last modified.

    • LastDeploymentConfig (dict) --

      The most recent deployment configuration for the endpoint.

      • BlueGreenUpdatePolicy (dict) --

        Update policy for a blue/green deployment. If this update policy is specified, SageMaker creates a new fleet during the deployment while maintaining the old fleet. SageMaker flips traffic to the new fleet according to the specified traffic routing configuration. Only one update policy should be used in the deployment configuration. If no update policy is specified, SageMaker uses a blue/green deployment strategy with all at once traffic shifting by default.

        • TrafficRoutingConfiguration (dict) --

          Defines the traffic routing strategy to shift traffic from the old fleet to the new fleet during an endpoint deployment.

          • Type (string) --

            Traffic routing strategy type.

            • ALL_AT_ONCE : Endpoint traffic shifts to the new fleet in a single step.
            • CANARY : Endpoint traffic shifts to the new fleet in two steps. The first step is the canary, which is a small portion of the traffic. The second step is the remainder of the traffic.
            • LINEAR : Endpoint traffic shifts to the new fleet in n steps of a configurable size.
          • WaitIntervalInSeconds (integer) --

            The waiting time (in seconds) between incremental steps to turn on traffic on the new endpoint fleet.

          • CanarySize (dict) --

            Batch size for the first step to turn on traffic on the new endpoint fleet. Value must be less than or equal to 50% of the variant's total instance count.

            • Type (string) --

              Specifies the endpoint capacity type.

              • INSTANCE_COUNT : The endpoint activates based on the number of instances.
              • CAPACITY_PERCENT : The endpoint activates based on the specified percentage of capacity.
            • Value (integer) --

              Defines the capacity size, either as a number of instances or a capacity percentage.

          • LinearStepSize (dict) --

            Batch size for each step to turn on traffic on the new endpoint fleet. Value must be 10-50% of the variant's total instance count.

            • Type (string) --

              Specifies the endpoint capacity type.

              • INSTANCE_COUNT : The endpoint activates based on the number of instances.
              • CAPACITY_PERCENT : The endpoint activates based on the specified percentage of capacity.
            • Value (integer) --

              Defines the capacity size, either as a number of instances or a capacity percentage.

        • TerminationWaitInSeconds (integer) --

          Additional waiting time in seconds after the completion of an endpoint deployment before terminating the old endpoint fleet. Default is 0.

        • MaximumExecutionTimeoutInSeconds (integer) --

          Maximum execution timeout for the deployment. Note that the timeout value should be larger than the total waiting time specified in TerminationWaitInSeconds and WaitIntervalInSeconds .

      • AutoRollbackConfiguration (dict) --

        Automatic rollback configuration for handling endpoint deployment failures and recovery.

        • Alarms (list) --

          List of CloudWatch alarms in your account that are configured to monitor metrics on an endpoint. If any alarms are tripped during a deployment, SageMaker rolls back the deployment.

          • (dict) --

            An Amazon CloudWatch alarm configured to monitor metrics on an endpoint.

            • AlarmName (string) --

              The name of a CloudWatch alarm in your account.

    • AsyncInferenceConfig (dict) --

      Returns the description of an endpoint configuration created using the CreateEndpointConfig API.

      • ClientConfig (dict) --

        Configures the behavior of the client used by SageMaker to interact with the model container during asynchronous inference.

        • MaxConcurrentInvocationsPerInstance (integer) --

          The maximum number of concurrent requests sent by the SageMaker client to the model container. If no value is provided, SageMaker chooses an optimal value.

      • OutputConfig (dict) --

        Specifies the configuration for asynchronous inference invocation outputs.

        • KmsKeyId (string) --

          The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the asynchronous inference output in Amazon S3.

        • S3OutputPath (string) --

          The Amazon S3 location to upload inference responses to.

        • NotificationConfig (dict) --

          Specifies the configuration for notifications of inference results for asynchronous inference.

          • SuccessTopic (string) --

            Amazon SNS topic to post a notification to when inference completes successfully. If no topic is provided, no notification is sent on success.

          • ErrorTopic (string) --

            Amazon SNS topic to post a notification to when inference fails. If no topic is provided, no notification is sent on failure.

    • PendingDeploymentSummary (dict) --

      Returns the summary of an in-progress deployment. This field is only returned when the endpoint is creating or updating with a new endpoint configuration.

      • EndpointConfigName (string) --

        The name of the endpoint configuration used in the deployment.

      • ProductionVariants (list) --

        An array of PendingProductionVariantSummary objects, one for each model hosted behind this endpoint for the in-progress deployment.

        • (dict) --

          The production variant summary for a deployment when an endpoint is creating or updating with the CreateEndpoint or UpdateEndpoint operations. Describes the VariantStatus , weight and capacity for a production variant associated with an endpoint.

          • VariantName (string) --

            The name of the variant.

          • DeployedImages (list) --

            An array of DeployedImage objects that specify the Amazon EC2 Container Registry paths of the inference images deployed on instances of this ProductionVariant .

            • (dict) --

              Gets the Amazon EC2 Container Registry path of the docker image of the model that is hosted in this ProductionVariant.

              If you used the registry/repository[:tag] form to specify the image path of the primary container when you created the model hosted in this ProductionVariant , the path resolves to a path of the form registry/repository[@digest] . A digest is a hash value that identifies a specific version of an image. For information about Amazon ECR paths, see Pulling an Image in the Amazon ECR User Guide .

              • SpecifiedImage (string) --

                The image path you specified when you created the model.

              • ResolvedImage (string) --

                The specific digest path of the image hosted in this ProductionVariant .

              • ResolutionTime (datetime) --

                The date and time when the image path for the model resolved to the ResolvedImage

          • CurrentWeight (float) --

            The weight associated with the variant.

          • DesiredWeight (float) --

            The requested weight for the variant in this deployment, as specified in the endpoint configuration for the endpoint. The value is taken from the request to the CreateEndpointConfig operation.

          • CurrentInstanceCount (integer) --

            The number of instances associated with the variant.

          • DesiredInstanceCount (integer) --

            The number of instances requested in this deployment, as specified in the endpoint configuration for the endpoint. The value is taken from the request to the CreateEndpointConfig operation.

          • InstanceType (string) --

            The type of instances associated with the variant.

          • AcceleratorType (string) --

            The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker.

          • VariantStatus (list) --

            The endpoint variant status which describes the current deployment stage status or operational status.

            • (dict) --

              Describes the status of the production variant.

              • Status (string) --

                The endpoint variant status which describes the current deployment stage status or operational status.

                • Creating : Creating inference resources for the production variant.
                • Deleting : Terminating inference resources for the production variant.
                • Updating : Updating capacity for the production variant.
                • ActivatingTraffic : Turning on traffic for the production variant.
                • Baking : Waiting period to monitor the CloudWatch alarms in the automatic rollback configuration.
              • StatusMessage (string) --

                A message that describes the status of the production variant.

              • StartTime (datetime) --

                The start time of the current status change.

          • CurrentServerlessConfig (dict) --

            The serverless configuration for the endpoint.

            • MemorySizeInMB (integer) --

              The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

            • MaxConcurrency (integer) --

              The maximum number of concurrent invocations your serverless endpoint can process.

          • DesiredServerlessConfig (dict) --

            The serverless configuration requested for this deployment, as specified in the endpoint configuration for the endpoint.

            • MemorySizeInMB (integer) --

              The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

            • MaxConcurrency (integer) --

              The maximum number of concurrent invocations your serverless endpoint can process.

      • StartTime (datetime) --

        The start time of the deployment.

      • ShadowProductionVariants (list) --

        An array of PendingProductionVariantSummary objects, one for each model hosted behind this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants for the in-progress deployment.

        • (dict) --

          The production variant summary for a deployment when an endpoint is creating or updating with the CreateEndpoint or UpdateEndpoint operations. Describes the VariantStatus , weight and capacity for a production variant associated with an endpoint.

          • VariantName (string) --

            The name of the variant.

          • DeployedImages (list) --

            An array of DeployedImage objects that specify the Amazon EC2 Container Registry paths of the inference images deployed on instances of this ProductionVariant .

            • (dict) --

              Gets the Amazon EC2 Container Registry path of the docker image of the model that is hosted in this ProductionVariant.

              If you used the registry/repository[:tag] form to specify the image path of the primary container when you created the model hosted in this ProductionVariant , the path resolves to a path of the form registry/repository[@digest] . A digest is a hash value that identifies a specific version of an image. For information about Amazon ECR paths, see Pulling an Image in the Amazon ECR User Guide .

              • SpecifiedImage (string) --

                The image path you specified when you created the model.

              • ResolvedImage (string) --

                The specific digest path of the image hosted in this ProductionVariant .

              • ResolutionTime (datetime) --

                The date and time when the image path for the model resolved to the ResolvedImage

          • CurrentWeight (float) --

            The weight associated with the variant.

          • DesiredWeight (float) --

            The requested weight for the variant in this deployment, as specified in the endpoint configuration for the endpoint. The value is taken from the request to the CreateEndpointConfig operation.

          • CurrentInstanceCount (integer) --

            The number of instances associated with the variant.

          • DesiredInstanceCount (integer) --

            The number of instances requested in this deployment, as specified in the endpoint configuration for the endpoint. The value is taken from the request to the CreateEndpointConfig operation.

          • InstanceType (string) --

            The type of instances associated with the variant.

          • AcceleratorType (string) --

            The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker.

          • VariantStatus (list) --

            The endpoint variant status which describes the current deployment stage status or operational status.

            • (dict) --

              Describes the status of the production variant.

              • Status (string) --

                The endpoint variant status which describes the current deployment stage status or operational status.

                • Creating : Creating inference resources for the production variant.
                • Deleting : Terminating inference resources for the production variant.
                • Updating : Updating capacity for the production variant.
                • ActivatingTraffic : Turning on traffic for the production variant.
                • Baking : Waiting period to monitor the CloudWatch alarms in the automatic rollback configuration.
              • StatusMessage (string) --

                A message that describes the status of the production variant.

              • StartTime (datetime) --

                The start time of the current status change.

          • CurrentServerlessConfig (dict) --

            The serverless configuration for the endpoint.

            • MemorySizeInMB (integer) --

              The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

            • MaxConcurrency (integer) --

              The maximum number of concurrent invocations your serverless endpoint can process.

          • DesiredServerlessConfig (dict) --

            The serverless configuration requested for this deployment, as specified in the endpoint configuration for the endpoint.

            • MemorySizeInMB (integer) --

              The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

            • MaxConcurrency (integer) --

              The maximum number of concurrent invocations your serverless endpoint can process.

    • ExplainerConfig (dict) --

      The configuration parameters for an explainer.

      • ClarifyExplainerConfig (dict) --

        A member of ExplainerConfig that contains configuration parameters for the SageMaker Clarify explainer.

        • EnableExplanations (string) --

          A JMESPath boolean expression used to filter which records to explain. Explanations are activated by default. See EnableExplanations for additional information.

        • InferenceConfig (dict) --

          The inference configuration parameter for the model container.

          • FeaturesAttribute (string) --

            Provides the JMESPath expression to extract the features from a model container input in JSON Lines format. For example, if FeaturesAttribute is the JMESPath expression 'myfeatures' , it extracts a list of features [1,2,3] from request data '{"myfeatures":[1,2,3]}' .

          • ContentTemplate (string) --

            A template string used to format a JSON record into an acceptable model container input. For example, a ContentTemplate string '{"myfeatures":$features}' will format a list of features [1,2,3] into the record string '{"myfeatures":[1,2,3]}' . Required only when the model container input is in JSON Lines format.

          • MaxRecordCount (integer) --

            The maximum number of records in a request that the model container can process when querying the model container for the predictions of a synthetic dataset. A record is a unit of input data that inference can be made on, for example, a single line in CSV data. If MaxRecordCount is 1 , the model container expects one record per request. A value of 2 or greater means that the model expects batch requests, which can reduce overhead and speed up the inferencing process. If this parameter is not provided, the explainer will tune the record count per request according to the model container's capacity at runtime.

          • MaxPayloadInMB (integer) --

            The maximum payload size (MB) allowed of a request from the explainer to the model container. Defaults to 6 MB.

          • ProbabilityIndex (integer) --

            A zero-based index used to extract a probability value (score) or list from model container output in CSV format. If this value is not provided, the entire model container output will be treated as a probability value (score) or list.

            Example for a single class model: If the model container output consists of a string-formatted prediction label followed by its probability: '1,0.6' , set ProbabilityIndex to 1 to select the probability value 0.6 .

            Example for a multiclass model: If the model container output consists of a string-formatted prediction label followed by its probability: '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"' , set ProbabilityIndex to 1 to select the probability values [0.1,0.6,0.3] .

          • LabelIndex (integer) --

            A zero-based index used to extract a label header or list of label headers from model container output in CSV format.

            Example for a multiclass model: If the model container output consists of label headers followed by probabilities: '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"' , set LabelIndex to 0 to select the label headers ['cat','dog','fish'] .
          • ProbabilityAttribute (string) --

            A JMESPath expression used to extract the probability (or score) from the model container output if the model container is in JSON Lines format.

            Example : If the model container output of a single request is '{"predicted_label":1,"probability":0.6}' , then set ProbabilityAttribute to 'probability' .
          • LabelAttribute (string) --

            A JMESPath expression used to locate the list of label headers in the model container output.

            Example : If the model container output of a batch request is '{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}' , then set LabelAttribute to 'labels' to extract the list of label headers ["cat","dog","fish"]
          • LabelHeaders (list) --

            For multiclass classification problems, the label headers are the names of the classes. Otherwise, the label header is the name of the predicted label. These are used to help readability for the output of the InvokeEndpoint API. See the response section under Invoke the endpoint in the Developer Guide for more information. If there are no label headers in the model container output, provide them manually using this parameter.

            • (string) --
          • FeatureHeaders (list) --

            The names of the features. If provided, these are included in the endpoint response payload to help readability of the InvokeEndpoint output. See the Response section under Invoke the endpoint in the Developer Guide for more information.

            • (string) --
          • FeatureTypes (list) --

            A list of data types of the features (optional). Applicable only to NLP explainability. If provided, FeatureTypes must have at least one 'text' string (for example, ['text'] ). If FeatureTypes is not provided, the explainer infers the feature types based on the baseline data. The feature types are included in the endpoint response payload. For additional information see the response section under Invoke the endpoint in the Developer Guide for more information.

            • (string) --
        • ShapConfig (dict) --

          The configuration for SHAP analysis.

          • ShapBaselineConfig (dict) --

            The configuration for the SHAP baseline of the Kernal SHAP algorithm.

            • MimeType (string) --

              The MIME type of the baseline data. Choose from 'text/csv' or 'application/jsonlines' . Defaults to 'text/csv' .

            • ShapBaseline (string) --

              The inline SHAP baseline data in string format. ShapBaseline can have one or multiple records to be used as the baseline dataset. The format of the SHAP baseline file should be the same format as the training dataset. For example, if the training dataset is in CSV format and each record contains four features, and all features are numerical, then the format of the baseline data should also share these characteristics. For natural language processing (NLP) of text columns, the baseline value should be the value used to replace the unit of text specified by the Granularity of the TextConfig parameter. The size limit for ShapBasline is 4 KB. Use the ShapBaselineUri parameter if you want to provide more than 4 KB of baseline data.

            • ShapBaselineUri (string) --

              The uniform resource identifier (URI) of the S3 bucket where the SHAP baseline file is stored. The format of the SHAP baseline file should be the same format as the format of the training dataset. For example, if the training dataset is in CSV format, and each record in the training dataset has four features, and all features are numerical, then the baseline file should also have this same format. Each record should contain only the features. If you are using a virtual private cloud (VPC), the ShapBaselineUri should be accessible to the VPC. For more information about setting up endpoints with Amazon Virtual Private Cloud, see Give SageMaker access to Resources in your Amazon Virtual Private Cloud.

          • NumberOfSamples (integer) --

            The number of samples to be used for analysis by the Kernal SHAP algorithm.

            Note

            The number of samples determines the size of the synthetic dataset, which has an impact on latency of explainability requests. For more information, see the Synthetic data of Configure and create an endpoint.

          • UseLogit (boolean) --

            A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for model predictions. Defaults to false.

          • Seed (integer) --

            The starting value used to initialize the random number generator in the explainer. Provide a value for this parameter to obtain a deterministic SHAP result.

          • TextConfig (dict) --

            A parameter that indicates if text features are treated as text and explanations are provided for individual units of text. Required for natural language processing (NLP) explainability only.

            • Language (string) --

              Specifies the language of the text features in ISO 639-1 or ISO 639-3 code of a supported language.

              Note

              For a mix of multiple languages, use code 'xx' .

            • Granularity (string) --

              The unit of granularity for the analysis of text features. For example, if the unit is 'token' , then each token (like a word in English) of the text is treated as a feature. SHAP values are computed for each unit/feature.

    • ShadowProductionVariants (list) --

      An array of ProductionVariantSummary objects, one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants .

      • (dict) --

        Describes weight and capacities for a production variant associated with an endpoint. If you sent a request to the UpdateEndpointWeightsAndCapacities API and the endpoint status is Updating , you get different desired and current values.

        • VariantName (string) --

          The name of the variant.

        • DeployedImages (list) --

          An array of DeployedImage objects that specify the Amazon EC2 Container Registry paths of the inference images deployed on instances of this ProductionVariant .

          • (dict) --

            Gets the Amazon EC2 Container Registry path of the docker image of the model that is hosted in this ProductionVariant.

            If you used the registry/repository[:tag] form to specify the image path of the primary container when you created the model hosted in this ProductionVariant , the path resolves to a path of the form registry/repository[@digest] . A digest is a hash value that identifies a specific version of an image. For information about Amazon ECR paths, see Pulling an Image in the Amazon ECR User Guide .

            • SpecifiedImage (string) --

              The image path you specified when you created the model.

            • ResolvedImage (string) --

              The specific digest path of the image hosted in this ProductionVariant .

            • ResolutionTime (datetime) --

              The date and time when the image path for the model resolved to the ResolvedImage

        • CurrentWeight (float) --

          The weight associated with the variant.

        • DesiredWeight (float) --

          The requested weight, as specified in the UpdateEndpointWeightsAndCapacities request.

        • CurrentInstanceCount (integer) --

          The number of instances associated with the variant.

        • DesiredInstanceCount (integer) --

          The number of instances requested in the UpdateEndpointWeightsAndCapacities request.

        • VariantStatus (list) --

          The endpoint variant status which describes the current deployment stage status or operational status.

          • (dict) --

            Describes the status of the production variant.

            • Status (string) --

              The endpoint variant status which describes the current deployment stage status or operational status.

              • Creating : Creating inference resources for the production variant.
              • Deleting : Terminating inference resources for the production variant.
              • Updating : Updating capacity for the production variant.
              • ActivatingTraffic : Turning on traffic for the production variant.
              • Baking : Waiting period to monitor the CloudWatch alarms in the automatic rollback configuration.
            • StatusMessage (string) --

              A message that describes the status of the production variant.

            • StartTime (datetime) --

              The start time of the current status change.

        • CurrentServerlessConfig (dict) --

          The serverless configuration for the endpoint.

          • MemorySizeInMB (integer) --

            The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

          • MaxConcurrency (integer) --

            The maximum number of concurrent invocations your serverless endpoint can process.

        • DesiredServerlessConfig (dict) --

          The serverless configuration requested for the endpoint update.

          • MemorySizeInMB (integer) --

            The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

          • MaxConcurrency (integer) --

            The maximum number of concurrent invocations your serverless endpoint can process.

describe_endpoint_config(**kwargs)

Returns the description of an endpoint configuration created using the CreateEndpointConfig API.

See also: AWS API Documentation

Request Syntax

response = client.describe_endpoint_config(
    EndpointConfigName='string'
)
Parameters
EndpointConfigName (string) --

[REQUIRED]

The name of the endpoint configuration.

Return type
dict
Returns
Response Syntax
{
    'EndpointConfigName': 'string',
    'EndpointConfigArn': 'string',
    'ProductionVariants': [
        {
            'VariantName': 'string',
            'ModelName': 'string',
            'InitialInstanceCount': 123,
            'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge',
            'InitialVariantWeight': ...,
            'AcceleratorType': 'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge',
            'CoreDumpConfig': {
                'DestinationS3Uri': 'string',
                'KmsKeyId': 'string'
            },
            'ServerlessConfig': {
                'MemorySizeInMB': 123,
                'MaxConcurrency': 123
            },
            'VolumeSizeInGB': 123,
            'ModelDataDownloadTimeoutInSeconds': 123,
            'ContainerStartupHealthCheckTimeoutInSeconds': 123
        },
    ],
    'DataCaptureConfig': {
        'EnableCapture': True|False,
        'InitialSamplingPercentage': 123,
        'DestinationS3Uri': 'string',
        'KmsKeyId': 'string',
        'CaptureOptions': [
            {
                'CaptureMode': 'Input'|'Output'
            },
        ],
        'CaptureContentTypeHeader': {
            'CsvContentTypes': [
                'string',
            ],
            'JsonContentTypes': [
                'string',
            ]
        }
    },
    'KmsKeyId': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'AsyncInferenceConfig': {
        'ClientConfig': {
            'MaxConcurrentInvocationsPerInstance': 123
        },
        'OutputConfig': {
            'KmsKeyId': 'string',
            'S3OutputPath': 'string',
            'NotificationConfig': {
                'SuccessTopic': 'string',
                'ErrorTopic': 'string'
            }
        }
    },
    'ExplainerConfig': {
        'ClarifyExplainerConfig': {
            'EnableExplanations': 'string',
            'InferenceConfig': {
                'FeaturesAttribute': 'string',
                'ContentTemplate': 'string',
                'MaxRecordCount': 123,
                'MaxPayloadInMB': 123,
                'ProbabilityIndex': 123,
                'LabelIndex': 123,
                'ProbabilityAttribute': 'string',
                'LabelAttribute': 'string',
                'LabelHeaders': [
                    'string',
                ],
                'FeatureHeaders': [
                    'string',
                ],
                'FeatureTypes': [
                    'numerical'|'categorical'|'text',
                ]
            },
            'ShapConfig': {
                'ShapBaselineConfig': {
                    'MimeType': 'string',
                    'ShapBaseline': 'string',
                    'ShapBaselineUri': 'string'
                },
                'NumberOfSamples': 123,
                'UseLogit': True|False,
                'Seed': 123,
                'TextConfig': {
                    'Language': 'af'|'sq'|'ar'|'hy'|'eu'|'bn'|'bg'|'ca'|'zh'|'hr'|'cs'|'da'|'nl'|'en'|'et'|'fi'|'fr'|'de'|'el'|'gu'|'he'|'hi'|'hu'|'is'|'id'|'ga'|'it'|'kn'|'ky'|'lv'|'lt'|'lb'|'mk'|'ml'|'mr'|'ne'|'nb'|'fa'|'pl'|'pt'|'ro'|'ru'|'sa'|'sr'|'tn'|'si'|'sk'|'sl'|'es'|'sv'|'tl'|'ta'|'tt'|'te'|'tr'|'uk'|'ur'|'yo'|'lij'|'xx',
                    'Granularity': 'token'|'sentence'|'paragraph'
                }
            }
        }
    },
    'ShadowProductionVariants': [
        {
            'VariantName': 'string',
            'ModelName': 'string',
            'InitialInstanceCount': 123,
            'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge',
            'InitialVariantWeight': ...,
            'AcceleratorType': 'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge',
            'CoreDumpConfig': {
                'DestinationS3Uri': 'string',
                'KmsKeyId': 'string'
            },
            'ServerlessConfig': {
                'MemorySizeInMB': 123,
                'MaxConcurrency': 123
            },
            'VolumeSizeInGB': 123,
            'ModelDataDownloadTimeoutInSeconds': 123,
            'ContainerStartupHealthCheckTimeoutInSeconds': 123
        },
    ]
}

Response Structure

  • (dict) --
    • EndpointConfigName (string) --

      Name of the SageMaker endpoint configuration.

    • EndpointConfigArn (string) --

      The Amazon Resource Name (ARN) of the endpoint configuration.

    • ProductionVariants (list) --

      An array of ProductionVariant objects, one for each model that you want to host at this endpoint.

      • (dict) --

        Identifies a model that you want to host and the resources chosen to deploy for hosting it. If you are deploying multiple models, tell SageMaker how to distribute traffic among the models by specifying variant weights.

        • VariantName (string) --

          The name of the production variant.

        • ModelName (string) --

          The name of the model that you want to host. This is the name that you specified when creating the model.

        • InitialInstanceCount (integer) --

          Number of instances to launch initially.

        • InstanceType (string) --

          The ML compute instance type.

        • InitialVariantWeight (float) --

          Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of the VariantWeight to the sum of all VariantWeight values across all ProductionVariants. If unspecified, it defaults to 1.0.

        • AcceleratorType (string) --

          The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker.

        • CoreDumpConfig (dict) --

          Specifies configuration for a core dump from the model container when the process crashes.

          • DestinationS3Uri (string) --

            The Amazon S3 bucket to send the core dump to.

          • KmsKeyId (string) --

            The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the core dump data at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

            • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
            • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
            • // KMS Key Alias "alias/ExampleAlias"
            • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

            If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

            The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint and UpdateEndpoint requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .

        • ServerlessConfig (dict) --

          The serverless configuration for an endpoint. Specifies a serverless endpoint configuration instead of an instance-based endpoint configuration.

          • MemorySizeInMB (integer) --

            The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

          • MaxConcurrency (integer) --

            The maximum number of concurrent invocations your serverless endpoint can process.

        • VolumeSizeInGB (integer) --

          The size, in GB, of the ML storage volume attached to individual inference instance associated with the production variant. Currently only Amazon EBS gp2 storage volumes are supported.

        • ModelDataDownloadTimeoutInSeconds (integer) --

          The timeout value, in seconds, to download and extract the model that you want to host from Amazon S3 to the individual inference instance associated with this production variant.

        • ContainerStartupHealthCheckTimeoutInSeconds (integer) --

          The timeout value, in seconds, for your inference container to pass health check by SageMaker Hosting. For more information about health check, see How Your Container Should Respond to Health Check (Ping) Requests.

    • DataCaptureConfig (dict) --

      Configuration to control how SageMaker captures inference data.

      • EnableCapture (boolean) --

        Whether data capture should be enabled or disabled (defaults to enabled).

      • InitialSamplingPercentage (integer) --

        The percentage of requests SageMaker will capture. A lower value is recommended for Endpoints with high traffic.

      • DestinationS3Uri (string) --

        The Amazon S3 location used to capture the data.

      • KmsKeyId (string) --

        The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker uses to encrypt the captured data at rest using Amazon S3 server-side encryption.

        The KmsKeyId can be any of the following formats:

        • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
        • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
        • Alias name: alias/ExampleAlias
        • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
      • CaptureOptions (list) --

        Specifies data Model Monitor will capture. You can configure whether to collect only input, only output, or both

        • (dict) --

          Specifies data Model Monitor will capture.

          • CaptureMode (string) --

            Specify the boundary of data to capture.

      • CaptureContentTypeHeader (dict) --

        Configuration specifying how to treat different headers. If no headers are specified SageMaker will by default base64 encode when capturing the data.

        • CsvContentTypes (list) --

          The list of all content type headers that SageMaker will treat as CSV and capture accordingly.

          • (string) --
        • JsonContentTypes (list) --

          The list of all content type headers that SageMaker will treat as JSON and capture accordingly.

          • (string) --
    • KmsKeyId (string) --

      Amazon Web Services KMS key ID Amazon SageMaker uses to encrypt data when storing it on the ML storage volume attached to the instance.

    • CreationTime (datetime) --

      A timestamp that shows when the endpoint configuration was created.

    • AsyncInferenceConfig (dict) --

      Returns the description of an endpoint configuration created using the CreateEndpointConfig API.

      • ClientConfig (dict) --

        Configures the behavior of the client used by SageMaker to interact with the model container during asynchronous inference.

        • MaxConcurrentInvocationsPerInstance (integer) --

          The maximum number of concurrent requests sent by the SageMaker client to the model container. If no value is provided, SageMaker chooses an optimal value.

      • OutputConfig (dict) --

        Specifies the configuration for asynchronous inference invocation outputs.

        • KmsKeyId (string) --

          The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the asynchronous inference output in Amazon S3.

        • S3OutputPath (string) --

          The Amazon S3 location to upload inference responses to.

        • NotificationConfig (dict) --

          Specifies the configuration for notifications of inference results for asynchronous inference.

          • SuccessTopic (string) --

            Amazon SNS topic to post a notification to when inference completes successfully. If no topic is provided, no notification is sent on success.

          • ErrorTopic (string) --

            Amazon SNS topic to post a notification to when inference fails. If no topic is provided, no notification is sent on failure.

    • ExplainerConfig (dict) --

      The configuration parameters for an explainer.

      • ClarifyExplainerConfig (dict) --

        A member of ExplainerConfig that contains configuration parameters for the SageMaker Clarify explainer.

        • EnableExplanations (string) --

          A JMESPath boolean expression used to filter which records to explain. Explanations are activated by default. See EnableExplanations for additional information.

        • InferenceConfig (dict) --

          The inference configuration parameter for the model container.

          • FeaturesAttribute (string) --

            Provides the JMESPath expression to extract the features from a model container input in JSON Lines format. For example, if FeaturesAttribute is the JMESPath expression 'myfeatures' , it extracts a list of features [1,2,3] from request data '{"myfeatures":[1,2,3]}' .

          • ContentTemplate (string) --

            A template string used to format a JSON record into an acceptable model container input. For example, a ContentTemplate string '{"myfeatures":$features}' will format a list of features [1,2,3] into the record string '{"myfeatures":[1,2,3]}' . Required only when the model container input is in JSON Lines format.

          • MaxRecordCount (integer) --

            The maximum number of records in a request that the model container can process when querying the model container for the predictions of a synthetic dataset. A record is a unit of input data that inference can be made on, for example, a single line in CSV data. If MaxRecordCount is 1 , the model container expects one record per request. A value of 2 or greater means that the model expects batch requests, which can reduce overhead and speed up the inferencing process. If this parameter is not provided, the explainer will tune the record count per request according to the model container's capacity at runtime.

          • MaxPayloadInMB (integer) --

            The maximum payload size (MB) allowed of a request from the explainer to the model container. Defaults to 6 MB.

          • ProbabilityIndex (integer) --

            A zero-based index used to extract a probability value (score) or list from model container output in CSV format. If this value is not provided, the entire model container output will be treated as a probability value (score) or list.

            Example for a single class model: If the model container output consists of a string-formatted prediction label followed by its probability: '1,0.6' , set ProbabilityIndex to 1 to select the probability value 0.6 .

            Example for a multiclass model: If the model container output consists of a string-formatted prediction label followed by its probability: '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"' , set ProbabilityIndex to 1 to select the probability values [0.1,0.6,0.3] .

          • LabelIndex (integer) --

            A zero-based index used to extract a label header or list of label headers from model container output in CSV format.

            Example for a multiclass model: If the model container output consists of label headers followed by probabilities: '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"' , set LabelIndex to 0 to select the label headers ['cat','dog','fish'] .
          • ProbabilityAttribute (string) --

            A JMESPath expression used to extract the probability (or score) from the model container output if the model container is in JSON Lines format.

            Example : If the model container output of a single request is '{"predicted_label":1,"probability":0.6}' , then set ProbabilityAttribute to 'probability' .
          • LabelAttribute (string) --

            A JMESPath expression used to locate the list of label headers in the model container output.

            Example : If the model container output of a batch request is '{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}' , then set LabelAttribute to 'labels' to extract the list of label headers ["cat","dog","fish"]
          • LabelHeaders (list) --

            For multiclass classification problems, the label headers are the names of the classes. Otherwise, the label header is the name of the predicted label. These are used to help readability for the output of the InvokeEndpoint API. See the response section under Invoke the endpoint in the Developer Guide for more information. If there are no label headers in the model container output, provide them manually using this parameter.

            • (string) --
          • FeatureHeaders (list) --

            The names of the features. If provided, these are included in the endpoint response payload to help readability of the InvokeEndpoint output. See the Response section under Invoke the endpoint in the Developer Guide for more information.

            • (string) --
          • FeatureTypes (list) --

            A list of data types of the features (optional). Applicable only to NLP explainability. If provided, FeatureTypes must have at least one 'text' string (for example, ['text'] ). If FeatureTypes is not provided, the explainer infers the feature types based on the baseline data. The feature types are included in the endpoint response payload. For additional information see the response section under Invoke the endpoint in the Developer Guide for more information.

            • (string) --
        • ShapConfig (dict) --

          The configuration for SHAP analysis.

          • ShapBaselineConfig (dict) --

            The configuration for the SHAP baseline of the Kernal SHAP algorithm.

            • MimeType (string) --

              The MIME type of the baseline data. Choose from 'text/csv' or 'application/jsonlines' . Defaults to 'text/csv' .

            • ShapBaseline (string) --

              The inline SHAP baseline data in string format. ShapBaseline can have one or multiple records to be used as the baseline dataset. The format of the SHAP baseline file should be the same format as the training dataset. For example, if the training dataset is in CSV format and each record contains four features, and all features are numerical, then the format of the baseline data should also share these characteristics. For natural language processing (NLP) of text columns, the baseline value should be the value used to replace the unit of text specified by the Granularity of the TextConfig parameter. The size limit for ShapBasline is 4 KB. Use the ShapBaselineUri parameter if you want to provide more than 4 KB of baseline data.

            • ShapBaselineUri (string) --

              The uniform resource identifier (URI) of the S3 bucket where the SHAP baseline file is stored. The format of the SHAP baseline file should be the same format as the format of the training dataset. For example, if the training dataset is in CSV format, and each record in the training dataset has four features, and all features are numerical, then the baseline file should also have this same format. Each record should contain only the features. If you are using a virtual private cloud (VPC), the ShapBaselineUri should be accessible to the VPC. For more information about setting up endpoints with Amazon Virtual Private Cloud, see Give SageMaker access to Resources in your Amazon Virtual Private Cloud.

          • NumberOfSamples (integer) --

            The number of samples to be used for analysis by the Kernal SHAP algorithm.

            Note

            The number of samples determines the size of the synthetic dataset, which has an impact on latency of explainability requests. For more information, see the Synthetic data of Configure and create an endpoint.

          • UseLogit (boolean) --

            A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for model predictions. Defaults to false.

          • Seed (integer) --

            The starting value used to initialize the random number generator in the explainer. Provide a value for this parameter to obtain a deterministic SHAP result.

          • TextConfig (dict) --

            A parameter that indicates if text features are treated as text and explanations are provided for individual units of text. Required for natural language processing (NLP) explainability only.

            • Language (string) --

              Specifies the language of the text features in ISO 639-1 or ISO 639-3 code of a supported language.

              Note

              For a mix of multiple languages, use code 'xx' .

            • Granularity (string) --

              The unit of granularity for the analysis of text features. For example, if the unit is 'token' , then each token (like a word in English) of the text is treated as a feature. SHAP values are computed for each unit/feature.

    • ShadowProductionVariants (list) --

      An array of ProductionVariant objects, one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants .

      • (dict) --

        Identifies a model that you want to host and the resources chosen to deploy for hosting it. If you are deploying multiple models, tell SageMaker how to distribute traffic among the models by specifying variant weights.

        • VariantName (string) --

          The name of the production variant.

        • ModelName (string) --

          The name of the model that you want to host. This is the name that you specified when creating the model.

        • InitialInstanceCount (integer) --

          Number of instances to launch initially.

        • InstanceType (string) --

          The ML compute instance type.

        • InitialVariantWeight (float) --

          Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of the VariantWeight to the sum of all VariantWeight values across all ProductionVariants. If unspecified, it defaults to 1.0.

        • AcceleratorType (string) --

          The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker.

        • CoreDumpConfig (dict) --

          Specifies configuration for a core dump from the model container when the process crashes.

          • DestinationS3Uri (string) --

            The Amazon S3 bucket to send the core dump to.

          • KmsKeyId (string) --

            The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the core dump data at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

            • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
            • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
            • // KMS Key Alias "alias/ExampleAlias"
            • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

            If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

            The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint and UpdateEndpoint requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .

        • ServerlessConfig (dict) --

          The serverless configuration for an endpoint. Specifies a serverless endpoint configuration instead of an instance-based endpoint configuration.

          • MemorySizeInMB (integer) --

            The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

          • MaxConcurrency (integer) --

            The maximum number of concurrent invocations your serverless endpoint can process.

        • VolumeSizeInGB (integer) --

          The size, in GB, of the ML storage volume attached to individual inference instance associated with the production variant. Currently only Amazon EBS gp2 storage volumes are supported.

        • ModelDataDownloadTimeoutInSeconds (integer) --

          The timeout value, in seconds, to download and extract the model that you want to host from Amazon S3 to the individual inference instance associated with this production variant.

        • ContainerStartupHealthCheckTimeoutInSeconds (integer) --

          The timeout value, in seconds, for your inference container to pass health check by SageMaker Hosting. For more information about health check, see How Your Container Should Respond to Health Check (Ping) Requests.

describe_experiment(**kwargs)

Provides a list of an experiment's properties.

See also: AWS API Documentation

Request Syntax

response = client.describe_experiment(
    ExperimentName='string'
)
Parameters
ExperimentName (string) --

[REQUIRED]

The name of the experiment to describe.

Return type
dict
Returns
Response Syntax
{
    'ExperimentName': 'string',
    'ExperimentArn': 'string',
    'DisplayName': 'string',
    'Source': {
        'SourceArn': 'string',
        'SourceType': 'string'
    },
    'Description': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'CreatedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    },
    'LastModifiedTime': datetime(2015, 1, 1),
    'LastModifiedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    }
}

Response Structure

  • (dict) --
    • ExperimentName (string) --

      The name of the experiment.

    • ExperimentArn (string) --

      The Amazon Resource Name (ARN) of the experiment.

    • DisplayName (string) --

      The name of the experiment as displayed. If DisplayName isn't specified, ExperimentName is displayed.

    • Source (dict) --

      The Amazon Resource Name (ARN) of the source and, optionally, the type.

      • SourceArn (string) --

        The Amazon Resource Name (ARN) of the source.

      • SourceType (string) --

        The source type.

    • Description (string) --

      The description of the experiment.

    • CreationTime (datetime) --

      When the experiment was created.

    • CreatedBy (dict) --

      Who created the experiment.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

    • LastModifiedTime (datetime) --

      When the experiment was last modified.

    • LastModifiedBy (dict) --

      Who last modified the experiment.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_feature_group(**kwargs)

Use this operation to describe a FeatureGroup . The response includes information on the creation time, FeatureGroup name, the unique identifier for each FeatureGroup , and more.

See also: AWS API Documentation

Request Syntax

response = client.describe_feature_group(
    FeatureGroupName='string',
    NextToken='string'
)
Parameters
  • FeatureGroupName (string) --

    [REQUIRED]

    The name of the FeatureGroup you want described.

  • NextToken (string) -- A token to resume pagination of the list of Features ( FeatureDefinitions ). 2,500 Features are returned by default.
Return type

dict

Returns

Response Syntax

{
    'FeatureGroupArn': 'string',
    'FeatureGroupName': 'string',
    'RecordIdentifierFeatureName': 'string',
    'EventTimeFeatureName': 'string',
    'FeatureDefinitions': [
        {
            'FeatureName': 'string',
            'FeatureType': 'Integral'|'Fractional'|'String'
        },
    ],
    'CreationTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'OnlineStoreConfig': {
        'SecurityConfig': {
            'KmsKeyId': 'string'
        },
        'EnableOnlineStore': True|False
    },
    'OfflineStoreConfig': {
        'S3StorageConfig': {
            'S3Uri': 'string',
            'KmsKeyId': 'string',
            'ResolvedOutputS3Uri': 'string'
        },
        'DisableGlueTableCreation': True|False,
        'DataCatalogConfig': {
            'TableName': 'string',
            'Catalog': 'string',
            'Database': 'string'
        },
        'TableFormat': 'Glue'|'Iceberg'
    },
    'RoleArn': 'string',
    'FeatureGroupStatus': 'Creating'|'Created'|'CreateFailed'|'Deleting'|'DeleteFailed',
    'OfflineStoreStatus': {
        'Status': 'Active'|'Blocked'|'Disabled',
        'BlockedReason': 'string'
    },
    'LastUpdateStatus': {
        'Status': 'Successful'|'Failed'|'InProgress',
        'FailureReason': 'string'
    },
    'FailureReason': 'string',
    'Description': 'string',
    'NextToken': 'string',
    'OnlineStoreTotalSizeBytes': 123
}

Response Structure

  • (dict) --

    • FeatureGroupArn (string) --

      The Amazon Resource Name (ARN) of the FeatureGroup .

    • FeatureGroupName (string) --

      he name of the FeatureGroup .

    • RecordIdentifierFeatureName (string) --

      The name of the Feature used for RecordIdentifier , whose value uniquely identifies a record stored in the feature store.

    • EventTimeFeatureName (string) --

      The name of the feature that stores the EventTime of a Record in a FeatureGroup .

      An EventTime is a point in time when a new event occurs that corresponds to the creation or update of a Record in a FeatureGroup . All Records in the FeatureGroup have a corresponding EventTime .

    • FeatureDefinitions (list) --

      A list of the Features in the FeatureGroup . Each feature is defined by a FeatureName and FeatureType .

      • (dict) --

        A list of features. You must include FeatureName and FeatureType . Valid feature FeatureType s are Integral , Fractional and String .

        • FeatureName (string) --

          The name of a feature. The type must be a string. FeatureName cannot be any of the following: is_deleted , write_time , api_invocation_time .

        • FeatureType (string) --

          The value type of a feature. Valid values are Integral, Fractional, or String.

    • CreationTime (datetime) --

      A timestamp indicating when SageMaker created the FeatureGroup .

    • LastModifiedTime (datetime) --

      A timestamp indicating when the feature group was last updated.

    • OnlineStoreConfig (dict) --

      The configuration for the OnlineStore .

      • SecurityConfig (dict) --

        Use to specify KMS Key ID ( KMSKeyId ) for at-rest encryption of your OnlineStore .

        • KmsKeyId (string) --

          The ID of the Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker Feature Store uses to encrypt the Amazon S3 objects at rest using Amazon S3 server-side encryption.

          The caller (either IAM user or IAM role) of CreateFeatureGroup must have below permissions to the OnlineStore KmsKeyId :

          • "kms:Encrypt"
          • "kms:Decrypt"
          • "kms:DescribeKey"
          • "kms:CreateGrant"
          • "kms:RetireGrant"
          • "kms:ReEncryptFrom"
          • "kms:ReEncryptTo"
          • "kms:GenerateDataKey"
          • "kms:ListAliases"
          • "kms:ListGrants"
          • "kms:RevokeGrant"

          The caller (either user or IAM role) to all DataPlane operations ( PutRecord , GetRecord , DeleteRecord ) must have the following permissions to the KmsKeyId :

          • "kms:Decrypt"
      • EnableOnlineStore (boolean) --

        Turn OnlineStore off by specifying False for the EnableOnlineStore flag. Turn OnlineStore on by specifying True for the EnableOnlineStore flag.

        The default value is False .

    • OfflineStoreConfig (dict) --

      The configuration of the offline store. It includes the following configurations:

      • Amazon S3 location of the offline store.
      • Configuration of the Glue data catalog.
      • Table format of the offline store.
      • Option to disable the automatic creation of a Glue table for the offline store.
      • Encryption configuration.
      • S3StorageConfig (dict) --

        The Amazon Simple Storage (Amazon S3) location of OfflineStore .

        • S3Uri (string) --

          The S3 URI, or location in Amazon S3, of OfflineStore .

          S3 URIs have a format similar to the following: s3://example-bucket/prefix/ .

        • KmsKeyId (string) --

          The Amazon Web Services Key Management Service (KMS) key ID of the key used to encrypt any objects written into the OfflineStore S3 location.

          The IAM roleARN that is passed as a parameter to CreateFeatureGroup must have below permissions to the KmsKeyId :

          • "kms:GenerateDataKey"
        • ResolvedOutputS3Uri (string) --

          The S3 path where offline records are written.

      • DisableGlueTableCreation (boolean) --

        Set to True to disable the automatic creation of an Amazon Web Services Glue table when configuring an OfflineStore .

      • DataCatalogConfig (dict) --

        The meta data of the Glue table that is autogenerated when an OfflineStore is created.

        • TableName (string) --

          The name of the Glue table.

        • Catalog (string) --

          The name of the Glue table catalog.

        • Database (string) --

          The name of the Glue table database.

      • TableFormat (string) --

        Format for the offline store table. Supported formats are Glue (Default) and Apache Iceberg.

    • RoleArn (string) --

      The Amazon Resource Name (ARN) of the IAM execution role used to persist data into the OfflineStore if an OfflineStoreConfig is provided.

    • FeatureGroupStatus (string) --

      The status of the feature group.

    • OfflineStoreStatus (dict) --

      The status of the OfflineStore . Notifies you if replicating data into the OfflineStore has failed. Returns either: Active or Blocked

      • Status (string) --

        An OfflineStore status.

      • BlockedReason (string) --

        The justification for why the OfflineStoreStatus is Blocked (if applicable).

    • LastUpdateStatus (dict) --

      A value indicating whether the update made to the feature group was successful.

      • Status (string) --

        A value that indicates whether the update was made successful.

      • FailureReason (string) --

        If the update wasn't successful, indicates the reason why it failed.

    • FailureReason (string) --

      The reason that the FeatureGroup failed to be replicated in the OfflineStore . This is failure can occur because:

      • The FeatureGroup could not be created in the OfflineStore .
      • The FeatureGroup could not be deleted from the OfflineStore .
    • Description (string) --

      A free form description of the feature group.

    • NextToken (string) --

      A token to resume pagination of the list of Features ( FeatureDefinitions ).

    • OnlineStoreTotalSizeBytes (integer) --

      The size of the OnlineStore in bytes.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_feature_metadata(**kwargs)

Shows the metadata for a feature within a feature group.

See also: AWS API Documentation

Request Syntax

response = client.describe_feature_metadata(
    FeatureGroupName='string',
    FeatureName='string'
)
Parameters
  • FeatureGroupName (string) --

    [REQUIRED]

    The name of the feature group containing the feature.

  • FeatureName (string) --

    [REQUIRED]

    The name of the feature.

Return type

dict

Returns

Response Syntax

{
    'FeatureGroupArn': 'string',
    'FeatureGroupName': 'string',
    'FeatureName': 'string',
    'FeatureType': 'Integral'|'Fractional'|'String',
    'CreationTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'Description': 'string',
    'Parameters': [
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
}

Response Structure

  • (dict) --

    • FeatureGroupArn (string) --

      The Amazon Resource Number (ARN) of the feature group that contains the feature.

    • FeatureGroupName (string) --

      The name of the feature group that you've specified.

    • FeatureName (string) --

      The name of the feature that you've specified.

    • FeatureType (string) --

      The data type of the feature.

    • CreationTime (datetime) --

      A timestamp indicating when the feature was created.

    • LastModifiedTime (datetime) --

      A timestamp indicating when the metadata for the feature group was modified. For example, if you add a parameter describing the feature, the timestamp changes to reflect the last time you

    • Description (string) --

      The description you added to describe the feature.

    • Parameters (list) --

      The key-value pairs that you added to describe the feature.

      • (dict) --

        A key-value pair that you specify to describe the feature.

        • Key (string) --

          A key that must contain a value to describe the feature.

        • Value (string) --

          The value that belongs to a key.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_flow_definition(**kwargs)

Returns information about the specified flow definition.

See also: AWS API Documentation

Request Syntax

response = client.describe_flow_definition(
    FlowDefinitionName='string'
)
Parameters
FlowDefinitionName (string) --

[REQUIRED]

The name of the flow definition.

Return type
dict
Returns
Response Syntax
{
    'FlowDefinitionArn': 'string',
    'FlowDefinitionName': 'string',
    'FlowDefinitionStatus': 'Initializing'|'Active'|'Failed'|'Deleting',
    'CreationTime': datetime(2015, 1, 1),
    'HumanLoopRequestSource': {
        'AwsManagedHumanLoopRequestSource': 'AWS/Rekognition/DetectModerationLabels/Image/V3'|'AWS/Textract/AnalyzeDocument/Forms/V1'
    },
    'HumanLoopActivationConfig': {
        'HumanLoopActivationConditionsConfig': {
            'HumanLoopActivationConditions': 'string'
        }
    },
    'HumanLoopConfig': {
        'WorkteamArn': 'string',
        'HumanTaskUiArn': 'string',
        'TaskTitle': 'string',
        'TaskDescription': 'string',
        'TaskCount': 123,
        'TaskAvailabilityLifetimeInSeconds': 123,
        'TaskTimeLimitInSeconds': 123,
        'TaskKeywords': [
            'string',
        ],
        'PublicWorkforceTaskPrice': {
            'AmountInUsd': {
                'Dollars': 123,
                'Cents': 123,
                'TenthFractionsOfACent': 123
            }
        }
    },
    'OutputConfig': {
        'S3OutputPath': 'string',
        'KmsKeyId': 'string'
    },
    'RoleArn': 'string',
    'FailureReason': 'string'
}

Response Structure

  • (dict) --
    • FlowDefinitionArn (string) --

      The Amazon Resource Name (ARN) of the flow defintion.

    • FlowDefinitionName (string) --

      The Amazon Resource Name (ARN) of the flow definition.

    • FlowDefinitionStatus (string) --

      The status of the flow definition. Valid values are listed below.

    • CreationTime (datetime) --

      The timestamp when the flow definition was created.

    • HumanLoopRequestSource (dict) --

      Container for configuring the source of human task requests. Used to specify if Amazon Rekognition or Amazon Textract is used as an integration source.

      • AwsManagedHumanLoopRequestSource (string) --

        Specifies whether Amazon Rekognition or Amazon Textract are used as the integration source. The default field settings and JSON parsing rules are different based on the integration source. Valid values:

    • HumanLoopActivationConfig (dict) --

      An object containing information about what triggers a human review workflow.

      • HumanLoopActivationConditionsConfig (dict) --

        Container structure for defining under what conditions SageMaker creates a human loop.

        • HumanLoopActivationConditions (string) --

          JSON expressing use-case specific conditions declaratively. If any condition is matched, atomic tasks are created against the configured work team. The set of conditions is different for Rekognition and Textract. For more information about how to structure the JSON, see JSON Schema for Human Loop Activation Conditions in Amazon Augmented AI in the Amazon SageMaker Developer Guide .

    • HumanLoopConfig (dict) --

      An object containing information about who works on the task, the workforce task price, and other task details.

      • WorkteamArn (string) --

        Amazon Resource Name (ARN) of a team of workers. To learn more about the types of workforces and work teams you can create and use with Amazon A2I, see Create and Manage Workforces.

      • HumanTaskUiArn (string) --

        The Amazon Resource Name (ARN) of the human task user interface.

        You can use standard HTML and Crowd HTML Elements to create a custom worker task template. You use this template to create a human task UI.

        To learn how to create a custom HTML template, see Create Custom Worker Task Template.

        To learn how to create a human task UI, which is a worker task template that can be used in a flow definition, see Create and Delete a Worker Task Templates.

      • TaskTitle (string) --

        A title for the human worker task.

      • TaskDescription (string) --

        A description for the human worker task.

      • TaskCount (integer) --

        The number of distinct workers who will perform the same task on each object. For example, if TaskCount is set to 3 for an image classification labeling job, three workers will classify each input image. Increasing TaskCount can improve label accuracy.

      • TaskAvailabilityLifetimeInSeconds (integer) --

        The length of time that a task remains available for review by human workers.

      • TaskTimeLimitInSeconds (integer) --

        The amount of time that a worker has to complete a task. The default value is 3,600 seconds (1 hour).

      • TaskKeywords (list) --

        Keywords used to describe the task so that workers can discover the task.

        • (string) --
      • PublicWorkforceTaskPrice (dict) --

        Defines the amount of money paid to an Amazon Mechanical Turk worker for each task performed.

        Use one of the following prices for bounding box tasks. Prices are in US dollars and should be based on the complexity of the task; the longer it takes in your initial testing, the more you should offer.

        • 0.036
        • 0.048
        • 0.060
        • 0.072
        • 0.120
        • 0.240
        • 0.360
        • 0.480
        • 0.600
        • 0.720
        • 0.840
        • 0.960
        • 1.080
        • 1.200

        Use one of the following prices for image classification, text classification, and custom tasks. Prices are in US dollars.

        • 0.012
        • 0.024
        • 0.036
        • 0.048
        • 0.060
        • 0.072
        • 0.120
        • 0.240
        • 0.360
        • 0.480
        • 0.600
        • 0.720
        • 0.840
        • 0.960
        • 1.080
        • 1.200

        Use one of the following prices for semantic segmentation tasks. Prices are in US dollars.

        • 0.840
        • 0.960
        • 1.080
        • 1.200

        Use one of the following prices for Textract AnalyzeDocument Important Form Key Amazon Augmented AI review tasks. Prices are in US dollars.

        • 2.400
        • 2.280
        • 2.160
        • 2.040
        • 1.920
        • 1.800
        • 1.680
        • 1.560
        • 1.440
        • 1.320
        • 1.200
        • 1.080
        • 0.960
        • 0.840
        • 0.720
        • 0.600
        • 0.480
        • 0.360
        • 0.240
        • 0.120
        • 0.072
        • 0.060
        • 0.048
        • 0.036
        • 0.024
        • 0.012

        Use one of the following prices for Rekognition DetectModerationLabels Amazon Augmented AI review tasks. Prices are in US dollars.

        • 1.200
        • 1.080
        • 0.960
        • 0.840
        • 0.720
        • 0.600
        • 0.480
        • 0.360
        • 0.240
        • 0.120
        • 0.072
        • 0.060
        • 0.048
        • 0.036
        • 0.024
        • 0.012

        Use one of the following prices for Amazon Augmented AI custom human review tasks. Prices are in US dollars.

        • 1.200
        • 1.080
        • 0.960
        • 0.840
        • 0.720
        • 0.600
        • 0.480
        • 0.360
        • 0.240
        • 0.120
        • 0.072
        • 0.060
        • 0.048
        • 0.036
        • 0.024
        • 0.012
        • AmountInUsd (dict) --

          Defines the amount of money paid to an Amazon Mechanical Turk worker in United States dollars.

          • Dollars (integer) --

            The whole number of dollars in the amount.

          • Cents (integer) --

            The fractional portion, in cents, of the amount.

          • TenthFractionsOfACent (integer) --

            Fractions of a cent, in tenths.

    • OutputConfig (dict) --

      An object containing information about the output file.

      • S3OutputPath (string) --

        The Amazon S3 path where the object containing human output will be made available.

        To learn more about the format of Amazon A2I output data, see Amazon A2I Output Data.

      • KmsKeyId (string) --

        The Amazon Key Management Service (KMS) key ID for server-side encryption.

    • RoleArn (string) --

      The Amazon Resource Name (ARN) of the Amazon Web Services Identity and Access Management (IAM) execution role for the flow definition.

    • FailureReason (string) --

      The reason your flow definition failed.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_hub(**kwargs)

Describe a hub.

Note

Hub APIs are only callable through SageMaker Studio.

See also: AWS API Documentation

Request Syntax

response = client.describe_hub(
    HubName='string'
)
Parameters
HubName (string) --

[REQUIRED]

The name of the hub to describe.

Return type
dict
Returns
Response Syntax
{
    'HubName': 'string',
    'HubArn': 'string',
    'HubDisplayName': 'string',
    'HubDescription': 'string',
    'HubSearchKeywords': [
        'string',
    ],
    'S3StorageConfig': {
        'S3OutputPath': 'string'
    },
    'HubStatus': 'InService'|'Creating'|'Updating'|'Deleting'|'CreateFailed'|'UpdateFailed'|'DeleteFailed',
    'FailureReason': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1)
}

Response Structure

  • (dict) --
    • HubName (string) --

      The name of the hub.

    • HubArn (string) --

      The Amazon Resource Name (ARN) of the hub.

    • HubDisplayName (string) --

      The display name of the hub.

    • HubDescription (string) --

      A description of the hub.

    • HubSearchKeywords (list) --

      The searchable keywords for the hub.

      • (string) --
    • S3StorageConfig (dict) --

      The Amazon S3 storage configuration for the hub.

      • S3OutputPath (string) --

        The Amazon S3 bucket prefix for hosting hub content.

    • HubStatus (string) --

      The status of the hub.

    • FailureReason (string) --

      The failure reason if importing hub content failed.

    • CreationTime (datetime) --

      The date and time that the hub was created.

    • LastModifiedTime (datetime) --

      The date and time that the hub was last modified.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_hub_content(**kwargs)

Describe the content of a hub.

Note

Hub APIs are only callable through SageMaker Studio.

See also: AWS API Documentation

Request Syntax

response = client.describe_hub_content(
    HubName='string',
    HubContentType='Model'|'Notebook',
    HubContentName='string',
    HubContentVersion='string'
)
Parameters
  • HubName (string) --

    [REQUIRED]

    The name of the hub that contains the content to describe.

  • HubContentType (string) --

    [REQUIRED]

    The type of content in the hub.

  • HubContentName (string) --

    [REQUIRED]

    The name of the content to describe.

  • HubContentVersion (string) -- The version of the content to describe.
Return type

dict

Returns

Response Syntax

{
    'HubContentName': 'string',
    'HubContentArn': 'string',
    'HubContentVersion': 'string',
    'HubContentType': 'Model'|'Notebook',
    'DocumentSchemaVersion': 'string',
    'HubName': 'string',
    'HubArn': 'string',
    'HubContentDisplayName': 'string',
    'HubContentDescription': 'string',
    'HubContentMarkdown': 'string',
    'HubContentDocument': 'string',
    'HubContentSearchKeywords': [
        'string',
    ],
    'HubContentDependencies': [
        {
            'DependencyOriginPath': 'string',
            'DependencyCopyPath': 'string'
        },
    ],
    'HubContentStatus': 'Available'|'Importing'|'Deleting'|'ImportFailed'|'DeleteFailed',
    'FailureReason': 'string',
    'CreationTime': datetime(2015, 1, 1)
}

Response Structure

  • (dict) --

    • HubContentName (string) --

      The name of the hub content.

    • HubContentArn (string) --

      The Amazon Resource Name (ARN) of the hub content.

    • HubContentVersion (string) --

      The version of the hub content.

    • HubContentType (string) --

      The type of hub content.

    • DocumentSchemaVersion (string) --

      The document schema version for the hub content.

    • HubName (string) --

      The name of the hub that contains the content.

    • HubArn (string) --

      The Amazon Resource Name (ARN) of the hub that contains the content.

    • HubContentDisplayName (string) --

      The display name of the hub content.

    • HubContentDescription (string) --

      A description of the hub content.

    • HubContentMarkdown (string) --

      A string that provides a description of the hub content. This string can include links, tables, and standard markdown formating.

    • HubContentDocument (string) --

      The hub content document that describes information about the hub content such as type, associated containers, scripts, and more.

    • HubContentSearchKeywords (list) --

      The searchable keywords for the hub content.

      • (string) --
    • HubContentDependencies (list) --

      The location of any dependencies that the hub content has, such as scripts, model artifacts, datasets, or notebooks.

      • (dict) --

        Any dependencies related to hub content, such as scripts, model artifacts, datasets, or notebooks.

        • DependencyOriginPath (string) --

          The hub content dependency origin path.

        • DependencyCopyPath (string) --

          The hub content dependency copy path.

    • HubContentStatus (string) --

      The status of the hub content.

    • FailureReason (string) --

      The failure reason if importing hub content failed.

    • CreationTime (datetime) --

      The date and time that hub content was created.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_human_task_ui(**kwargs)

Returns information about the requested human task user interface (worker task template).

See also: AWS API Documentation

Request Syntax

response = client.describe_human_task_ui(
    HumanTaskUiName='string'
)
Parameters
HumanTaskUiName (string) --

[REQUIRED]

The name of the human task user interface (worker task template) you want information about.

Return type
dict
Returns
Response Syntax
{
    'HumanTaskUiArn': 'string',
    'HumanTaskUiName': 'string',
    'HumanTaskUiStatus': 'Active'|'Deleting',
    'CreationTime': datetime(2015, 1, 1),
    'UiTemplate': {
        'Url': 'string',
        'ContentSha256': 'string'
    }
}

Response Structure

  • (dict) --
    • HumanTaskUiArn (string) --

      The Amazon Resource Name (ARN) of the human task user interface (worker task template).

    • HumanTaskUiName (string) --

      The name of the human task user interface (worker task template).

    • HumanTaskUiStatus (string) --

      The status of the human task user interface (worker task template). Valid values are listed below.

    • CreationTime (datetime) --

      The timestamp when the human task user interface was created.

    • UiTemplate (dict) --

      Container for user interface template information.

      • Url (string) --

        The URL for the user interface template.

      • ContentSha256 (string) --

        The SHA-256 digest of the contents of the template.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_hyper_parameter_tuning_job(**kwargs)

Gets a description of a hyperparameter tuning job.

See also: AWS API Documentation

Request Syntax

response = client.describe_hyper_parameter_tuning_job(
    HyperParameterTuningJobName='string'
)
Parameters
HyperParameterTuningJobName (string) --

[REQUIRED]

The name of the tuning job.

Return type
dict
Returns
Response Syntax
{
    'HyperParameterTuningJobName': 'string',
    'HyperParameterTuningJobArn': 'string',
    'HyperParameterTuningJobConfig': {
        'Strategy': 'Bayesian'|'Random'|'Hyperband'|'Grid',
        'StrategyConfig': {
            'HyperbandStrategyConfig': {
                'MinResource': 123,
                'MaxResource': 123
            }
        },
        'HyperParameterTuningJobObjective': {
            'Type': 'Maximize'|'Minimize',
            'MetricName': 'string'
        },
        'ResourceLimits': {
            'MaxNumberOfTrainingJobs': 123,
            'MaxParallelTrainingJobs': 123,
            'MaxRuntimeInSeconds': 123
        },
        'ParameterRanges': {
            'IntegerParameterRanges': [
                {
                    'Name': 'string',
                    'MinValue': 'string',
                    'MaxValue': 'string',
                    'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                },
            ],
            'ContinuousParameterRanges': [
                {
                    'Name': 'string',
                    'MinValue': 'string',
                    'MaxValue': 'string',
                    'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                },
            ],
            'CategoricalParameterRanges': [
                {
                    'Name': 'string',
                    'Values': [
                        'string',
                    ]
                },
            ]
        },
        'TrainingJobEarlyStoppingType': 'Off'|'Auto',
        'TuningJobCompletionCriteria': {
            'TargetObjectiveMetricValue': ...,
            'BestObjectiveNotImproving': {
                'MaxNumberOfTrainingJobsNotImproving': 123
            },
            'ConvergenceDetected': {
                'CompleteOnConvergence': 'Disabled'|'Enabled'
            }
        },
        'RandomSeed': 123
    },
    'TrainingJobDefinition': {
        'DefinitionName': 'string',
        'TuningObjective': {
            'Type': 'Maximize'|'Minimize',
            'MetricName': 'string'
        },
        'HyperParameterRanges': {
            'IntegerParameterRanges': [
                {
                    'Name': 'string',
                    'MinValue': 'string',
                    'MaxValue': 'string',
                    'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                },
            ],
            'ContinuousParameterRanges': [
                {
                    'Name': 'string',
                    'MinValue': 'string',
                    'MaxValue': 'string',
                    'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                },
            ],
            'CategoricalParameterRanges': [
                {
                    'Name': 'string',
                    'Values': [
                        'string',
                    ]
                },
            ]
        },
        'StaticHyperParameters': {
            'string': 'string'
        },
        'AlgorithmSpecification': {
            'TrainingImage': 'string',
            'TrainingInputMode': 'Pipe'|'File'|'FastFile',
            'AlgorithmName': 'string',
            'MetricDefinitions': [
                {
                    'Name': 'string',
                    'Regex': 'string'
                },
            ]
        },
        'RoleArn': 'string',
        'InputDataConfig': [
            {
                'ChannelName': 'string',
                'DataSource': {
                    'S3DataSource': {
                        'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                        'S3Uri': 'string',
                        'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                        'AttributeNames': [
                            'string',
                        ],
                        'InstanceGroupNames': [
                            'string',
                        ]
                    },
                    'FileSystemDataSource': {
                        'FileSystemId': 'string',
                        'FileSystemAccessMode': 'rw'|'ro',
                        'FileSystemType': 'EFS'|'FSxLustre',
                        'DirectoryPath': 'string'
                    }
                },
                'ContentType': 'string',
                'CompressionType': 'None'|'Gzip',
                'RecordWrapperType': 'None'|'RecordIO',
                'InputMode': 'Pipe'|'File'|'FastFile',
                'ShuffleConfig': {
                    'Seed': 123
                }
            },
        ],
        'VpcConfig': {
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ]
        },
        'OutputDataConfig': {
            'KmsKeyId': 'string',
            'S3OutputPath': 'string'
        },
        'ResourceConfig': {
            'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge',
            'InstanceCount': 123,
            'VolumeSizeInGB': 123,
            'VolumeKmsKeyId': 'string',
            'InstanceGroups': [
                {
                    'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge',
                    'InstanceCount': 123,
                    'InstanceGroupName': 'string'
                },
            ],
            'KeepAlivePeriodInSeconds': 123
        },
        'StoppingCondition': {
            'MaxRuntimeInSeconds': 123,
            'MaxWaitTimeInSeconds': 123
        },
        'EnableNetworkIsolation': True|False,
        'EnableInterContainerTrafficEncryption': True|False,
        'EnableManagedSpotTraining': True|False,
        'CheckpointConfig': {
            'S3Uri': 'string',
            'LocalPath': 'string'
        },
        'RetryStrategy': {
            'MaximumRetryAttempts': 123
        },
        'HyperParameterTuningResourceConfig': {
            'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge',
            'InstanceCount': 123,
            'VolumeSizeInGB': 123,
            'VolumeKmsKeyId': 'string',
            'AllocationStrategy': 'Prioritized',
            'InstanceConfigs': [
                {
                    'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge',
                    'InstanceCount': 123,
                    'VolumeSizeInGB': 123
                },
            ]
        },
        'Environment': {
            'string': 'string'
        }
    },
    'TrainingJobDefinitions': [
        {
            'DefinitionName': 'string',
            'TuningObjective': {
                'Type': 'Maximize'|'Minimize',
                'MetricName': 'string'
            },
            'HyperParameterRanges': {
                'IntegerParameterRanges': [
                    {
                        'Name': 'string',
                        'MinValue': 'string',
                        'MaxValue': 'string',
                        'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                    },
                ],
                'ContinuousParameterRanges': [
                    {
                        'Name': 'string',
                        'MinValue': 'string',
                        'MaxValue': 'string',
                        'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                    },
                ],
                'CategoricalParameterRanges': [
                    {
                        'Name': 'string',
                        'Values': [
                            'string',
                        ]
                    },
                ]
            },
            'StaticHyperParameters': {
                'string': 'string'
            },
            'AlgorithmSpecification': {
                'TrainingImage': 'string',
                'TrainingInputMode': 'Pipe'|'File'|'FastFile',
                'AlgorithmName': 'string',
                'MetricDefinitions': [
                    {
                        'Name': 'string',
                        'Regex': 'string'
                    },
                ]
            },
            'RoleArn': 'string',
            'InputDataConfig': [
                {
                    'ChannelName': 'string',
                    'DataSource': {
                        'S3DataSource': {
                            'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                            'S3Uri': 'string',
                            'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                            'AttributeNames': [
                                'string',
                            ],
                            'InstanceGroupNames': [
                                'string',
                            ]
                        },
                        'FileSystemDataSource': {
                            'FileSystemId': 'string',
                            'FileSystemAccessMode': 'rw'|'ro',
                            'FileSystemType': 'EFS'|'FSxLustre',
                            'DirectoryPath': 'string'
                        }
                    },
                    'ContentType': 'string',
                    'CompressionType': 'None'|'Gzip',
                    'RecordWrapperType': 'None'|'RecordIO',
                    'InputMode': 'Pipe'|'File'|'FastFile',
                    'ShuffleConfig': {
                        'Seed': 123
                    }
                },
            ],
            'VpcConfig': {
                'SecurityGroupIds': [
                    'string',
                ],
                'Subnets': [
                    'string',
                ]
            },
            'OutputDataConfig': {
                'KmsKeyId': 'string',
                'S3OutputPath': 'string'
            },
            'ResourceConfig': {
                'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge',
                'InstanceCount': 123,
                'VolumeSizeInGB': 123,
                'VolumeKmsKeyId': 'string',
                'InstanceGroups': [
                    {
                        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge',
                        'InstanceCount': 123,
                        'InstanceGroupName': 'string'
                    },
                ],
                'KeepAlivePeriodInSeconds': 123
            },
            'StoppingCondition': {
                'MaxRuntimeInSeconds': 123,
                'MaxWaitTimeInSeconds': 123
            },
            'EnableNetworkIsolation': True|False,
            'EnableInterContainerTrafficEncryption': True|False,
            'EnableManagedSpotTraining': True|False,
            'CheckpointConfig': {
                'S3Uri': 'string',
                'LocalPath': 'string'
            },
            'RetryStrategy': {
                'MaximumRetryAttempts': 123
            },
            'HyperParameterTuningResourceConfig': {
                'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge',
                'InstanceCount': 123,
                'VolumeSizeInGB': 123,
                'VolumeKmsKeyId': 'string',
                'AllocationStrategy': 'Prioritized',
                'InstanceConfigs': [
                    {
                        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge',
                        'InstanceCount': 123,
                        'VolumeSizeInGB': 123
                    },
                ]
            },
            'Environment': {
                'string': 'string'
            }
        },
    ],
    'HyperParameterTuningJobStatus': 'Completed'|'InProgress'|'Failed'|'Stopped'|'Stopping',
    'CreationTime': datetime(2015, 1, 1),
    'HyperParameterTuningEndTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'TrainingJobStatusCounters': {
        'Completed': 123,
        'InProgress': 123,
        'RetryableError': 123,
        'NonRetryableError': 123,
        'Stopped': 123
    },
    'ObjectiveStatusCounters': {
        'Succeeded': 123,
        'Pending': 123,
        'Failed': 123
    },
    'BestTrainingJob': {
        'TrainingJobDefinitionName': 'string',
        'TrainingJobName': 'string',
        'TrainingJobArn': 'string',
        'TuningJobName': 'string',
        'CreationTime': datetime(2015, 1, 1),
        'TrainingStartTime': datetime(2015, 1, 1),
        'TrainingEndTime': datetime(2015, 1, 1),
        'TrainingJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
        'TunedHyperParameters': {
            'string': 'string'
        },
        'FailureReason': 'string',
        'FinalHyperParameterTuningJobObjectiveMetric': {
            'Type': 'Maximize'|'Minimize',
            'MetricName': 'string',
            'Value': ...
        },
        'ObjectiveStatus': 'Succeeded'|'Pending'|'Failed'
    },
    'OverallBestTrainingJob': {
        'TrainingJobDefinitionName': 'string',
        'TrainingJobName': 'string',
        'TrainingJobArn': 'string',
        'TuningJobName': 'string',
        'CreationTime': datetime(2015, 1, 1),
        'TrainingStartTime': datetime(2015, 1, 1),
        'TrainingEndTime': datetime(2015, 1, 1),
        'TrainingJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
        'TunedHyperParameters': {
            'string': 'string'
        },
        'FailureReason': 'string',
        'FinalHyperParameterTuningJobObjectiveMetric': {
            'Type': 'Maximize'|'Minimize',
            'MetricName': 'string',
            'Value': ...
        },
        'ObjectiveStatus': 'Succeeded'|'Pending'|'Failed'
    },
    'WarmStartConfig': {
        'ParentHyperParameterTuningJobs': [
            {
                'HyperParameterTuningJobName': 'string'
            },
        ],
        'WarmStartType': 'IdenticalDataAndAlgorithm'|'TransferLearning'
    },
    'FailureReason': 'string',
    'TuningJobCompletionDetails': {
        'NumberOfTrainingJobsObjectiveNotImproving': 123,
        'ConvergenceDetectedTime': datetime(2015, 1, 1)
    },
    'ConsumedResources': {
        'RuntimeInSeconds': 123
    }
}

Response Structure

  • (dict) --
    • HyperParameterTuningJobName (string) --

      The name of the tuning job.

    • HyperParameterTuningJobArn (string) --

      The Amazon Resource Name (ARN) of the tuning job.

    • HyperParameterTuningJobConfig (dict) --

      The HyperParameterTuningJobConfig object that specifies the configuration of the tuning job.

      • Strategy (string) --

        Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. For information about search strategies, see How Hyperparameter Tuning Works.

      • StrategyConfig (dict) --

        The configuration for the Hyperband optimization strategy. This parameter should be provided only if Hyperband is selected as the strategy for HyperParameterTuningJobConfig .

        • HyperbandStrategyConfig (dict) --

          The configuration for the object that specifies the Hyperband strategy. This parameter is only supported for the Hyperband selection for Strategy within the HyperParameterTuningJobConfig API.

          • MinResource (integer) --

            The minimum number of resources (such as epochs) that can be used by a training job launched by a hyperparameter tuning job. If the value for MinResource has not been reached, the training job is not stopped by Hyperband .

          • MaxResource (integer) --

            The maximum number of resources (such as epochs) that can be used by a training job launched by a hyperparameter tuning job. Once a job reaches the MaxResource value, it is stopped. If a value for MaxResource is not provided, and Hyperband is selected as the hyperparameter tuning strategy, HyperbandTrainingJ attempts to infer MaxResource from the following keys (if present) in StaticsHyperParameters:

            • epochs
            • numepochs
            • n-epochs
            • n_epochs
            • num_epochs

            If HyperbandStrategyConfig is unable to infer a value for MaxResource , it generates a validation error. The maximum value is 20,000 epochs. All metrics that correspond to an objective metric are used to derive early stopping decisions. For distributive training jobs, ensure that duplicate metrics are not printed in the logs across the individual nodes in a training job. If multiple nodes are publishing duplicate or incorrect metrics, training jobs may make an incorrect stopping decision and stop the job prematurely.

      • HyperParameterTuningJobObjective (dict) --

        The HyperParameterTuningJobObjective specifies the objective metric used to evaluate the performance of training jobs launched by this tuning job.

        • Type (string) --

          Whether to minimize or maximize the objective metric.

        • MetricName (string) --

          The name of the metric to use for the objective metric.

      • ResourceLimits (dict) --

        The ResourceLimits object that specifies the maximum number of training and parallel training jobs that can be used for this hyperparameter tuning job.

        • MaxNumberOfTrainingJobs (integer) --

          The maximum number of training jobs that a hyperparameter tuning job can launch.

        • MaxParallelTrainingJobs (integer) --

          The maximum number of concurrent training jobs that a hyperparameter tuning job can launch.

        • MaxRuntimeInSeconds (integer) --

          The maximum time in seconds that a training job launched by a hyperparameter tuning job can run.

      • ParameterRanges (dict) --

        The ParameterRanges object that specifies the ranges of hyperparameters that this tuning job searches over to find the optimal configuration for the highest model performance against your chosen objective metric.

        • IntegerParameterRanges (list) --

          The array of IntegerParameterRange objects that specify ranges of integer hyperparameters that a hyperparameter tuning job searches.

          • (dict) --

            For a hyperparameter of the integer type, specifies the range that a hyperparameter tuning job searches.

            • Name (string) --

              The name of the hyperparameter to search.

            • MinValue (string) --

              The minimum value of the hyperparameter to search.

            • MaxValue (string) --

              The maximum value of the hyperparameter to search.

            • ScalingType (string) --

              The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

              Auto

              SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.

              Linear

              Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

              Logarithmic

              Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

              Logarithmic scaling works only for ranges that have only values greater than 0.

        • ContinuousParameterRanges (list) --

          The array of ContinuousParameterRange objects that specify ranges of continuous hyperparameters that a hyperparameter tuning job searches.

          • (dict) --

            A list of continuous hyperparameters to tune.

            • Name (string) --

              The name of the continuous hyperparameter to tune.

            • MinValue (string) --

              The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and MaxValue for tuning.

            • MaxValue (string) --

              The maximum value for the hyperparameter. The tuning job uses floating-point values between MinValue value and this value for tuning.

            • ScalingType (string) --

              The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

              Auto

              SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.

              Linear

              Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

              Logarithmic

              Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

              Logarithmic scaling works only for ranges that have only values greater than 0.

              ReverseLogarithmic

              Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale.

              Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0.

        • CategoricalParameterRanges (list) --

          The array of CategoricalParameterRange objects that specify ranges of categorical hyperparameters that a hyperparameter tuning job searches.

          • (dict) --

            A list of categorical hyperparameters to tune.

            • Name (string) --

              The name of the categorical hyperparameter to tune.

            • Values (list) --

              A list of the categories for the hyperparameter.

              • (string) --
      • TrainingJobEarlyStoppingType (string) --

        Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. Because the Hyperband strategy has its own advanced internal early stopping mechanism, TrainingJobEarlyStoppingType must be OFF to use Hyperband . This parameter can take on one of the following values (the default value is OFF ):

        OFF

        Training jobs launched by the hyperparameter tuning job do not use early stopping.

        AUTO

        SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see Stop Training Jobs Early.

      • TuningJobCompletionCriteria (dict) --

        The tuning job's completion criteria.

        • TargetObjectiveMetricValue (float) --

          The value of the objective metric.

        • BestObjectiveNotImproving (dict) --

          A flag to stop your hyperparameter tuning job if model performance fails to improve as evaluated against an objective function.

          • MaxNumberOfTrainingJobsNotImproving (integer) --

            The number of training jobs that have failed to improve model performance by 1% or greater over prior training jobs as evaluated against an objective function.

        • ConvergenceDetected (dict) --

          A flag to top your hyperparameter tuning job if automatic model tuning (AMT) has detected that your model has converged as evaluated against your objective function.

          • CompleteOnConvergence (string) --

            A flag to stop a tuning job once AMT has detected that the job has converged.

      • RandomSeed (integer) --

        A value used to initialize a pseudo-random number generator. Setting a random seed and using the same seed later for the same tuning job will allow hyperparameter optimization to find more a consistent hyperparameter configuration between the two runs.

    • TrainingJobDefinition (dict) --

      The HyperParameterTrainingJobDefinition object that specifies the definition of the training jobs that this tuning job launches.

      • DefinitionName (string) --

        The job definition name.

      • TuningObjective (dict) --

        Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the Type parameter.

        • Type (string) --

          Whether to minimize or maximize the objective metric.

        • MetricName (string) --

          The name of the metric to use for the objective metric.

      • HyperParameterRanges (dict) --

        Specifies ranges of integer, continuous, and categorical hyperparameters that a hyperparameter tuning job searches. The hyperparameter tuning job launches training jobs with hyperparameter values within these ranges to find the combination of values that result in the training job with the best performance as measured by the objective metric of the hyperparameter tuning job.

        Note

        The maximum number of items specified for Array Members refers to the maximum number of hyperparameters for each range and also the maximum for the hyperparameter tuning job itself. That is, the sum of the number of hyperparameters for all the ranges can't exceed the maximum number specified.

        • IntegerParameterRanges (list) --

          The array of IntegerParameterRange objects that specify ranges of integer hyperparameters that a hyperparameter tuning job searches.

          • (dict) --

            For a hyperparameter of the integer type, specifies the range that a hyperparameter tuning job searches.

            • Name (string) --

              The name of the hyperparameter to search.

            • MinValue (string) --

              The minimum value of the hyperparameter to search.

            • MaxValue (string) --

              The maximum value of the hyperparameter to search.

            • ScalingType (string) --

              The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

              Auto

              SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.

              Linear

              Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

              Logarithmic

              Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

              Logarithmic scaling works only for ranges that have only values greater than 0.

        • ContinuousParameterRanges (list) --

          The array of ContinuousParameterRange objects that specify ranges of continuous hyperparameters that a hyperparameter tuning job searches.

          • (dict) --

            A list of continuous hyperparameters to tune.

            • Name (string) --

              The name of the continuous hyperparameter to tune.

            • MinValue (string) --

              The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and MaxValue for tuning.

            • MaxValue (string) --

              The maximum value for the hyperparameter. The tuning job uses floating-point values between MinValue value and this value for tuning.

            • ScalingType (string) --

              The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

              Auto

              SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.

              Linear

              Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

              Logarithmic

              Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

              Logarithmic scaling works only for ranges that have only values greater than 0.

              ReverseLogarithmic

              Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale.

              Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0.

        • CategoricalParameterRanges (list) --

          The array of CategoricalParameterRange objects that specify ranges of categorical hyperparameters that a hyperparameter tuning job searches.

          • (dict) --

            A list of categorical hyperparameters to tune.

            • Name (string) --

              The name of the categorical hyperparameter to tune.

            • Values (list) --

              A list of the categories for the hyperparameter.

              • (string) --
      • StaticHyperParameters (dict) --

        Specifies the values of hyperparameters that do not change for the tuning job.

        • (string) --
          • (string) --
      • AlgorithmSpecification (dict) --

        The HyperParameterAlgorithmSpecification object that specifies the resource algorithm to use for the training jobs that the tuning job launches.

        • TrainingImage (string) --

          The registry path of the Docker image that contains the training algorithm. For information about Docker registry paths for built-in algorithms, see Algorithms Provided by Amazon SageMaker: Common Parameters. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

        • TrainingInputMode (string) --

          The training input mode that the algorithm supports. For more information about input modes, see Algorithms.

          Pipe mode

          If an algorithm supports Pipe mode, Amazon SageMaker streams data directly from Amazon S3 to the container.

          File mode

          If an algorithm supports File mode, SageMaker downloads the training data from S3 to the provisioned ML storage volume, and mounts the directory to the Docker volume for the training container.

          You must provision the ML storage volume with sufficient capacity to accommodate the data downloaded from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container uses the ML storage volume to also store intermediate information, if any.

          For distributed algorithms, training data is distributed uniformly. Your training duration is predictable if the input data objects sizes are approximately the same. SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed when one host in a training cluster is overloaded, thus becoming a bottleneck in training.

          FastFile mode

          If an algorithm supports FastFile mode, SageMaker streams data directly from S3 to the container with no code changes, and provides file system access to the data. Users can author their training script to interact with these files as if they were stored on disk.

          FastFile mode works best when the data is read sequentially. Augmented manifest files aren't supported. The startup time is lower when there are fewer files in the S3 bucket provided.
        • AlgorithmName (string) --

          The name of the resource algorithm to use for the hyperparameter tuning job. If you specify a value for this parameter, do not specify a value for TrainingImage .

        • MetricDefinitions (list) --

          An array of MetricDefinition objects that specify the metrics that the algorithm emits.

          • (dict) --

            Specifies a metric that the training algorithm writes to stderr or stdout . SageMakerhyperparameter tuning captures all defined metrics. You specify one metric that a hyperparameter tuning job uses as its objective metric to choose the best training job.

            • Name (string) --

              The name of the metric.

            • Regex (string) --

              A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining Objective Metrics.

      • RoleArn (string) --

        The Amazon Resource Name (ARN) of the IAM role associated with the training jobs that the tuning job launches.

      • InputDataConfig (list) --

        An array of Channel objects that specify the input for the training jobs that the tuning job launches.

        • (dict) --

          A channel is a named input source that training algorithms can consume.

          • ChannelName (string) --

            The name of the channel.

          • DataSource (dict) --

            The location of the channel data.

            • S3DataSource (dict) --

              The S3 location of the data source that is associated with a channel.

              • S3DataType (string) --

                If you choose S3Prefix , S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix for model training.

                If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want SageMaker to use for model training.

                If you choose AugmentedManifestFile , S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel's input mode is Pipe .

              • S3Uri (string) --

                Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

                • A key name prefix might look like this: s3://bucketname/exampleprefix
                • A manifest might look like this: s3://bucketname/example.manifest A manifest is an S3 object which is a JSON file consisting of an array of elements. The first element is a prefix which is followed by one or more suffixes. SageMaker appends the suffix elements to the prefix to get a full set of S3Uri . Note that the prefix must be a valid non-empty S3Uri that precludes users from specifying a manifest whose individual S3Uri is sourced from different S3 buckets. The following code example shows a valid manifest format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] This JSON is equivalent to the following S3Uri list: s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uri in this manifest is the input data for the channel for this data source. The object that each S3Uri points to must be readable by the IAM role that SageMaker uses to perform tasks on your behalf.
              • S3DataDistributionType (string) --

                If you want SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated .

                If you want SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key . If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.

                Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.

                In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key . If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File ), this copies 1/n of the number of objects.

              • AttributeNames (list) --

                A list of one or more attribute names to use that are found in a specified augmented manifest file.

                • (string) --
              • InstanceGroupNames (list) --

                A list of names of instance groups that get data from the S3 data source.

                • (string) --
            • FileSystemDataSource (dict) --

              The file system that is associated with a channel.

              • FileSystemId (string) --

                The file system id.

              • FileSystemAccessMode (string) --

                The access mode of the mount of the directory associated with the channel. A directory can be mounted either in ro (read-only) or rw (read-write) mode.

              • FileSystemType (string) --

                The file system type.

              • DirectoryPath (string) --

                The full path to the directory to associate with the channel.

          • ContentType (string) --

            The MIME type of the data.

          • CompressionType (string) --

            If training data is compressed, the compression type. The default value is None . CompressionType is used only in Pipe input mode. In File mode, leave this field unset or set it to None.

          • RecordWrapperType (string) --

            Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.

            In File mode, leave this field unset or set it to None.

          • InputMode (string) --

            (Optional) The input mode to use for the data channel in a training job. If you don't set a value for InputMode , SageMaker uses the value set for TrainingInputMode . Use this parameter to override the TrainingInputMode setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use File input mode. To stream data directly from Amazon S3 to the container, choose Pipe input mode.

            To use a model for incremental training, choose File input model.

          • ShuffleConfig (dict) --

            A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType , this shuffles the results of the S3 key prefix matches. If you use ManifestFile , the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile , the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value.

            For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key , the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.

            • Seed (integer) --

              Determines the shuffling order in ShuffleConfig value.

      • VpcConfig (dict) --

        The VpcConfig object that specifies the VPC that you want the training jobs that this hyperparameter tuning job launches to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.

        • SecurityGroupIds (list) --

          The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

          • (string) --
        • Subnets (list) --

          The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.

          • (string) --
      • OutputDataConfig (dict) --

        Specifies the path to the Amazon S3 bucket where you store model artifacts from the training jobs that the tuning job launches.

        • KmsKeyId (string) --

          The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

          • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
          • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
          • // KMS Key Alias "alias/ExampleAlias"
          • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

          If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

          The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob , CreateTransformJob , or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .

        • S3OutputPath (string) --

          Identifies the S3 path where you want SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix .

      • ResourceConfig (dict) --

        The resources, including the compute instances and storage volumes, to use for the training jobs that the tuning job launches.

        Storage volumes store model artifacts and incremental states. Training algorithms might also use storage volumes for scratch space. If you want SageMaker to use the storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.

        Note

        If you want to use hyperparameter optimization with instance type flexibility, use HyperParameterTuningResourceConfig instead.

        • InstanceType (string) --

          The ML compute instance type.

          Note

          SageMaker Training on Amazon Elastic Compute Cloud (EC2) P4de instances is in preview release starting December 9th, 2022.

          Amazon EC2 P4de instances (currently in preview) are powered by 8 NVIDIA A100 GPUs with 80GB high-performance HBM2e GPU memory, which accelerate the speed of training ML models that need to be trained on large datasets of high-resolution data. In this preview release, Amazon SageMaker supports ML training jobs on P4de instances ( ml.p4de.24xlarge ) to reduce model training time. The ml.p4de.24xlarge instances are available in the following Amazon Web Services Regions.
          • US East (N. Virginia) (us-east-1)
          • US West (Oregon) (us-west-2)

          To request quota limit increase and start using P4de instances, contact the SageMaker Training service team through your account team.

        • InstanceCount (integer) --

          The number of ML compute instances to use. For distributed training, provide a value greater than 1.

        • VolumeSizeInGB (integer) --

          The size of the ML storage volume that you want to provision.

          ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.

          When using an ML instance with NVMe SSD volumes, SageMaker doesn't provision Amazon EBS General Purpose SSD (gp2) storage. Available storage is fixed to the NVMe-type instance's storage capacity. SageMaker configures storage paths for training datasets, checkpoints, model artifacts, and outputs to use the entire capacity of the instance storage. For example, ML instance families with the NVMe-type instance storage include ml.p4d , ml.g4dn , and ml.g5 .

          When using an ML instance with the EBS-only storage option and without instance storage, you must define the size of EBS volume through VolumeSizeInGB in the ResourceConfig API. For example, ML instance families that use EBS volumes include ml.c5 and ml.p2 .

          To look up instance types and their instance storage types and volumes, see Amazon EC2 Instance Types.

          To find the default local paths defined by the SageMaker training platform, see Amazon SageMaker Training Storage Folders for Training Datasets, Checkpoints, Model Artifacts, and Outputs.

        • VolumeKmsKeyId (string) --

          The Amazon Web Services KMS key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.

          Note

          Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

          For a list of instance types that support local instance storage, see Instance Store Volumes.

          For more information about local instance storage encryption, see SSD Instance Store Volumes.

          The VolumeKmsKeyId can be in any of the following formats:

          • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
          • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
        • InstanceGroups (list) --

          The configuration of a heterogeneous cluster in JSON format.

          • (dict) --

            Defines an instance group for heterogeneous cluster training. When requesting a training job using the CreateTrainingJob API, you can configure multiple instance groups .

            • InstanceType (string) --

              Specifies the instance type of the instance group.

            • InstanceCount (integer) --

              Specifies the number of instances of the instance group.

            • InstanceGroupName (string) --

              Specifies the name of the instance group.

        • KeepAlivePeriodInSeconds (integer) --

          The duration of time in seconds to retain configured resources in a warm pool for subsequent training jobs.

      • StoppingCondition (dict) --

        Specifies a limit to how long a model hyperparameter training job can run. It also specifies how long a managed spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.

        • MaxRuntimeInSeconds (integer) --

          The maximum length of time, in seconds, that a training or compilation job can run before it is stopped.

          For compilation jobs, if the job does not complete during this time, a TimeOut error is generated. We recommend starting with 900 seconds and increasing as necessary based on your model.

          For all other jobs, if the job does not complete during this time, SageMaker ends the job. When RetryStrategy is specified in the job request, MaxRuntimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt. The default value is 1 day. The maximum value is 28 days.

          The maximum time that a TrainingJob can run in total, including any time spent publishing metrics or archiving and uploading models after it has been stopped, is 30 days.

        • MaxWaitTimeInSeconds (integer) --

          The maximum length of time, in seconds, that a managed Spot training job has to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the job can run. It must be equal to or greater than MaxRuntimeInSeconds . If the job does not complete during this time, SageMaker ends the job.

          When RetryStrategy is specified in the job request, MaxWaitTimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt.

      • EnableNetworkIsolation (boolean) --

        Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If network isolation is used for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.

      • EnableInterContainerTrafficEncryption (boolean) --

        To encrypt all communications between ML compute instances in distributed training, choose True . Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.

      • EnableManagedSpotTraining (boolean) --

        A Boolean indicating whether managed spot training is enabled ( True ) or not ( False ).

      • CheckpointConfig (dict) --

        Contains information about the output location for managed spot training checkpoint data.

        • S3Uri (string) --

          Identifies the S3 path where you want SageMaker to store checkpoints. For example, s3://bucket-name/key-name-prefix .

        • LocalPath (string) --

          (Optional) The local directory where checkpoints are written. The default directory is /opt/ml/checkpoints/ .

      • RetryStrategy (dict) --

        The number of times to retry the job when the job fails due to an InternalServerError .

        • MaximumRetryAttempts (integer) --

          The number of times to retry the job. When the job is retried, it's SecondaryStatus is changed to STARTING .

      • HyperParameterTuningResourceConfig (dict) --

        The configuration for the hyperparameter tuning resources, including the compute instances and storage volumes, used for training jobs launched by the tuning job. By default, storage volumes hold model artifacts and incremental states. Choose File for TrainingInputMode in the AlgorithmSpecification parameter to additionally store training data in the storage volume (optional).

        • InstanceType (string) --

          The instance type used to run hyperparameter optimization tuning jobs. See descriptions of instance types for more information.

        • InstanceCount (integer) --

          The number of compute instances of type InstanceType to use. For distributed training, select a value greater than 1.

        • VolumeSizeInGB (integer) --

          The volume size in GB for the storage volume to be used in processing hyperparameter optimization jobs (optional). These volumes store model artifacts, incremental states and optionally, scratch space for training algorithms. Do not provide a value for this parameter if a value for InstanceConfigs is also specified.

          Some instance types have a fixed total local storage size. If you select one of these instances for training, VolumeSizeInGB cannot be greater than this total size. For a list of instance types with local instance storage and their sizes, see instance store volumes.

          Note

          SageMaker supports only the General Purpose SSD (gp2) storage volume type.

        • VolumeKmsKeyId (string) --

          A key used by Amazon Web Services Key Management Service to encrypt data on the storage volume attached to the compute instances used to run the training job. You can use either of the following formats to specify a key.

          KMS Key ID:

          "1234abcd-12ab-34cd-56ef-1234567890ab"

          Amazon Resource Name (ARN) of a KMS key:

          "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

          Some instances use local storage, which use a hardware module to encrypt storage volumes. If you choose one of these instance types, you cannot request a VolumeKmsKeyId . For a list of instance types that use local storage, see instance store volumes. For more information about Amazon Web Services Key Management Service, see KMS encryption for more information.

        • AllocationStrategy (string) --

          The strategy that determines the order of preference for resources specified in InstanceConfigs used in hyperparameter optimization.

        • InstanceConfigs (list) --

          A list containing the configuration(s) for one or more resources for processing hyperparameter jobs. These resources include compute instances and storage volumes to use in model training jobs launched by hyperparameter tuning jobs. The AllocationStrategy controls the order in which multiple configurations provided in InstanceConfigs are used.

          Note

          If you only want to use a single instance configuration inside the HyperParameterTuningResourceConfig API, do not provide a value for InstanceConfigs . Instead, use InstanceType , VolumeSizeInGB and InstanceCount . If you use InstanceConfigs , do not provide values for InstanceType , VolumeSizeInGB or InstanceCount .

          • (dict) --

            The configuration for hyperparameter tuning resources for use in training jobs launched by the tuning job. These resources include compute instances and storage volumes. Specify one or more compute instance configurations and allocation strategies to select resources (optional).

            • InstanceType (string) --

              The instance type used for processing of hyperparameter optimization jobs. Choose from general purpose (no GPUs) instance types: ml.m5.xlarge, ml.m5.2xlarge, and ml.m5.4xlarge or compute optimized (no GPUs) instance types: ml.c5.xlarge and ml.c5.2xlarge. For more information about instance types, see instance type descriptions.

            • InstanceCount (integer) --

              The number of instances of the type specified by InstanceType . Choose an instance count larger than 1 for distributed training algorithms. See SageMaker distributed training jobs for more information.

            • VolumeSizeInGB (integer) --

              The volume size in GB of the data to be processed for hyperparameter optimization (optional).

      • Environment (dict) --

        An environment variable that you can pass into the SageMaker CreateTrainingJob API. You can use an existing environment variable from the training container or use your own. See Define metrics and variables for more information.

        Note

        The maximum number of items specified for Map Entries refers to the maximum number of environment variables for each TrainingJobDefinition and also the maximum for the hyperparameter tuning job itself. That is, the sum of the number of environment variables for all the training job definitions can't exceed the maximum number specified.

        • (string) --
          • (string) --
    • TrainingJobDefinitions (list) --

      A list of the HyperParameterTrainingJobDefinition objects launched for this tuning job.

      • (dict) --

        Defines the training jobs launched by a hyperparameter tuning job.

        • DefinitionName (string) --

          The job definition name.

        • TuningObjective (dict) --

          Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the Type parameter.

          • Type (string) --

            Whether to minimize or maximize the objective metric.

          • MetricName (string) --

            The name of the metric to use for the objective metric.

        • HyperParameterRanges (dict) --

          Specifies ranges of integer, continuous, and categorical hyperparameters that a hyperparameter tuning job searches. The hyperparameter tuning job launches training jobs with hyperparameter values within these ranges to find the combination of values that result in the training job with the best performance as measured by the objective metric of the hyperparameter tuning job.

          Note

          The maximum number of items specified for Array Members refers to the maximum number of hyperparameters for each range and also the maximum for the hyperparameter tuning job itself. That is, the sum of the number of hyperparameters for all the ranges can't exceed the maximum number specified.

          • IntegerParameterRanges (list) --

            The array of IntegerParameterRange objects that specify ranges of integer hyperparameters that a hyperparameter tuning job searches.

            • (dict) --

              For a hyperparameter of the integer type, specifies the range that a hyperparameter tuning job searches.

              • Name (string) --

                The name of the hyperparameter to search.

              • MinValue (string) --

                The minimum value of the hyperparameter to search.

              • MaxValue (string) --

                The maximum value of the hyperparameter to search.

              • ScalingType (string) --

                The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

                Auto

                SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.

                Linear

                Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

                Logarithmic

                Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

                Logarithmic scaling works only for ranges that have only values greater than 0.

          • ContinuousParameterRanges (list) --

            The array of ContinuousParameterRange objects that specify ranges of continuous hyperparameters that a hyperparameter tuning job searches.

            • (dict) --

              A list of continuous hyperparameters to tune.

              • Name (string) --

                The name of the continuous hyperparameter to tune.

              • MinValue (string) --

                The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and MaxValue for tuning.

              • MaxValue (string) --

                The maximum value for the hyperparameter. The tuning job uses floating-point values between MinValue value and this value for tuning.

              • ScalingType (string) --

                The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

                Auto

                SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.

                Linear

                Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

                Logarithmic

                Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

                Logarithmic scaling works only for ranges that have only values greater than 0.

                ReverseLogarithmic

                Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale.

                Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0.

          • CategoricalParameterRanges (list) --

            The array of CategoricalParameterRange objects that specify ranges of categorical hyperparameters that a hyperparameter tuning job searches.

            • (dict) --

              A list of categorical hyperparameters to tune.

              • Name (string) --

                The name of the categorical hyperparameter to tune.

              • Values (list) --

                A list of the categories for the hyperparameter.

                • (string) --
        • StaticHyperParameters (dict) --

          Specifies the values of hyperparameters that do not change for the tuning job.

          • (string) --
            • (string) --
        • AlgorithmSpecification (dict) --

          The HyperParameterAlgorithmSpecification object that specifies the resource algorithm to use for the training jobs that the tuning job launches.

          • TrainingImage (string) --

            The registry path of the Docker image that contains the training algorithm. For information about Docker registry paths for built-in algorithms, see Algorithms Provided by Amazon SageMaker: Common Parameters. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

          • TrainingInputMode (string) --

            The training input mode that the algorithm supports. For more information about input modes, see Algorithms.

            Pipe mode

            If an algorithm supports Pipe mode, Amazon SageMaker streams data directly from Amazon S3 to the container.

            File mode

            If an algorithm supports File mode, SageMaker downloads the training data from S3 to the provisioned ML storage volume, and mounts the directory to the Docker volume for the training container.

            You must provision the ML storage volume with sufficient capacity to accommodate the data downloaded from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container uses the ML storage volume to also store intermediate information, if any.

            For distributed algorithms, training data is distributed uniformly. Your training duration is predictable if the input data objects sizes are approximately the same. SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed when one host in a training cluster is overloaded, thus becoming a bottleneck in training.

            FastFile mode

            If an algorithm supports FastFile mode, SageMaker streams data directly from S3 to the container with no code changes, and provides file system access to the data. Users can author their training script to interact with these files as if they were stored on disk.

            FastFile mode works best when the data is read sequentially. Augmented manifest files aren't supported. The startup time is lower when there are fewer files in the S3 bucket provided.
          • AlgorithmName (string) --

            The name of the resource algorithm to use for the hyperparameter tuning job. If you specify a value for this parameter, do not specify a value for TrainingImage .

          • MetricDefinitions (list) --

            An array of MetricDefinition objects that specify the metrics that the algorithm emits.

            • (dict) --

              Specifies a metric that the training algorithm writes to stderr or stdout . SageMakerhyperparameter tuning captures all defined metrics. You specify one metric that a hyperparameter tuning job uses as its objective metric to choose the best training job.

              • Name (string) --

                The name of the metric.

              • Regex (string) --

                A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining Objective Metrics.

        • RoleArn (string) --

          The Amazon Resource Name (ARN) of the IAM role associated with the training jobs that the tuning job launches.

        • InputDataConfig (list) --

          An array of Channel objects that specify the input for the training jobs that the tuning job launches.

          • (dict) --

            A channel is a named input source that training algorithms can consume.

            • ChannelName (string) --

              The name of the channel.

            • DataSource (dict) --

              The location of the channel data.

              • S3DataSource (dict) --

                The S3 location of the data source that is associated with a channel.

                • S3DataType (string) --

                  If you choose S3Prefix , S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix for model training.

                  If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want SageMaker to use for model training.

                  If you choose AugmentedManifestFile , S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel's input mode is Pipe .

                • S3Uri (string) --

                  Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

                  • A key name prefix might look like this: s3://bucketname/exampleprefix
                  • A manifest might look like this: s3://bucketname/example.manifest A manifest is an S3 object which is a JSON file consisting of an array of elements. The first element is a prefix which is followed by one or more suffixes. SageMaker appends the suffix elements to the prefix to get a full set of S3Uri . Note that the prefix must be a valid non-empty S3Uri that precludes users from specifying a manifest whose individual S3Uri is sourced from different S3 buckets. The following code example shows a valid manifest format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] This JSON is equivalent to the following S3Uri list: s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uri in this manifest is the input data for the channel for this data source. The object that each S3Uri points to must be readable by the IAM role that SageMaker uses to perform tasks on your behalf.
                • S3DataDistributionType (string) --

                  If you want SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated .

                  If you want SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key . If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.

                  Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.

                  In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key . If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File ), this copies 1/n of the number of objects.

                • AttributeNames (list) --

                  A list of one or more attribute names to use that are found in a specified augmented manifest file.

                  • (string) --
                • InstanceGroupNames (list) --

                  A list of names of instance groups that get data from the S3 data source.

                  • (string) --
              • FileSystemDataSource (dict) --

                The file system that is associated with a channel.

                • FileSystemId (string) --

                  The file system id.

                • FileSystemAccessMode (string) --

                  The access mode of the mount of the directory associated with the channel. A directory can be mounted either in ro (read-only) or rw (read-write) mode.

                • FileSystemType (string) --

                  The file system type.

                • DirectoryPath (string) --

                  The full path to the directory to associate with the channel.

            • ContentType (string) --

              The MIME type of the data.

            • CompressionType (string) --

              If training data is compressed, the compression type. The default value is None . CompressionType is used only in Pipe input mode. In File mode, leave this field unset or set it to None.

            • RecordWrapperType (string) --

              Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.

              In File mode, leave this field unset or set it to None.

            • InputMode (string) --

              (Optional) The input mode to use for the data channel in a training job. If you don't set a value for InputMode , SageMaker uses the value set for TrainingInputMode . Use this parameter to override the TrainingInputMode setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use File input mode. To stream data directly from Amazon S3 to the container, choose Pipe input mode.

              To use a model for incremental training, choose File input model.

            • ShuffleConfig (dict) --

              A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType , this shuffles the results of the S3 key prefix matches. If you use ManifestFile , the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile , the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value.

              For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key , the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.

              • Seed (integer) --

                Determines the shuffling order in ShuffleConfig value.

        • VpcConfig (dict) --

          The VpcConfig object that specifies the VPC that you want the training jobs that this hyperparameter tuning job launches to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.

          • SecurityGroupIds (list) --

            The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

            • (string) --
          • Subnets (list) --

            The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.

            • (string) --
        • OutputDataConfig (dict) --

          Specifies the path to the Amazon S3 bucket where you store model artifacts from the training jobs that the tuning job launches.

          • KmsKeyId (string) --

            The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

            • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
            • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
            • // KMS Key Alias "alias/ExampleAlias"
            • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

            If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

            The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob , CreateTransformJob , or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .

          • S3OutputPath (string) --

            Identifies the S3 path where you want SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix .

        • ResourceConfig (dict) --

          The resources, including the compute instances and storage volumes, to use for the training jobs that the tuning job launches.

          Storage volumes store model artifacts and incremental states. Training algorithms might also use storage volumes for scratch space. If you want SageMaker to use the storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.

          Note

          If you want to use hyperparameter optimization with instance type flexibility, use HyperParameterTuningResourceConfig instead.

          • InstanceType (string) --

            The ML compute instance type.

            Note

            SageMaker Training on Amazon Elastic Compute Cloud (EC2) P4de instances is in preview release starting December 9th, 2022.

            Amazon EC2 P4de instances (currently in preview) are powered by 8 NVIDIA A100 GPUs with 80GB high-performance HBM2e GPU memory, which accelerate the speed of training ML models that need to be trained on large datasets of high-resolution data. In this preview release, Amazon SageMaker supports ML training jobs on P4de instances ( ml.p4de.24xlarge ) to reduce model training time. The ml.p4de.24xlarge instances are available in the following Amazon Web Services Regions.
            • US East (N. Virginia) (us-east-1)
            • US West (Oregon) (us-west-2)

            To request quota limit increase and start using P4de instances, contact the SageMaker Training service team through your account team.

          • InstanceCount (integer) --

            The number of ML compute instances to use. For distributed training, provide a value greater than 1.

          • VolumeSizeInGB (integer) --

            The size of the ML storage volume that you want to provision.

            ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.

            When using an ML instance with NVMe SSD volumes, SageMaker doesn't provision Amazon EBS General Purpose SSD (gp2) storage. Available storage is fixed to the NVMe-type instance's storage capacity. SageMaker configures storage paths for training datasets, checkpoints, model artifacts, and outputs to use the entire capacity of the instance storage. For example, ML instance families with the NVMe-type instance storage include ml.p4d , ml.g4dn , and ml.g5 .

            When using an ML instance with the EBS-only storage option and without instance storage, you must define the size of EBS volume through VolumeSizeInGB in the ResourceConfig API. For example, ML instance families that use EBS volumes include ml.c5 and ml.p2 .

            To look up instance types and their instance storage types and volumes, see Amazon EC2 Instance Types.

            To find the default local paths defined by the SageMaker training platform, see Amazon SageMaker Training Storage Folders for Training Datasets, Checkpoints, Model Artifacts, and Outputs.

          • VolumeKmsKeyId (string) --

            The Amazon Web Services KMS key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.

            Note

            Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

            For a list of instance types that support local instance storage, see Instance Store Volumes.

            For more information about local instance storage encryption, see SSD Instance Store Volumes.

            The VolumeKmsKeyId can be in any of the following formats:

            • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
            • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
          • InstanceGroups (list) --

            The configuration of a heterogeneous cluster in JSON format.

            • (dict) --

              Defines an instance group for heterogeneous cluster training. When requesting a training job using the CreateTrainingJob API, you can configure multiple instance groups .

              • InstanceType (string) --

                Specifies the instance type of the instance group.

              • InstanceCount (integer) --

                Specifies the number of instances of the instance group.

              • InstanceGroupName (string) --

                Specifies the name of the instance group.

          • KeepAlivePeriodInSeconds (integer) --

            The duration of time in seconds to retain configured resources in a warm pool for subsequent training jobs.

        • StoppingCondition (dict) --

          Specifies a limit to how long a model hyperparameter training job can run. It also specifies how long a managed spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.

          • MaxRuntimeInSeconds (integer) --

            The maximum length of time, in seconds, that a training or compilation job can run before it is stopped.

            For compilation jobs, if the job does not complete during this time, a TimeOut error is generated. We recommend starting with 900 seconds and increasing as necessary based on your model.

            For all other jobs, if the job does not complete during this time, SageMaker ends the job. When RetryStrategy is specified in the job request, MaxRuntimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt. The default value is 1 day. The maximum value is 28 days.

            The maximum time that a TrainingJob can run in total, including any time spent publishing metrics or archiving and uploading models after it has been stopped, is 30 days.

          • MaxWaitTimeInSeconds (integer) --

            The maximum length of time, in seconds, that a managed Spot training job has to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the job can run. It must be equal to or greater than MaxRuntimeInSeconds . If the job does not complete during this time, SageMaker ends the job.

            When RetryStrategy is specified in the job request, MaxWaitTimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt.

        • EnableNetworkIsolation (boolean) --

          Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If network isolation is used for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.

        • EnableInterContainerTrafficEncryption (boolean) --

          To encrypt all communications between ML compute instances in distributed training, choose True . Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.

        • EnableManagedSpotTraining (boolean) --

          A Boolean indicating whether managed spot training is enabled ( True ) or not ( False ).

        • CheckpointConfig (dict) --

          Contains information about the output location for managed spot training checkpoint data.

          • S3Uri (string) --

            Identifies the S3 path where you want SageMaker to store checkpoints. For example, s3://bucket-name/key-name-prefix .

          • LocalPath (string) --

            (Optional) The local directory where checkpoints are written. The default directory is /opt/ml/checkpoints/ .

        • RetryStrategy (dict) --

          The number of times to retry the job when the job fails due to an InternalServerError .

          • MaximumRetryAttempts (integer) --

            The number of times to retry the job. When the job is retried, it's SecondaryStatus is changed to STARTING .

        • HyperParameterTuningResourceConfig (dict) --

          The configuration for the hyperparameter tuning resources, including the compute instances and storage volumes, used for training jobs launched by the tuning job. By default, storage volumes hold model artifacts and incremental states. Choose File for TrainingInputMode in the AlgorithmSpecification parameter to additionally store training data in the storage volume (optional).

          • InstanceType (string) --

            The instance type used to run hyperparameter optimization tuning jobs. See descriptions of instance types for more information.

          • InstanceCount (integer) --

            The number of compute instances of type InstanceType to use. For distributed training, select a value greater than 1.

          • VolumeSizeInGB (integer) --

            The volume size in GB for the storage volume to be used in processing hyperparameter optimization jobs (optional). These volumes store model artifacts, incremental states and optionally, scratch space for training algorithms. Do not provide a value for this parameter if a value for InstanceConfigs is also specified.

            Some instance types have a fixed total local storage size. If you select one of these instances for training, VolumeSizeInGB cannot be greater than this total size. For a list of instance types with local instance storage and their sizes, see instance store volumes.

            Note

            SageMaker supports only the General Purpose SSD (gp2) storage volume type.

          • VolumeKmsKeyId (string) --

            A key used by Amazon Web Services Key Management Service to encrypt data on the storage volume attached to the compute instances used to run the training job. You can use either of the following formats to specify a key.

            KMS Key ID:

            "1234abcd-12ab-34cd-56ef-1234567890ab"

            Amazon Resource Name (ARN) of a KMS key:

            "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

            Some instances use local storage, which use a hardware module to encrypt storage volumes. If you choose one of these instance types, you cannot request a VolumeKmsKeyId . For a list of instance types that use local storage, see instance store volumes. For more information about Amazon Web Services Key Management Service, see KMS encryption for more information.

          • AllocationStrategy (string) --

            The strategy that determines the order of preference for resources specified in InstanceConfigs used in hyperparameter optimization.

          • InstanceConfigs (list) --

            A list containing the configuration(s) for one or more resources for processing hyperparameter jobs. These resources include compute instances and storage volumes to use in model training jobs launched by hyperparameter tuning jobs. The AllocationStrategy controls the order in which multiple configurations provided in InstanceConfigs are used.

            Note

            If you only want to use a single instance configuration inside the HyperParameterTuningResourceConfig API, do not provide a value for InstanceConfigs . Instead, use InstanceType , VolumeSizeInGB and InstanceCount . If you use InstanceConfigs , do not provide values for InstanceType , VolumeSizeInGB or InstanceCount .

            • (dict) --

              The configuration for hyperparameter tuning resources for use in training jobs launched by the tuning job. These resources include compute instances and storage volumes. Specify one or more compute instance configurations and allocation strategies to select resources (optional).

              • InstanceType (string) --

                The instance type used for processing of hyperparameter optimization jobs. Choose from general purpose (no GPUs) instance types: ml.m5.xlarge, ml.m5.2xlarge, and ml.m5.4xlarge or compute optimized (no GPUs) instance types: ml.c5.xlarge and ml.c5.2xlarge. For more information about instance types, see instance type descriptions.

              • InstanceCount (integer) --

                The number of instances of the type specified by InstanceType . Choose an instance count larger than 1 for distributed training algorithms. See SageMaker distributed training jobs for more information.

              • VolumeSizeInGB (integer) --

                The volume size in GB of the data to be processed for hyperparameter optimization (optional).

        • Environment (dict) --

          An environment variable that you can pass into the SageMaker CreateTrainingJob API. You can use an existing environment variable from the training container or use your own. See Define metrics and variables for more information.

          Note

          The maximum number of items specified for Map Entries refers to the maximum number of environment variables for each TrainingJobDefinition and also the maximum for the hyperparameter tuning job itself. That is, the sum of the number of environment variables for all the training job definitions can't exceed the maximum number specified.

          • (string) --
            • (string) --
    • HyperParameterTuningJobStatus (string) --

      The status of the tuning job: InProgress, Completed, Failed, Stopping, or Stopped.

    • CreationTime (datetime) --

      The date and time that the tuning job started.

    • HyperParameterTuningEndTime (datetime) --

      The date and time that the tuning job ended.

    • LastModifiedTime (datetime) --

      The date and time that the status of the tuning job was modified.

    • TrainingJobStatusCounters (dict) --

      The TrainingJobStatusCounters object that specifies the number of training jobs, categorized by status, that this tuning job launched.

      • Completed (integer) --

        The number of completed training jobs launched by the hyperparameter tuning job.

      • InProgress (integer) --

        The number of in-progress training jobs launched by a hyperparameter tuning job.

      • RetryableError (integer) --

        The number of training jobs that failed, but can be retried. A failed training job can be retried only if it failed because an internal service error occurred.

      • NonRetryableError (integer) --

        The number of training jobs that failed and can't be retried. A failed training job can't be retried if it failed because a client error occurred.

      • Stopped (integer) --

        The number of training jobs launched by a hyperparameter tuning job that were manually stopped.

    • ObjectiveStatusCounters (dict) --

      The ObjectiveStatusCounters object that specifies the number of training jobs, categorized by the status of their final objective metric, that this tuning job launched.

      • Succeeded (integer) --

        The number of training jobs whose final objective metric was evaluated by the hyperparameter tuning job and used in the hyperparameter tuning process.

      • Pending (integer) --

        The number of training jobs that are in progress and pending evaluation of their final objective metric.

      • Failed (integer) --

        The number of training jobs whose final objective metric was not evaluated and used in the hyperparameter tuning process. This typically occurs when the training job failed or did not emit an objective metric.

    • BestTrainingJob (dict) --

      A TrainingJobSummary object that describes the training job that completed with the best current HyperParameterTuningJobObjective.

      • TrainingJobDefinitionName (string) --

        The training job definition name.

      • TrainingJobName (string) --

        The name of the training job.

      • TrainingJobArn (string) --

        The Amazon Resource Name (ARN) of the training job.

      • TuningJobName (string) --

        The HyperParameter tuning job that launched the training job.

      • CreationTime (datetime) --

        The date and time that the training job was created.

      • TrainingStartTime (datetime) --

        The date and time that the training job started.

      • TrainingEndTime (datetime) --

        Specifies the time when the training job ends on training instances. You are billed for the time interval between the value of TrainingStartTime and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when SageMaker detects a job failure.

      • TrainingJobStatus (string) --

        The status of the training job.

      • TunedHyperParameters (dict) --

        A list of the hyperparameters for which you specified ranges to search.

        • (string) --
          • (string) --
      • FailureReason (string) --

        The reason that the training job failed.

      • FinalHyperParameterTuningJobObjectiveMetric (dict) --

        The FinalHyperParameterTuningJobObjectiveMetric object that specifies the value of the objective metric of the tuning job that launched this training job.

        • Type (string) --

          Whether to minimize or maximize the objective metric. Valid values are Minimize and Maximize.

        • MetricName (string) --

          The name of the objective metric.

        • Value (float) --

          The value of the objective metric.

      • ObjectiveStatus (string) --

        The status of the objective metric for the training job:

        • Succeeded: The final objective metric for the training job was evaluated by the hyperparameter tuning job and used in the hyperparameter tuning process.
        • Pending: The training job is in progress and evaluation of its final objective metric is pending.
        • Failed: The final objective metric for the training job was not evaluated, and was not used in the hyperparameter tuning process. This typically occurs when the training job failed or did not emit an objective metric.
    • OverallBestTrainingJob (dict) --

      If the hyperparameter tuning job is an warm start tuning job with a WarmStartType of IDENTICAL_DATA_AND_ALGORITHM , this is the TrainingJobSummary for the training job with the best objective metric value of all training jobs launched by this tuning job and all parent jobs specified for the warm start tuning job.

      • TrainingJobDefinitionName (string) --

        The training job definition name.

      • TrainingJobName (string) --

        The name of the training job.

      • TrainingJobArn (string) --

        The Amazon Resource Name (ARN) of the training job.

      • TuningJobName (string) --

        The HyperParameter tuning job that launched the training job.

      • CreationTime (datetime) --

        The date and time that the training job was created.

      • TrainingStartTime (datetime) --

        The date and time that the training job started.

      • TrainingEndTime (datetime) --

        Specifies the time when the training job ends on training instances. You are billed for the time interval between the value of TrainingStartTime and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when SageMaker detects a job failure.

      • TrainingJobStatus (string) --

        The status of the training job.

      • TunedHyperParameters (dict) --

        A list of the hyperparameters for which you specified ranges to search.

        • (string) --
          • (string) --
      • FailureReason (string) --

        The reason that the training job failed.

      • FinalHyperParameterTuningJobObjectiveMetric (dict) --

        The FinalHyperParameterTuningJobObjectiveMetric object that specifies the value of the objective metric of the tuning job that launched this training job.

        • Type (string) --

          Whether to minimize or maximize the objective metric. Valid values are Minimize and Maximize.

        • MetricName (string) --

          The name of the objective metric.

        • Value (float) --

          The value of the objective metric.

      • ObjectiveStatus (string) --

        The status of the objective metric for the training job:

        • Succeeded: The final objective metric for the training job was evaluated by the hyperparameter tuning job and used in the hyperparameter tuning process.
        • Pending: The training job is in progress and evaluation of its final objective metric is pending.
        • Failed: The final objective metric for the training job was not evaluated, and was not used in the hyperparameter tuning process. This typically occurs when the training job failed or did not emit an objective metric.
    • WarmStartConfig (dict) --

      The configuration for starting the hyperparameter parameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.

      • ParentHyperParameterTuningJobs (list) --

        An array of hyperparameter tuning jobs that are used as the starting point for the new hyperparameter tuning job. For more information about warm starting a hyperparameter tuning job, see Using a Previous Hyperparameter Tuning Job as a Starting Point.

        Hyperparameter tuning jobs created before October 1, 2018 cannot be used as parent jobs for warm start tuning jobs.

        • (dict) --

          A previously completed or stopped hyperparameter tuning job to be used as a starting point for a new hyperparameter tuning job.

          • HyperParameterTuningJobName (string) --

            The name of the hyperparameter tuning job to be used as a starting point for a new hyperparameter tuning job.

      • WarmStartType (string) --

        Specifies one of the following:

        IDENTICAL_DATA_AND_ALGORITHM

        The new hyperparameter tuning job uses the same input data and training image as the parent tuning jobs. You can change the hyperparameter ranges to search and the maximum number of training jobs that the hyperparameter tuning job launches. You cannot use a new version of the training algorithm, unless the changes in the new version do not affect the algorithm itself. For example, changes that improve logging or adding support for a different data format are allowed. You can also change hyperparameters from tunable to static, and from static to tunable, but the total number of static plus tunable hyperparameters must remain the same as it is in all parent jobs. The objective metric for the new tuning job must be the same as for all parent jobs.

        TRANSFER_LEARNING

        The new hyperparameter tuning job can include input data, hyperparameter ranges, maximum number of concurrent training jobs, and maximum number of training jobs that are different than those of its parent hyperparameter tuning jobs. The training image can also be a different version from the version used in the parent hyperparameter tuning job. You can also change hyperparameters from tunable to static, and from static to tunable, but the total number of static plus tunable hyperparameters must remain the same as it is in all parent jobs. The objective metric for the new tuning job must be the same as for all parent jobs.

    • FailureReason (string) --

      If the tuning job failed, the reason it failed.

    • TuningJobCompletionDetails (dict) --

      Tuning job completion information returned as the response from a hyperparameter tuning job. This information tells if your tuning job has or has not converged. It also includes the number of training jobs that have not improved model performance as evaluated against the objective function.

      • NumberOfTrainingJobsObjectiveNotImproving (integer) --

        The number of training jobs launched by a tuning job that are not improving (1% or less) as measured by model performance evaluated against an objective function.

      • ConvergenceDetectedTime (datetime) --

        The time in timestamp format that AMT detected model convergence, as defined by a lack of significant improvement over time based on criteria developed over a wide range of diverse benchmarking tests.

    • ConsumedResources (dict) --

      The total resources consumed by your hyperparameter tuning job.

      • RuntimeInSeconds (integer) --

        The wall clock runtime in seconds used by your hyperparameter tuning job.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_image(**kwargs)

Describes a SageMaker image.

See also: AWS API Documentation

Request Syntax

response = client.describe_image(
    ImageName='string'
)
Parameters
ImageName (string) --

[REQUIRED]

The name of the image to describe.

Return type
dict
Returns
Response Syntax
{
    'CreationTime': datetime(2015, 1, 1),
    'Description': 'string',
    'DisplayName': 'string',
    'FailureReason': 'string',
    'ImageArn': 'string',
    'ImageName': 'string',
    'ImageStatus': 'CREATING'|'CREATED'|'CREATE_FAILED'|'UPDATING'|'UPDATE_FAILED'|'DELETING'|'DELETE_FAILED',
    'LastModifiedTime': datetime(2015, 1, 1),
    'RoleArn': 'string'
}

Response Structure

  • (dict) --
    • CreationTime (datetime) --

      When the image was created.

    • Description (string) --

      The description of the image.

    • DisplayName (string) --

      The name of the image as displayed.

    • FailureReason (string) --

      When a create, update, or delete operation fails, the reason for the failure.

    • ImageArn (string) --

      The ARN of the image.

    • ImageName (string) --

      The name of the image.

    • ImageStatus (string) --

      The status of the image.

    • LastModifiedTime (datetime) --

      When the image was last modified.

    • RoleArn (string) --

      The ARN of the IAM role that enables Amazon SageMaker to perform tasks on your behalf.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_image_version(**kwargs)

Describes a version of a SageMaker image.

See also: AWS API Documentation

Request Syntax

response = client.describe_image_version(
    ImageName='string',
    Version=123,
    Alias='string'
)
Parameters
  • ImageName (string) --

    [REQUIRED]

    The name of the image.

  • Version (integer) -- The version of the image. If not specified, the latest version is described.
  • Alias (string) -- The alias of the image version.
Return type

dict

Returns

Response Syntax

{
    'BaseImage': 'string',
    'ContainerImage': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'FailureReason': 'string',
    'ImageArn': 'string',
    'ImageVersionArn': 'string',
    'ImageVersionStatus': 'CREATING'|'CREATED'|'CREATE_FAILED'|'DELETING'|'DELETE_FAILED',
    'LastModifiedTime': datetime(2015, 1, 1),
    'Version': 123,
    'VendorGuidance': 'NOT_PROVIDED'|'STABLE'|'TO_BE_ARCHIVED'|'ARCHIVED',
    'JobType': 'TRAINING'|'INFERENCE'|'NOTEBOOK_KERNEL',
    'MLFramework': 'string',
    'ProgrammingLang': 'string',
    'Processor': 'CPU'|'GPU',
    'Horovod': True|False,
    'ReleaseNotes': 'string'
}

Response Structure

  • (dict) --

    • BaseImage (string) --

      The registry path of the container image on which this image version is based.

    • ContainerImage (string) --

      The registry path of the container image that contains this image version.

    • CreationTime (datetime) --

      When the version was created.

    • FailureReason (string) --

      When a create or delete operation fails, the reason for the failure.

    • ImageArn (string) --

      The ARN of the image the version is based on.

    • ImageVersionArn (string) --

      The ARN of the version.

    • ImageVersionStatus (string) --

      The status of the version.

    • LastModifiedTime (datetime) --

      When the version was last modified.

    • Version (integer) --

      The version number.

    • VendorGuidance (string) --

      The stability of the image version specified by the maintainer.

      • NOT_PROVIDED : The maintainers did not provide a status for image version stability.
      • STABLE : The image version is stable.
      • TO_BE_ARCHIVED : The image version is set to be archived. Custom image versions that are set to be archived are automatically archived after three months.
      • ARCHIVED : The image version is archived. Archived image versions are not searchable and are no longer actively supported.
    • JobType (string) --

      Indicates SageMaker job type compatibility.

      • TRAINING : The image version is compatible with SageMaker training jobs.
      • INFERENCE : The image version is compatible with SageMaker inference jobs.
      • NOTEBOOK_KERNEL : The image version is compatible with SageMaker notebook kernels.
    • MLFramework (string) --

      The machine learning framework vended in the image version.

    • ProgrammingLang (string) --

      The supported programming language and its version.

    • Processor (string) --

      Indicates CPU or GPU compatibility.

      • CPU : The image version is compatible with CPU.
      • GPU : The image version is compatible with GPU.
    • Horovod (boolean) --

      Indicates Horovod compatibility.

    • ReleaseNotes (string) --

      The maintainer description of the image version.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_inference_experiment(**kwargs)

Returns details about an inference experiment.

See also: AWS API Documentation

Request Syntax

response = client.describe_inference_experiment(
    Name='string'
)
Parameters
Name (string) --

[REQUIRED]

The name of the inference experiment to describe.

Return type
dict
Returns
Response Syntax
{
    'Arn': 'string',
    'Name': 'string',
    'Type': 'ShadowMode',
    'Schedule': {
        'StartTime': datetime(2015, 1, 1),
        'EndTime': datetime(2015, 1, 1)
    },
    'Status': 'Creating'|'Created'|'Updating'|'Running'|'Starting'|'Stopping'|'Completed'|'Cancelled',
    'StatusReason': 'string',
    'Description': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'CompletionTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'RoleArn': 'string',
    'EndpointMetadata': {
        'EndpointName': 'string',
        'EndpointConfigName': 'string',
        'EndpointStatus': 'OutOfService'|'Creating'|'Updating'|'SystemUpdating'|'RollingBack'|'InService'|'Deleting'|'Failed',
        'FailureReason': 'string'
    },
    'ModelVariants': [
        {
            'ModelName': 'string',
            'VariantName': 'string',
            'InfrastructureConfig': {
                'InfrastructureType': 'RealTimeInference',
                'RealTimeInferenceConfig': {
                    'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                    'InstanceCount': 123
                }
            },
            'Status': 'Creating'|'Updating'|'InService'|'Deleting'|'Deleted'
        },
    ],
    'DataStorageConfig': {
        'Destination': 'string',
        'KmsKey': 'string',
        'ContentType': {
            'CsvContentTypes': [
                'string',
            ],
            'JsonContentTypes': [
                'string',
            ]
        }
    },
    'ShadowModeConfig': {
        'SourceModelVariantName': 'string',
        'ShadowModelVariants': [
            {
                'ShadowModelVariantName': 'string',
                'SamplingPercentage': 123
            },
        ]
    },
    'KmsKey': 'string'
}

Response Structure

  • (dict) --
    • Arn (string) --

      The ARN of the inference experiment being described.

    • Name (string) --

      The name of the inference experiment.

    • Type (string) --

      The type of the inference experiment.

    • Schedule (dict) --

      The duration for which the inference experiment ran or will run.

      • StartTime (datetime) --

        The timestamp at which the inference experiment started or will start.

      • EndTime (datetime) --

        The timestamp at which the inference experiment ended or will end.

    • Status (string) --

      The status of the inference experiment. The following are the possible statuses for an inference experiment:

      • Creating - Amazon SageMaker is creating your experiment.
      • Created - Amazon SageMaker has finished the creation of your experiment and will begin the experiment at the scheduled time.
      • Updating - When you make changes to your experiment, your experiment shows as updating.
      • Starting - Amazon SageMaker is beginning your experiment.
      • Running - Your experiment is in progress.
      • Stopping - Amazon SageMaker is stopping your experiment.
      • Completed - Your experiment has completed.
      • Cancelled - When you conclude your experiment early using the StopInferenceExperiment API, or if any operation fails with an unexpected error, it shows as cancelled.
    • StatusReason (string) --

      The error message or client-specified Reason from the StopInferenceExperiment API, that explains the status of the inference experiment.

    • Description (string) --

      The description of the inference experiment.

    • CreationTime (datetime) --

      The timestamp at which you created the inference experiment.

    • CompletionTime (datetime) --

      The timestamp at which the inference experiment was completed.

    • LastModifiedTime (datetime) --

      The timestamp at which you last modified the inference experiment.

    • RoleArn (string) --

      The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images, and manage Amazon SageMaker Inference endpoints for model deployment.

    • EndpointMetadata (dict) --

      The metadata of the endpoint on which the inference experiment ran.

      • EndpointName (string) --

        The name of the endpoint.

      • EndpointConfigName (string) --

        The name of the endpoint configuration.

      • EndpointStatus (string) --

        The status of the endpoint. For possible values of the status of an endpoint, see EndpointSummary$EndpointStatus.

      • FailureReason (string) --

        If the status of the endpoint is Failed , or the status is InService but update operation fails, this provides the reason why it failed.

    • ModelVariants (list) --

      An array of ModelVariantConfigSummary objects. There is one for each variant in the inference experiment. Each ModelVariantConfigSummary object in the array describes the infrastructure configuration for deploying the corresponding variant.

      • (dict) --

        Summary of the deployment configuration of a model.

        • ModelName (string) --

          The name of the Amazon SageMaker Model entity.

        • VariantName (string) --

          The name of the variant.

        • InfrastructureConfig (dict) --

          The configuration of the infrastructure that the model has been deployed to.

          • InfrastructureType (string) --

            The inference option to which to deploy your model. Possible values are the following:

            • RealTime : Deploy to real-time inference.
          • RealTimeInferenceConfig (dict) --

            The infrastructure configuration for deploying the model to real-time inference.

            • InstanceType (string) --

              The instance type the model is deployed to.

            • InstanceCount (integer) --

              The number of instances of the type specified by InstanceType .

        • Status (string) --

          The status of deployment for the model variant on the hosted inference endpoint.

          • Creating - Amazon SageMaker is preparing the model variant on the hosted inference endpoint.
          • InService - The model variant is running on the hosted inference endpoint.
          • Updating - Amazon SageMaker is updating the model variant on the hosted inference endpoint.
          • Deleting - Amazon SageMaker is deleting the model variant on the hosted inference endpoint.
          • Deleted - The model variant has been deleted on the hosted inference endpoint. This can only happen after stopping the experiment.
    • DataStorageConfig (dict) --

      The Amazon S3 location and configuration for storing inference request and response data.

      • Destination (string) --

        The Amazon S3 bucket where the inference request and response data is stored.

      • KmsKey (string) --

        The Amazon Web Services Key Management Service key that Amazon SageMaker uses to encrypt captured data at rest using Amazon S3 server-side encryption.

      • ContentType (dict) --

        Configuration specifying how to treat different headers. If no headers are specified SageMaker will by default base64 encode when capturing the data.

        • CsvContentTypes (list) --

          The list of all content type headers that SageMaker will treat as CSV and capture accordingly.

          • (string) --
        • JsonContentTypes (list) --

          The list of all content type headers that SageMaker will treat as JSON and capture accordingly.

          • (string) --
    • ShadowModeConfig (dict) --

      The configuration of ShadowMode inference experiment type, which shows the production variant that takes all the inference requests, and the shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. For the shadow variant it also shows the percentage of requests that Amazon SageMaker replicates.

      • SourceModelVariantName (string) --

        The name of the production variant, which takes all the inference requests.

      • ShadowModelVariants (list) --

        List of shadow variant configurations.

        • (dict) --

          The name and sampling percentage of a shadow variant.

          • ShadowModelVariantName (string) --

            The name of the shadow variant.

          • SamplingPercentage (integer) --

            The percentage of inference requests that Amazon SageMaker replicates from the production variant to the shadow variant.

    • KmsKey (string) --

      The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. For more information, see CreateInferenceExperimentRequest$KmsKey.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_inference_recommendations_job(**kwargs)

Provides the results of the Inference Recommender job. One or more recommendation jobs are returned.

See also: AWS API Documentation

Request Syntax

response = client.describe_inference_recommendations_job(
    JobName='string'
)
Parameters
JobName (string) --

[REQUIRED]

The name of the job. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.

Return type
dict
Returns
Response Syntax
{
    'JobName': 'string',
    'JobDescription': 'string',
    'JobType': 'Default'|'Advanced',
    'JobArn': 'string',
    'RoleArn': 'string',
    'Status': 'PENDING'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOPPING'|'STOPPED',
    'CreationTime': datetime(2015, 1, 1),
    'CompletionTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'FailureReason': 'string',
    'InputConfig': {
        'ModelPackageVersionArn': 'string',
        'JobDurationInSeconds': 123,
        'TrafficPattern': {
            'TrafficType': 'PHASES',
            'Phases': [
                {
                    'InitialNumberOfUsers': 123,
                    'SpawnRate': 123,
                    'DurationInSeconds': 123
                },
            ]
        },
        'ResourceLimit': {
            'MaxNumberOfTests': 123,
            'MaxParallelOfTests': 123
        },
        'EndpointConfigurations': [
            {
                'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge',
                'InferenceSpecificationName': 'string',
                'EnvironmentParameterRanges': {
                    'CategoricalParameterRanges': [
                        {
                            'Name': 'string',
                            'Value': [
                                'string',
                            ]
                        },
                    ]
                }
            },
        ],
        'VolumeKmsKeyId': 'string',
        'ContainerConfig': {
            'Domain': 'string',
            'Task': 'string',
            'Framework': 'string',
            'FrameworkVersion': 'string',
            'PayloadConfig': {
                'SamplePayloadUrl': 'string',
                'SupportedContentTypes': [
                    'string',
                ]
            },
            'NearestModelName': 'string',
            'SupportedInstanceTypes': [
                'string',
            ],
            'DataInputConfig': 'string'
        },
        'Endpoints': [
            {
                'EndpointName': 'string'
            },
        ],
        'VpcConfig': {
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ]
        },
        'ModelName': 'string'
    },
    'StoppingConditions': {
        'MaxInvocations': 123,
        'ModelLatencyThresholds': [
            {
                'Percentile': 'string',
                'ValueInMilliseconds': 123
            },
        ]
    },
    'InferenceRecommendations': [
        {
            'Metrics': {
                'CostPerHour': ...,
                'CostPerInference': ...,
                'MaxInvocations': 123,
                'ModelLatency': 123,
                'CpuUtilization': ...,
                'MemoryUtilization': ...
            },
            'EndpointConfiguration': {
                'EndpointName': 'string',
                'VariantName': 'string',
                'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge',
                'InitialInstanceCount': 123
            },
            'ModelConfiguration': {
                'InferenceSpecificationName': 'string',
                'EnvironmentParameters': [
                    {
                        'Key': 'string',
                        'ValueType': 'string',
                        'Value': 'string'
                    },
                ],
                'CompilationJobName': 'string'
            },
            'RecommendationId': 'string'
        },
    ],
    'EndpointPerformances': [
        {
            'Metrics': {
                'MaxInvocations': 123,
                'ModelLatency': 123
            },
            'EndpointInfo': {
                'EndpointName': 'string'
            }
        },
    ]
}

Response Structure

  • (dict) --
    • JobName (string) --

      The name of the job. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.

    • JobDescription (string) --

      The job description that you provided when you initiated the job.

    • JobType (string) --

      The job type that you provided when you initiated the job.

    • JobArn (string) --

      The Amazon Resource Name (ARN) of the job.

    • RoleArn (string) --

      The Amazon Resource Name (ARN) of the Amazon Web Services Identity and Access Management (IAM) role you provided when you initiated the job.

    • Status (string) --

      The status of the job.

    • CreationTime (datetime) --

      A timestamp that shows when the job was created.

    • CompletionTime (datetime) --

      A timestamp that shows when the job completed.

    • LastModifiedTime (datetime) --

      A timestamp that shows when the job was last modified.

    • FailureReason (string) --

      If the job fails, provides information why the job failed.

    • InputConfig (dict) --

      Returns information about the versioned model package Amazon Resource Name (ARN), the traffic pattern, and endpoint configurations you provided when you initiated the job.

      • ModelPackageVersionArn (string) --

        The Amazon Resource Name (ARN) of a versioned model package.

      • JobDurationInSeconds (integer) --

        Specifies the maximum duration of the job, in seconds.>

      • TrafficPattern (dict) --

        Specifies the traffic pattern of the job.

        • TrafficType (string) --

          Defines the traffic patterns.

        • Phases (list) --

          Defines the phases traffic specification.

          • (dict) --

            Defines the traffic pattern.

            • InitialNumberOfUsers (integer) --

              Specifies how many concurrent users to start with.

            • SpawnRate (integer) --

              Specified how many new users to spawn in a minute.

            • DurationInSeconds (integer) --

              Specifies how long traffic phase should be.

      • ResourceLimit (dict) --

        Defines the resource limit of the job.

        • MaxNumberOfTests (integer) --

          Defines the maximum number of load tests.

        • MaxParallelOfTests (integer) --

          Defines the maximum number of parallel load tests.

      • EndpointConfigurations (list) --

        Specifies the endpoint configuration to use for a job.

        • (dict) --

          The endpoint configuration for the load test.

          • InstanceType (string) --

            The instance types to use for the load test.

          • InferenceSpecificationName (string) --

            The inference specification name in the model package version.

          • EnvironmentParameterRanges (dict) --

            The parameter you want to benchmark against.

            • CategoricalParameterRanges (list) --

              Specified a list of parameters for each category.

              • (dict) --

                Environment parameters you want to benchmark your load test against.

                • Name (string) --

                  The Name of the environment variable.

                • Value (list) --

                  The list of values you can pass.

                  • (string) --
      • VolumeKmsKeyId (string) --

        The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. This key will be passed to SageMaker Hosting for endpoint creation.

        The SageMaker execution role must have kms:CreateGrant permission in order to encrypt data on the storage volume of the endpoints created for inference recommendation. The inference recommendation job will fail asynchronously during endpoint configuration creation if the role passed does not have kms:CreateGrant permission.

        The KmsKeyId can be any of the following formats:

        • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
        • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:<region>:<account>:key/<key-id-12ab-34cd-56ef-1234567890ab>"
        • // KMS Key Alias "alias/ExampleAlias"
        • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:<region>:<account>:alias/<ExampleAlias>"

        For more information about key identifiers, see Key identifiers (KeyID) in the Amazon Web Services Key Management Service (Amazon Web Services KMS) documentation.

      • ContainerConfig (dict) --

        Specifies mandatory fields for running an Inference Recommender job. The fields specified in ContainerConfig override the corresponding fields in the model package.

        • Domain (string) --

          The machine learning domain of the model and its components.

          Valid Values: COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING | MACHINE_LEARNING

        • Task (string) --

          The machine learning task that the model accomplishes.

          Valid Values: IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION | IMAGE_SEGMENTATION | FILL_MASK | CLASSIFICATION | REGRESSION | OTHER

        • Framework (string) --

          The machine learning framework of the container image.

          Valid Values: TENSORFLOW | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN

        • FrameworkVersion (string) --

          The framework version of the container image.

        • PayloadConfig (dict) --

          Specifies the SamplePayloadUrl and all other sample payload-related fields.

          • SamplePayloadUrl (string) --

            The Amazon Simple Storage Service (Amazon S3) path where the sample payload is stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).

          • SupportedContentTypes (list) --

            The supported MIME types for the input data.

            • (string) --
        • NearestModelName (string) --

          The name of a pre-trained machine learning model benchmarked by Amazon SageMaker Inference Recommender that matches your model.

          Valid Values: efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge | vgg16 | inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon | resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased | xceptionV1-keras | resnet50 | retinanet

        • SupportedInstanceTypes (list) --

          A list of the instance types that are used to generate inferences in real-time.

          • (string) --
        • DataInputConfig (string) --

          Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. This field is used for optimizing your model using SageMaker Neo. For more information, see DataInputConfig.

      • Endpoints (list) --

        Existing customer endpoints on which to run an Inference Recommender job.

        • (dict) --

          Details about a customer endpoint that was compared in an Inference Recommender job.

          • EndpointName (string) --

            The name of a customer's endpoint.

      • VpcConfig (dict) --

        Inference Recommender provisions SageMaker endpoints with access to VPC in the inference recommendation job.

        • SecurityGroupIds (list) --

          The VPC security group IDs. IDs have the form of sg-xxxxxxxx . Specify the security groups for the VPC that is specified in the Subnets field.

          • (string) --
        • Subnets (list) --

          The ID of the subnets in the VPC to which you want to connect your model.

          • (string) --
      • ModelName (string) --

        The name of the created model.

    • StoppingConditions (dict) --

      The stopping conditions that you provided when you initiated the job.

      • MaxInvocations (integer) --

        The maximum number of requests per minute expected for the endpoint.

      • ModelLatencyThresholds (list) --

        The interval of time taken by a model to respond as viewed from SageMaker. The interval includes the local communication time taken to send the request and to fetch the response from the container of a model and the time taken to complete the inference in the container.

        • (dict) --

          The model latency threshold.

          • Percentile (string) --

            The model latency percentile threshold.

          • ValueInMilliseconds (integer) --

            The model latency percentile value in milliseconds.

    • InferenceRecommendations (list) --

      The recommendations made by Inference Recommender.

      • (dict) --

        A list of recommendations made by Amazon SageMaker Inference Recommender.

        • Metrics (dict) --

          The metrics used to decide what recommendation to make.

          • CostPerHour (float) --

            Defines the cost per hour for the instance.

          • CostPerInference (float) --

            Defines the cost per inference for the instance .

          • MaxInvocations (integer) --

            The expected maximum number of requests per minute for the instance.

          • ModelLatency (integer) --

            The expected model latency at maximum invocation per minute for the instance.

          • CpuUtilization (float) --

            The expected CPU utilization at maximum invocations per minute for the instance.

            NaN indicates that the value is not available.
          • MemoryUtilization (float) --

            The expected memory utilization at maximum invocations per minute for the instance.

            NaN indicates that the value is not available.
        • EndpointConfiguration (dict) --

          Defines the endpoint configuration parameters.

          • EndpointName (string) --

            The name of the endpoint made during a recommendation job.

          • VariantName (string) --

            The name of the production variant (deployed model) made during a recommendation job.

          • InstanceType (string) --

            The instance type recommended by Amazon SageMaker Inference Recommender.

          • InitialInstanceCount (integer) --

            The number of instances recommended to launch initially.

        • ModelConfiguration (dict) --

          Defines the model configuration.

          • InferenceSpecificationName (string) --

            The inference specification name in the model package version.

          • EnvironmentParameters (list) --

            Defines the environment parameters that includes key, value types, and values.

            • (dict) --

              A list of environment parameters suggested by the Amazon SageMaker Inference Recommender.

              • Key (string) --

                The environment key suggested by the Amazon SageMaker Inference Recommender.

              • ValueType (string) --

                The value type suggested by the Amazon SageMaker Inference Recommender.

              • Value (string) --

                The value suggested by the Amazon SageMaker Inference Recommender.

          • CompilationJobName (string) --

            The name of the compilation job used to create the recommended model artifacts.

        • RecommendationId (string) --

          The recommendation ID which uniquely identifies each recommendation.

    • EndpointPerformances (list) --

      The performance results from running an Inference Recommender job on an existing endpoint.

      • (dict) --

        The performance results from running an Inference Recommender job on an existing endpoint.

        • Metrics (dict) --

          The metrics for an existing endpoint.

          • MaxInvocations (integer) --

            The expected maximum number of requests per minute for the instance.

          • ModelLatency (integer) --

            The expected model latency at maximum invocations per minute for the instance.

        • EndpointInfo (dict) --

          Details about a customer endpoint that was compared in an Inference Recommender job.

          • EndpointName (string) --

            The name of a customer's endpoint.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_labeling_job(**kwargs)

Gets information about a labeling job.

See also: AWS API Documentation

Request Syntax

response = client.describe_labeling_job(
    LabelingJobName='string'
)
Parameters
LabelingJobName (string) --

[REQUIRED]

The name of the labeling job to return information for.

Return type
dict
Returns
Response Syntax
{
    'LabelingJobStatus': 'Initializing'|'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
    'LabelCounters': {
        'TotalLabeled': 123,
        'HumanLabeled': 123,
        'MachineLabeled': 123,
        'FailedNonRetryableError': 123,
        'Unlabeled': 123
    },
    'FailureReason': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'JobReferenceCode': 'string',
    'LabelingJobName': 'string',
    'LabelingJobArn': 'string',
    'LabelAttributeName': 'string',
    'InputConfig': {
        'DataSource': {
            'S3DataSource': {
                'ManifestS3Uri': 'string'
            },
            'SnsDataSource': {
                'SnsTopicArn': 'string'
            }
        },
        'DataAttributes': {
            'ContentClassifiers': [
                'FreeOfPersonallyIdentifiableInformation'|'FreeOfAdultContent',
            ]
        }
    },
    'OutputConfig': {
        'S3OutputPath': 'string',
        'KmsKeyId': 'string',
        'SnsTopicArn': 'string'
    },
    'RoleArn': 'string',
    'LabelCategoryConfigS3Uri': 'string',
    'StoppingConditions': {
        'MaxHumanLabeledObjectCount': 123,
        'MaxPercentageOfInputDatasetLabeled': 123
    },
    'LabelingJobAlgorithmsConfig': {
        'LabelingJobAlgorithmSpecificationArn': 'string',
        'InitialActiveLearningModelArn': 'string',
        'LabelingJobResourceConfig': {
            'VolumeKmsKeyId': 'string',
            'VpcConfig': {
                'SecurityGroupIds': [
                    'string',
                ],
                'Subnets': [
                    'string',
                ]
            }
        }
    },
    'HumanTaskConfig': {
        'WorkteamArn': 'string',
        'UiConfig': {
            'UiTemplateS3Uri': 'string',
            'HumanTaskUiArn': 'string'
        },
        'PreHumanTaskLambdaArn': 'string',
        'TaskKeywords': [
            'string',
        ],
        'TaskTitle': 'string',
        'TaskDescription': 'string',
        'NumberOfHumanWorkersPerDataObject': 123,
        'TaskTimeLimitInSeconds': 123,
        'TaskAvailabilityLifetimeInSeconds': 123,
        'MaxConcurrentTaskCount': 123,
        'AnnotationConsolidationConfig': {
            'AnnotationConsolidationLambdaArn': 'string'
        },
        'PublicWorkforceTaskPrice': {
            'AmountInUsd': {
                'Dollars': 123,
                'Cents': 123,
                'TenthFractionsOfACent': 123
            }
        }
    },
    'Tags': [
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    'LabelingJobOutput': {
        'OutputDatasetS3Uri': 'string',
        'FinalActiveLearningModelArn': 'string'
    }
}

Response Structure

  • (dict) --
    • LabelingJobStatus (string) --

      The processing status of the labeling job.

    • LabelCounters (dict) --

      Provides a breakdown of the number of data objects labeled by humans, the number of objects labeled by machine, the number of objects than couldn't be labeled, and the total number of objects labeled.

      • TotalLabeled (integer) --

        The total number of objects labeled.

      • HumanLabeled (integer) --

        The total number of objects labeled by a human worker.

      • MachineLabeled (integer) --

        The total number of objects labeled by automated data labeling.

      • FailedNonRetryableError (integer) --

        The total number of objects that could not be labeled due to an error.

      • Unlabeled (integer) --

        The total number of objects not yet labeled.

    • FailureReason (string) --

      If the job failed, the reason that it failed.

    • CreationTime (datetime) --

      The date and time that the labeling job was created.

    • LastModifiedTime (datetime) --

      The date and time that the labeling job was last updated.

    • JobReferenceCode (string) --

      A unique identifier for work done as part of a labeling job.

    • LabelingJobName (string) --

      The name assigned to the labeling job when it was created.

    • LabelingJobArn (string) --

      The Amazon Resource Name (ARN) of the labeling job.

    • LabelAttributeName (string) --

      The attribute used as the label in the output manifest file.

    • InputConfig (dict) --

      Input configuration information for the labeling job, such as the Amazon S3 location of the data objects and the location of the manifest file that describes the data objects.

      • DataSource (dict) --

        The location of the input data.

        • S3DataSource (dict) --

          The Amazon S3 location of the input data objects.

          • ManifestS3Uri (string) --

            The Amazon S3 location of the manifest file that describes the input data objects.

            The input manifest file referenced in ManifestS3Uri must contain one of the following keys: source-ref or source . The value of the keys are interpreted as follows:

            • source-ref : The source of the object is the Amazon S3 object specified in the value. Use this value when the object is a binary object, such as an image.
            • source : The source of the object is the value. Use this value when the object is a text value.

            If you are a new user of Ground Truth, it is recommended you review Use an Input Manifest File in the Amazon SageMaker Developer Guide to learn how to create an input manifest file.

        • SnsDataSource (dict) --

          An Amazon SNS data source used for streaming labeling jobs. To learn more, see Send Data to a Streaming Labeling Job.

          • SnsTopicArn (string) --

            The Amazon SNS input topic Amazon Resource Name (ARN). Specify the ARN of the input topic you will use to send new data objects to a streaming labeling job.

      • DataAttributes (dict) --

        Attributes of the data specified by the customer.

        • ContentClassifiers (list) --

          Declares that your content is free of personally identifiable information or adult content. SageMaker may restrict the Amazon Mechanical Turk workers that can view your task based on this information.

          • (string) --
    • OutputConfig (dict) --

      The location of the job's output data and the Amazon Web Services Key Management Service key ID for the key used to encrypt the output data, if any.

      • S3OutputPath (string) --

        The Amazon S3 location to write output data.

      • KmsKeyId (string) --

        The Amazon Web Services Key Management Service ID of the key used to encrypt the output data, if any.

        If you provide your own KMS key ID, you must add the required permissions to your KMS key described in Encrypt Output Data and Storage Volume with Amazon Web Services KMS.

        If you don't provide a KMS key ID, Amazon SageMaker uses the default Amazon Web Services KMS key for Amazon S3 for your role's account to encrypt your output data.

        If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

      • SnsTopicArn (string) --

        An Amazon Simple Notification Service (Amazon SNS) output topic ARN. Provide a SnsTopicArn if you want to do real time chaining to another streaming job and receive an Amazon SNS notifications each time a data object is submitted by a worker.

        If you provide an SnsTopicArn in OutputConfig , when workers complete labeling tasks, Ground Truth will send labeling task output data to the SNS output topic you specify here.

        To learn more, see Receive Output Data from a Streaming Labeling Job.

    • RoleArn (string) --

      The Amazon Resource Name (ARN) that SageMaker assumes to perform tasks on your behalf during data labeling.

    • LabelCategoryConfigS3Uri (string) --

      The S3 location of the JSON file that defines the categories used to label data objects. Please note the following label-category limits:

      • Semantic segmentation labeling jobs using automated labeling: 20 labels
      • Box bounding labeling jobs (all): 10 labels

      The file is a JSON structure in the following format:

      {

      "document-version": "2018-11-28"

      "labels": [

      {

      "label": "label 1"

      },

      {

      "label": "label 2"

      },

      ...

      {

      "label": "label n"

      }

      ]

      }

    • StoppingConditions (dict) --

      A set of conditions for stopping a labeling job. If any of the conditions are met, the job is automatically stopped.

      • MaxHumanLabeledObjectCount (integer) --

        The maximum number of objects that can be labeled by human workers.

      • MaxPercentageOfInputDatasetLabeled (integer) --

        The maximum number of input data objects that should be labeled.

    • LabelingJobAlgorithmsConfig (dict) --

      Configuration information for automated data labeling.

      • LabelingJobAlgorithmSpecificationArn (string) --

        Specifies the Amazon Resource Name (ARN) of the algorithm used for auto-labeling. You must select one of the following ARNs:

        • Image classification arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/image-classification
        • Text classification arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/text-classification
        • Object detection arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/object-detection
        • Semantic Segmentation arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/semantic-segmentation
      • InitialActiveLearningModelArn (string) --

        At the end of an auto-label job Ground Truth sends the Amazon Resource Name (ARN) of the final model used for auto-labeling. You can use this model as the starting point for subsequent similar jobs by providing the ARN of the model here.

      • LabelingJobResourceConfig (dict) --

        Provides configuration information for a labeling job.

        • VolumeKmsKeyId (string) --

          The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training and inference jobs used for automated data labeling.

          You can only specify a VolumeKmsKeyId when you create a labeling job with automated data labeling enabled using the API operation CreateLabelingJob . You cannot specify an Amazon Web Services KMS key to encrypt the storage volume used for automated data labeling model training and inference when you create a labeling job using the console. To learn more, see Output Data and Storage Volume Encryption.

          The VolumeKmsKeyId can be any of the following formats:

          • KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
          • Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
        • VpcConfig (dict) --

          Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud.

          • SecurityGroupIds (list) --

            The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

            • (string) --
          • Subnets (list) --

            The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.

            • (string) --
    • HumanTaskConfig (dict) --

      Configuration information required for human workers to complete a labeling task.

      • WorkteamArn (string) --

        The Amazon Resource Name (ARN) of the work team assigned to complete the tasks.

      • UiConfig (dict) --

        Information about the user interface that workers use to complete the labeling task.

        • UiTemplateS3Uri (string) --

          The Amazon S3 bucket location of the UI template, or worker task template. This is the template used to render the worker UI and tools for labeling job tasks. For more information about the contents of a UI template, see Creating Your Custom Labeling Task Template.

        • HumanTaskUiArn (string) --

          The ARN of the worker task template used to render the worker UI and tools for labeling job tasks.

          Use this parameter when you are creating a labeling job for named entity recognition, 3D point cloud and video frame labeling jobs. Use your labeling job task type to select one of the following ARNs and use it with this parameter when you create a labeling job. Replace aws-region with the Amazon Web Services Region you are creating your labeling job in. For example, replace aws-region with us-west-1 if you create a labeling job in US West (N. California).

          Named Entity Recognition

          Use the following HumanTaskUiArn for named entity recognition labeling jobs:

          arn:aws:sagemaker:aws-region:394669845002:human-task-ui/NamedEntityRecognition

          3D Point Cloud HumanTaskUiArns

          Use this HumanTaskUiArn for 3D point cloud object detection and 3D point cloud object detection adjustment labeling jobs.

          • arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectDetection

          Use this HumanTaskUiArn for 3D point cloud object tracking and 3D point cloud object tracking adjustment labeling jobs.

          • arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectTracking

          Use this HumanTaskUiArn for 3D point cloud semantic segmentation and 3D point cloud semantic segmentation adjustment labeling jobs.

          • arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudSemanticSegmentation
          Video Frame HumanTaskUiArns

          Use this HumanTaskUiArn for video frame object detection and video frame object detection adjustment labeling jobs.

          • arn:aws:sagemaker:region:394669845002:human-task-ui/VideoObjectDetection

          Use this HumanTaskUiArn for video frame object tracking and video frame object tracking adjustment labeling jobs.

          • arn:aws:sagemaker:aws-region:394669845002:human-task-ui/VideoObjectTracking
      • PreHumanTaskLambdaArn (string) --

        The Amazon Resource Name (ARN) of a Lambda function that is run before a data object is sent to a human worker. Use this function to provide input to a custom labeling job.

        For built-in task types, use one of the following Amazon SageMaker Ground Truth Lambda function ARNs for PreHumanTaskLambdaArn . For custom labeling workflows, see Pre-annotation Lambda.

        Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes.
        • arn:aws:lambda:us-east-1:432418664414:function:PRE-BoundingBox
        • arn:aws:lambda:us-east-2:266458841044:function:PRE-BoundingBox
        • arn:aws:lambda:us-west-2:081040173940:function:PRE-BoundingBox
        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-BoundingBox
        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-BoundingBox
        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-BoundingBox
        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-BoundingBox
        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-BoundingBox
        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-BoundingBox
        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-BoundingBox
        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-BoundingBox
        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-BoundingBox
        Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers.
        • arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClass
        • arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClass
        • arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClass
        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClass
        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClass
        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClass
        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClass
        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClass
        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClass
        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClass
        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClass
        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClass
        Multi-label image classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of an image based on annotations from individual workers.
        • arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClassMultiLabel
        • arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClassMultiLabel
        • arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClassMultiLabel
        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClassMultiLabel
        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClassMultiLabel
        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClassMultiLabel
        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClassMultiLabel
        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClassMultiLabel
        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClassMultiLabel
        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClassMultiLabel
        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClassMultiLabel
        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClassMultiLabel
        Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label.
        • arn:aws:lambda:us-east-1:432418664414:function:PRE-SemanticSegmentation
        • arn:aws:lambda:us-east-2:266458841044:function:PRE-SemanticSegmentation
        • arn:aws:lambda:us-west-2:081040173940:function:PRE-SemanticSegmentation
        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-SemanticSegmentation
        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-SemanticSegmentation
        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-SemanticSegmentation
        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-SemanticSegmentation
        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-SemanticSegmentation
        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-SemanticSegmentation
        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-SemanticSegmentation
        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-SemanticSegmentation
        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-SemanticSegmentation
        Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers.
        • arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClass
        • arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClass
        • arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClass
        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClass
        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClass
        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClass
        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClass
        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClass
        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClass
        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClass
        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClass
        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClass
        Multi-label text classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of text based on annotations from individual workers.
        • arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClassMultiLabel
        • arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClassMultiLabel
        • arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClassMultiLabel
        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClassMultiLabel
        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClassMultiLabel
        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClassMultiLabel
        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClassMultiLabel
        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClassMultiLabel
        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClassMultiLabel
        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClassMultiLabel
        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClassMultiLabel
        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClassMultiLabel
        Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label.
        • arn:aws:lambda:us-east-1:432418664414:function:PRE-NamedEntityRecognition
        • arn:aws:lambda:us-east-2:266458841044:function:PRE-NamedEntityRecognition
        • arn:aws:lambda:us-west-2:081040173940:function:PRE-NamedEntityRecognition
        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-NamedEntityRecognition
        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-NamedEntityRecognition
        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-NamedEntityRecognition
        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-NamedEntityRecognition
        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-NamedEntityRecognition
        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-NamedEntityRecognition
        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-NamedEntityRecognition
        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-NamedEntityRecognition
        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-NamedEntityRecognition
        Video Classification - Use this task type when you need workers to classify videos using predefined labels that you specify. Workers are shown videos and are asked to choose one label for each video.
        • arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoMultiClass
        • arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoMultiClass
        • arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoMultiClass
        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoMultiClass
        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoMultiClass
        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoMultiClass
        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoMultiClass
        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoMultiClass
        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoMultiClass
        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoMultiClass
        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoMultiClass
        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoMultiClass
        Video Frame Object Detection - Use this task type to have workers identify and locate objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to identify and localize various objects in a series of video frames, such as cars, bikes, and pedestrians.
        • arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectDetection
        • arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectDetection
        • arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectDetection
        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectDetection
        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectDetection
        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectDetection
        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectDetection
        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectDetection
        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectDetection
        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectDetection
        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectDetection
        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectDetection
        Video Frame Object Tracking - Use this task type to have workers track the movement of objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to track the movement of objects, such as cars, bikes, and pedestrians.
        • arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectTracking
        • arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectTracking
        • arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectTracking
        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectTracking
        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectTracking
        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectTracking
        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectTracking
        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectTracking
        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectTracking
        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectTracking
        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectTracking
        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectTracking
        3D Point Cloud Modalities

        Use the following pre-annotation lambdas for 3D point cloud labeling modality tasks. See 3D Point Cloud Task types to learn more.

        3D Point Cloud Object Detection - Use this task type when you want workers to classify objects in a 3D point cloud by drawing 3D cuboids around objects. For example, you can use this task type to ask workers to identify different types of objects in a point cloud, such as cars, bikes, and pedestrians.
        • arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectDetection
        • arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectDetection
        • arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectDetection
        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectDetection
        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectDetection
        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectDetection
        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectDetection
        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectDetection
        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectDetection
        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectDetection
        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectDetection
        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectDetection
        3D Point Cloud Object Tracking - Use this task type when you want workers to draw 3D cuboids around objects that appear in a sequence of 3D point cloud frames. For example, you can use this task type to ask workers to track the movement of vehicles across multiple point cloud frames.
        • arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectTracking
        • arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectTracking
        • arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectTracking
        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectTracking
        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectTracking
        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectTracking
        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectTracking
        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectTracking
        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectTracking
        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectTracking
        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectTracking
        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectTracking
        3D Point Cloud Semantic Segmentation - Use this task type when you want workers to create a point-level semantic segmentation masks by painting objects in a 3D point cloud using different colors where each color is assigned to one of the classes you specify.
        • arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudSemanticSegmentation
        • arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudSemanticSegmentation
        • arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudSemanticSegmentation
        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudSemanticSegmentation
        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudSemanticSegmentation
        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudSemanticSegmentation
        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudSemanticSegmentation
        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudSemanticSegmentation
        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudSemanticSegmentation
        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudSemanticSegmentation
        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudSemanticSegmentation
        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudSemanticSegmentation
        Use the following ARNs for Label Verification and Adjustment Jobs

        Use label verification and adjustment jobs to review and adjust labels. To learn more, see Verify and Adjust Labels.

        Bounding box verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgement for bounding box labels based on annotations from individual workers.
        • arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationBoundingBox
        • arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationBoundingBox
        • arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationBoundingBox
        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationBoundingBox
        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationBoundingBox
        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationBoundingBox
        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationBoundingBox
        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationBoundingBox
        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationBoundingBox
        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationBoundingBox
        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationBoundingBox
        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationBoundingBox
        Bounding box adjustment - Finds the most similar boxes from different workers based on the Jaccard index of the adjusted annotations.
        • arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentBoundingBox
        • arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentBoundingBox
        • arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentBoundingBox
        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentBoundingBox
        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentBoundingBox
        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentBoundingBox
        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentBoundingBox
        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentBoundingBox
        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentBoundingBox
        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentBoundingBox
        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentBoundingBox
        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentBoundingBox
        Semantic segmentation verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgment for semantic segmentation labels based on annotations from individual workers.
        • arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationSemanticSegmentation
        • arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationSemanticSegmentation
        • arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationSemanticSegmentation
        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationSemanticSegmentation
        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationSemanticSegmentation
        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationSemanticSegmentation
        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationSemanticSegmentation
        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationSemanticSegmentation
        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationSemanticSegmentation
        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationSemanticSegmentation
        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationSemanticSegmentation
        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationSemanticSegmentation
        Semantic segmentation adjustment - Treats each pixel in an image as a multi-class classification and treats pixel adjusted annotations from workers as "votes" for the correct label.
        • arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentSemanticSegmentation
        • arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentSemanticSegmentation
        • arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentSemanticSegmentation
        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentSemanticSegmentation
        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentSemanticSegmentation
        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentSemanticSegmentation
        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentSemanticSegmentation
        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentSemanticSegmentation
        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentSemanticSegmentation
        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentSemanticSegmentation
        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentSemanticSegmentation
        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentSemanticSegmentation
        Video Frame Object Detection Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to classify and localize objects in a sequence of video frames.
        • arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectDetection
        • arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectDetection
        • arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectDetection
        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectDetection
        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectDetection
        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectDetection
        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectDetection
        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectDetection
        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectDetection
        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectDetection
        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectDetection
        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectDetection
        Video Frame Object Tracking Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to track object movement across a sequence of video frames.
        • arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectTracking
        • arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectTracking
        • arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectTracking
        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectTracking
        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectTracking
        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectTracking
        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectTracking
        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectTracking
        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectTracking
        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectTracking
        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectTracking
        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectTracking
        3D point cloud object detection adjustment - Adjust 3D cuboids in a point cloud frame.
        • arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectDetection
        • arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectDetection
        • arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectDetection
        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectDetection
        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectDetection
        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectDetection
        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectDetection
        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectDetection
        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectDetection
        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectDetection
        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectDetection
        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectDetection
        3D point cloud object tracking adjustment - Adjust 3D cuboids across a sequence of point cloud frames.
        • arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectTracking
        • arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectTracking
        • arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectTracking
        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectTracking
        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectTracking
        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectTracking
        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectTracking
        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectTracking
        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectTracking
        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectTracking
        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectTracking
        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectTracking
        3D point cloud semantic segmentation adjustment - Adjust semantic segmentation masks in a 3D point cloud.
        • arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudSemanticSegmentation
        • arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudSemanticSegmentation
        • arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudSemanticSegmentation
        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudSemanticSegmentation
        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudSemanticSegmentation
        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudSemanticSegmentation
        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudSemanticSegmentation
        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudSemanticSegmentation
        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudSemanticSegmentation
        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudSemanticSegmentation
        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudSemanticSegmentation
        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudSemanticSegmentation
      • TaskKeywords (list) --

        Keywords used to describe the task so that workers on Amazon Mechanical Turk can discover the task.

        • (string) --
      • TaskTitle (string) --

        A title for the task for your human workers.

      • TaskDescription (string) --

        A description of the task for your human workers.

      • NumberOfHumanWorkersPerDataObject (integer) --

        The number of human workers that will label an object.

      • TaskTimeLimitInSeconds (integer) --

        The amount of time that a worker has to complete a task.

        If you create a custom labeling job, the maximum value for this parameter is 8 hours (28,800 seconds).

        If you create a labeling job using a built-in task type the maximum for this parameter depends on the task type you use:

        • For image and text labeling jobs, the maximum is 8 hours (28,800 seconds).
        • For 3D point cloud and video frame labeling jobs, the maximum is 30 days (2952,000 seconds) for non-AL mode. For most users, the maximum is also 30 days.
      • TaskAvailabilityLifetimeInSeconds (integer) --

        The length of time that a task remains available for labeling by human workers. The default and maximum values for this parameter depend on the type of workforce you use.

        • If you choose the Amazon Mechanical Turk workforce, the maximum is 12 hours (43,200 seconds). The default is 6 hours (21,600 seconds).
        • If you choose a private or vendor workforce, the default value is 30 days (2592,000 seconds) for non-AL mode. For most users, the maximum is also 30 days.
      • MaxConcurrentTaskCount (integer) --

        Defines the maximum number of data objects that can be labeled by human workers at the same time. Also referred to as batch size. Each object may have more than one worker at one time. The default value is 1000 objects. To increase the maximum value to 5000 objects, contact Amazon Web Services Support.

      • AnnotationConsolidationConfig (dict) --

        Configures how labels are consolidated across human workers.

        • AnnotationConsolidationLambdaArn (string) --

          The Amazon Resource Name (ARN) of a Lambda function implements the logic for annotation consolidation and to process output data.

          This parameter is required for all labeling jobs. For built-in task types, use one of the following Amazon SageMaker Ground Truth Lambda function ARNs for AnnotationConsolidationLambdaArn . For custom labeling workflows, see Post-annotation Lambda.

          Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes.
          • arn:aws:lambda:us-east-1:432418664414:function:ACS-BoundingBox
          • arn:aws:lambda:us-east-2:266458841044:function:ACS-BoundingBox
          • arn:aws:lambda:us-west-2:081040173940:function:ACS-BoundingBox
          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-BoundingBox
          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-BoundingBox
          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-BoundingBox
          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-BoundingBox
          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-BoundingBox
          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-BoundingBox
          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-BoundingBox
          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-BoundingBox
          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-BoundingBox
          Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers.
          • arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClass
          • arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClass
          • arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClass
          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClass
          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClass
          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClass
          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClass
          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClass
          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClass
          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClass
          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClass
          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClass
          Multi-label image classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of an image based on annotations from individual workers.
          • arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClassMultiLabel
          • arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClassMultiLabel
          • arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClassMultiLabel
          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClassMultiLabel
          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClassMultiLabel
          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClassMultiLabel
          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClassMultiLabel
          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClassMultiLabel
          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClassMultiLabel
          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClassMultiLabel
          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClassMultiLabel
          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClassMultiLabel
          Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label.
          • arn:aws:lambda:us-east-1:432418664414:function:ACS-SemanticSegmentation
          • arn:aws:lambda:us-east-2:266458841044:function:ACS-SemanticSegmentation
          • arn:aws:lambda:us-west-2:081040173940:function:ACS-SemanticSegmentation
          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-SemanticSegmentation
          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-SemanticSegmentation
          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-SemanticSegmentation
          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-SemanticSegmentation
          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-SemanticSegmentation
          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-SemanticSegmentation
          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-SemanticSegmentation
          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-SemanticSegmentation
          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-SemanticSegmentation
          Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers.
          • arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClass
          • arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClass
          • arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClass
          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClass
          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClass
          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClass
          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClass
          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClass
          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClass
          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClass
          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClass
          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClass
          Multi-label text classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of text based on annotations from individual workers.
          • arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClassMultiLabel
          • arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClassMultiLabel
          • arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClassMultiLabel
          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClassMultiLabel
          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClassMultiLabel
          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClassMultiLabel
          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClassMultiLabel
          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClassMultiLabel
          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClassMultiLabel
          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClassMultiLabel
          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClassMultiLabel
          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClassMultiLabel
          Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label.
          • arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition
          • arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition
          • arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition
          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition
          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognition
          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognition
          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognition
          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognition
          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognition
          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognition
          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognition
          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition
          Video Classification - Use this task type when you need workers to classify videos using predefined labels that you specify. Workers are shown videos and are asked to choose one label for each video.
          • arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoMultiClass
          • arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoMultiClass
          • arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoMultiClass
          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoMultiClass
          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoMultiClass
          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoMultiClass
          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoMultiClass
          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoMultiClass
          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoMultiClass
          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoMultiClass
          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoMultiClass
          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoMultiClass
          Video Frame Object Detection - Use this task type to have workers identify and locate objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to identify and localize various objects in a series of video frames, such as cars, bikes, and pedestrians.
          • arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectDetection
          • arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectDetection
          • arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectDetection
          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectDetection
          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectDetection
          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectDetection
          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectDetection
          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectDetection
          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectDetection
          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectDetection
          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectDetection
          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectDetection
          Video Frame Object Tracking - Use this task type to have workers track the movement of objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to track the movement of objects, such as cars, bikes, and pedestrians.
          • arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectTracking
          • arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectTracking
          • arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectTracking
          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectTracking
          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectTracking
          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectTracking
          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectTracking
          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectTracking
          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectTracking
          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectTracking
          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectTracking
          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectTracking
          3D Point Cloud Object Detection - Use this task type when you want workers to classify objects in a 3D point cloud by drawing 3D cuboids around objects. For example, you can use this task type to ask workers to identify different types of objects in a point cloud, such as cars, bikes, and pedestrians.
          • arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectDetection
          • arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectDetection
          • arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectDetection
          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectDetection
          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectDetection
          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectDetection
          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectDetection
          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectDetection
          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectDetection
          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectDetection
          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectDetection
          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectDetection
          3D Point Cloud Object Tracking - Use this task type when you want workers to draw 3D cuboids around objects that appear in a sequence of 3D point cloud frames. For example, you can use this task type to ask workers to track the movement of vehicles across multiple point cloud frames.
          • arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectTracking
          • arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectTracking
          • arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectTracking
          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectTracking
          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectTracking
          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectTracking
          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectTracking
          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectTracking
          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectTracking
          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectTracking
          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectTracking
          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectTracking
          3D Point Cloud Semantic Segmentation - Use this task type when you want workers to create a point-level semantic segmentation masks by painting objects in a 3D point cloud using different colors where each color is assigned to one of the classes you specify.
          • arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation
          • arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudSemanticSegmentation
          • arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudSemanticSegmentation
          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudSemanticSegmentation
          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudSemanticSegmentation
          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudSemanticSegmentation
          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudSemanticSegmentation
          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudSemanticSegmentation
          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudSemanticSegmentation
          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudSemanticSegmentation
          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudSemanticSegmentation
          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudSemanticSegmentation
          Use the following ARNs for Label Verification and Adjustment Jobs

          Use label verification and adjustment jobs to review and adjust labels. To learn more, see Verify and Adjust Labels.

          Semantic Segmentation Adjustment - Treats each pixel in an image as a multi-class classification and treats pixel adjusted annotations from workers as "votes" for the correct label.
          • arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentSemanticSegmentation
          • arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentSemanticSegmentation
          • arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentSemanticSegmentation
          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentSemanticSegmentation
          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentSemanticSegmentation
          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentSemanticSegmentation
          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentSemanticSegmentation
          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentSemanticSegmentation
          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentSemanticSegmentation
          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentSemanticSegmentation
          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentSemanticSegmentation
          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentSemanticSegmentation
          Semantic Segmentation Verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgment for semantic segmentation labels based on annotations from individual workers.
          • arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationSemanticSegmentation
          • arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationSemanticSegmentation
          • arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationSemanticSegmentation
          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationSemanticSegmentation
          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationSemanticSegmentation
          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationSemanticSegmentation
          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationSemanticSegmentation
          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationSemanticSegmentation
          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationSemanticSegmentation
          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationSemanticSegmentation
          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationSemanticSegmentation
          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationSemanticSegmentation
          Bounding Box Adjustment - Finds the most similar boxes from different workers based on the Jaccard index of the adjusted annotations.
          • arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentBoundingBox
          • arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentBoundingBox
          • arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentBoundingBox
          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentBoundingBox
          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentBoundingBox
          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentBoundingBox
          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentBoundingBox
          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentBoundingBox
          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentBoundingBox
          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentBoundingBox
          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentBoundingBox
          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentBoundingBox
          Bounding Box Verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgement for bounding box labels based on annotations from individual workers.
          • arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationBoundingBox
          • arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationBoundingBox
          • arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationBoundingBox
          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationBoundingBox
          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationBoundingBox
          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationBoundingBox
          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationBoundingBox
          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationBoundingBox
          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationBoundingBox
          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationBoundingBox
          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationBoundingBox
          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationBoundingBox
          Video Frame Object Detection Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to classify and localize objects in a sequence of video frames.
          • arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectDetection
          • arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectDetection
          • arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectDetection
          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectDetection
          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectDetection
          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectDetection
          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectDetection
          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectDetection
          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectDetection
          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectDetection
          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectDetection
          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectDetection
          Video Frame Object Tracking Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to track object movement across a sequence of video frames.
          • arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectTracking
          • arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectTracking
          • arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectTracking
          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectTracking
          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectTracking
          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectTracking
          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectTracking
          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectTracking
          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectTracking
          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectTracking
          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectTracking
          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectTracking
          3D Point Cloud Object Detection Adjustment - Use this task type when you want workers to adjust 3D cuboids around objects in a 3D point cloud.
          • arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectDetection
          • arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectDetection
          • arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectDetection
          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectDetection
          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectDetection
          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectDetection
          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectDetection
          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectDetection
          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectDetection
          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectDetection
          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectDetection
          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectDetection
          3D Point Cloud Object Tracking Adjustment - Use this task type when you want workers to adjust 3D cuboids around objects that appear in a sequence of 3D point cloud frames.
          • arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectTracking
          • arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectTracking
          • arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectTracking
          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectTracking
          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectTracking
          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectTracking
          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectTracking
          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectTracking
          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectTracking
          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectTracking
          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectTracking
          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectTracking
          3D Point Cloud Semantic Segmentation Adjustment - Use this task type when you want workers to adjust a point-level semantic segmentation masks using a paint tool.
          • arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation
          • arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudSemanticSegmentation
          • arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudSemanticSegmentation
          • arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudSemanticSegmentation
          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudSemanticSegmentation
          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudSemanticSegmentation
          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudSemanticSegmentation
          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudSemanticSegmentation
          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudSemanticSegmentation
          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudSemanticSegmentation
          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudSemanticSegmentation
          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudSemanticSegmentation
          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudSemanticSegmentation
      • PublicWorkforceTaskPrice (dict) --

        The price that you pay for each task performed by an Amazon Mechanical Turk worker.

        • AmountInUsd (dict) --

          Defines the amount of money paid to an Amazon Mechanical Turk worker in United States dollars.

          • Dollars (integer) --

            The whole number of dollars in the amount.

          • Cents (integer) --

            The fractional portion, in cents, of the amount.

          • TenthFractionsOfACent (integer) --

            Fractions of a cent, in tenths.

    • Tags (list) --

      An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

      • (dict) --

        A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

        You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

        For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

        • Key (string) --

          The tag key. Tag keys must be unique per resource.

        • Value (string) --

          The tag value.

    • LabelingJobOutput (dict) --

      The location of the output produced by the labeling job.

      • OutputDatasetS3Uri (string) --

        The Amazon S3 bucket location of the manifest file for labeled data.

      • FinalActiveLearningModelArn (string) --

        The Amazon Resource Name (ARN) for the most recent SageMaker model trained as part of automated data labeling.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_lineage_group(**kwargs)

Provides a list of properties for the requested lineage group. For more information, see Cross-Account Lineage Tracking in the Amazon SageMaker Developer Guide .

See also: AWS API Documentation

Request Syntax

response = client.describe_lineage_group(
    LineageGroupName='string'
)
Parameters
LineageGroupName (string) --

[REQUIRED]

The name of the lineage group.

Return type
dict
Returns
Response Syntax
{
    'LineageGroupName': 'string',
    'LineageGroupArn': 'string',
    'DisplayName': 'string',
    'Description': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'CreatedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    },
    'LastModifiedTime': datetime(2015, 1, 1),
    'LastModifiedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    }
}

Response Structure

  • (dict) --
    • LineageGroupName (string) --

      The name of the lineage group.

    • LineageGroupArn (string) --

      The Amazon Resource Name (ARN) of the lineage group.

    • DisplayName (string) --

      The display name of the lineage group.

    • Description (string) --

      The description of the lineage group.

    • CreationTime (datetime) --

      The creation time of lineage group.

    • CreatedBy (dict) --

      Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

    • LastModifiedTime (datetime) --

      The last modified time of the lineage group.

    • LastModifiedBy (dict) --

      Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_model(**kwargs)

Describes a model that you created using the CreateModel API.

See also: AWS API Documentation

Request Syntax

response = client.describe_model(
    ModelName='string'
)
Parameters
ModelName (string) --

[REQUIRED]

The name of the model.

Return type
dict
Returns
Response Syntax
{
    'ModelName': 'string',
    'PrimaryContainer': {
        'ContainerHostname': 'string',
        'Image': 'string',
        'ImageConfig': {
            'RepositoryAccessMode': 'Platform'|'Vpc',
            'RepositoryAuthConfig': {
                'RepositoryCredentialsProviderArn': 'string'
            }
        },
        'Mode': 'SingleModel'|'MultiModel',
        'ModelDataUrl': 'string',
        'Environment': {
            'string': 'string'
        },
        'ModelPackageName': 'string',
        'InferenceSpecificationName': 'string',
        'MultiModelConfig': {
            'ModelCacheSetting': 'Enabled'|'Disabled'
        }
    },
    'Containers': [
        {
            'ContainerHostname': 'string',
            'Image': 'string',
            'ImageConfig': {
                'RepositoryAccessMode': 'Platform'|'Vpc',
                'RepositoryAuthConfig': {
                    'RepositoryCredentialsProviderArn': 'string'
                }
            },
            'Mode': 'SingleModel'|'MultiModel',
            'ModelDataUrl': 'string',
            'Environment': {
                'string': 'string'
            },
            'ModelPackageName': 'string',
            'InferenceSpecificationName': 'string',
            'MultiModelConfig': {
                'ModelCacheSetting': 'Enabled'|'Disabled'
            }
        },
    ],
    'InferenceExecutionConfig': {
        'Mode': 'Serial'|'Direct'
    },
    'ExecutionRoleArn': 'string',
    'VpcConfig': {
        'SecurityGroupIds': [
            'string',
        ],
        'Subnets': [
            'string',
        ]
    },
    'CreationTime': datetime(2015, 1, 1),
    'ModelArn': 'string',
    'EnableNetworkIsolation': True|False
}

Response Structure

  • (dict) --
    • ModelName (string) --

      Name of the SageMaker model.

    • PrimaryContainer (dict) --

      The location of the primary inference code, associated artifacts, and custom environment map that the inference code uses when it is deployed in production.

      • ContainerHostname (string) --

        This parameter is ignored for models that contain only a PrimaryContainer .

        When a ContainerDefinition is part of an inference pipeline, the value of the parameter uniquely identifies the container for the purposes of logging and metrics. For information, see Use Logs and Metrics to Monitor an Inference Pipeline. If you don't specify a value for this parameter for a ContainerDefinition that is part of an inference pipeline, a unique name is automatically assigned based on the position of the ContainerDefinition in the pipeline. If you specify a value for the ContainerHostName for any ContainerDefinition that is part of an inference pipeline, you must specify a value for the ContainerHostName parameter of every ContainerDefinition in that pipeline.

      • Image (string) --

        The path where inference code is stored. This can be either in Amazon EC2 Container Registry or in a Docker registry that is accessible from the same VPC that you configure for your endpoint. If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker

      • ImageConfig (dict) --

        Specifies whether the model container is in Amazon ECR or a private Docker registry accessible from your Amazon Virtual Private Cloud (VPC). For information about storing containers in a private Docker registry, see Use a Private Docker Registry for Real-Time Inference Containers

        • RepositoryAccessMode (string) --

          Set this to one of the following values:

          • Platform - The model image is hosted in Amazon ECR.
          • Vpc - The model image is hosted in a private Docker registry in your VPC.
        • RepositoryAuthConfig (dict) --

          (Optional) Specifies an authentication configuration for the private docker registry where your model image is hosted. Specify a value for this property only if you specified Vpc as the value for the RepositoryAccessMode field, and the private Docker registry where the model image is hosted requires authentication.

          • RepositoryCredentialsProviderArn (string) --

            The Amazon Resource Name (ARN) of an Amazon Web Services Lambda function that provides credentials to authenticate to the private Docker registry where your model image is hosted. For information about how to create an Amazon Web Services Lambda function, see Create a Lambda function with the console in the Amazon Web Services Lambda Developer Guide .

      • Mode (string) --

        Whether the container hosts a single model or multiple models.

      • ModelDataUrl (string) --

        The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The S3 path is required for SageMaker built-in algorithms, but not if you use your own algorithms. For more information on built-in algorithms, see Common Parameters.

        Note

        The model artifacts must be in an S3 bucket that is in the same region as the model or endpoint you are creating.

        If you provide a value for this parameter, SageMaker uses Amazon Web Services Security Token Service to download model artifacts from the S3 path you provide. Amazon Web Services STS is activated in your Amazon Web Services account by default. If you previously deactivated Amazon Web Services STS for a region, you need to reactivate Amazon Web Services STS for that region. For more information, see Activating and Deactivating Amazon Web Services STS in an Amazon Web Services Region in the Amazon Web Services Identity and Access Management User Guide .

        Warning

        If you use a built-in algorithm to create a model, SageMaker requires that you provide a S3 path to the model artifacts in ModelDataUrl .

      • Environment (dict) --

        The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.

        • (string) --
          • (string) --
      • ModelPackageName (string) --

        The name or Amazon Resource Name (ARN) of the model package to use to create the model.

      • InferenceSpecificationName (string) --

        The inference specification name in the model package version.

      • MultiModelConfig (dict) --

        Specifies additional configuration for multi-model endpoints.

        • ModelCacheSetting (string) --

          Whether to cache models for a multi-model endpoint. By default, multi-model endpoints cache models so that a model does not have to be loaded into memory each time it is invoked. Some use cases do not benefit from model caching. For example, if an endpoint hosts a large number of models that are each invoked infrequently, the endpoint might perform better if you disable model caching. To disable model caching, set the value of this parameter to Disabled .

    • Containers (list) --

      The containers in the inference pipeline.

      • (dict) --

        Describes the container, as part of model definition.

        • ContainerHostname (string) --

          This parameter is ignored for models that contain only a PrimaryContainer .

          When a ContainerDefinition is part of an inference pipeline, the value of the parameter uniquely identifies the container for the purposes of logging and metrics. For information, see Use Logs and Metrics to Monitor an Inference Pipeline. If you don't specify a value for this parameter for a ContainerDefinition that is part of an inference pipeline, a unique name is automatically assigned based on the position of the ContainerDefinition in the pipeline. If you specify a value for the ContainerHostName for any ContainerDefinition that is part of an inference pipeline, you must specify a value for the ContainerHostName parameter of every ContainerDefinition in that pipeline.

        • Image (string) --

          The path where inference code is stored. This can be either in Amazon EC2 Container Registry or in a Docker registry that is accessible from the same VPC that you configure for your endpoint. If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker

        • ImageConfig (dict) --

          Specifies whether the model container is in Amazon ECR or a private Docker registry accessible from your Amazon Virtual Private Cloud (VPC). For information about storing containers in a private Docker registry, see Use a Private Docker Registry for Real-Time Inference Containers

          • RepositoryAccessMode (string) --

            Set this to one of the following values:

            • Platform - The model image is hosted in Amazon ECR.
            • Vpc - The model image is hosted in a private Docker registry in your VPC.
          • RepositoryAuthConfig (dict) --

            (Optional) Specifies an authentication configuration for the private docker registry where your model image is hosted. Specify a value for this property only if you specified Vpc as the value for the RepositoryAccessMode field, and the private Docker registry where the model image is hosted requires authentication.

            • RepositoryCredentialsProviderArn (string) --

              The Amazon Resource Name (ARN) of an Amazon Web Services Lambda function that provides credentials to authenticate to the private Docker registry where your model image is hosted. For information about how to create an Amazon Web Services Lambda function, see Create a Lambda function with the console in the Amazon Web Services Lambda Developer Guide .

        • Mode (string) --

          Whether the container hosts a single model or multiple models.

        • ModelDataUrl (string) --

          The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The S3 path is required for SageMaker built-in algorithms, but not if you use your own algorithms. For more information on built-in algorithms, see Common Parameters.

          Note

          The model artifacts must be in an S3 bucket that is in the same region as the model or endpoint you are creating.

          If you provide a value for this parameter, SageMaker uses Amazon Web Services Security Token Service to download model artifacts from the S3 path you provide. Amazon Web Services STS is activated in your Amazon Web Services account by default. If you previously deactivated Amazon Web Services STS for a region, you need to reactivate Amazon Web Services STS for that region. For more information, see Activating and Deactivating Amazon Web Services STS in an Amazon Web Services Region in the Amazon Web Services Identity and Access Management User Guide .

          Warning

          If you use a built-in algorithm to create a model, SageMaker requires that you provide a S3 path to the model artifacts in ModelDataUrl .

        • Environment (dict) --

          The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.

          • (string) --
            • (string) --
        • ModelPackageName (string) --

          The name or Amazon Resource Name (ARN) of the model package to use to create the model.

        • InferenceSpecificationName (string) --

          The inference specification name in the model package version.

        • MultiModelConfig (dict) --

          Specifies additional configuration for multi-model endpoints.

          • ModelCacheSetting (string) --

            Whether to cache models for a multi-model endpoint. By default, multi-model endpoints cache models so that a model does not have to be loaded into memory each time it is invoked. Some use cases do not benefit from model caching. For example, if an endpoint hosts a large number of models that are each invoked infrequently, the endpoint might perform better if you disable model caching. To disable model caching, set the value of this parameter to Disabled .

    • InferenceExecutionConfig (dict) --

      Specifies details of how containers in a multi-container endpoint are called.

      • Mode (string) --

        How containers in a multi-container are run. The following values are valid.

        • SERIAL - Containers run as a serial pipeline.
        • DIRECT - Only the individual container that you specify is run.
    • ExecutionRoleArn (string) --

      The Amazon Resource Name (ARN) of the IAM role that you specified for the model.

    • VpcConfig (dict) --

      A VpcConfig object that specifies the VPC that this model has access to. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud

      • SecurityGroupIds (list) --

        The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

        • (string) --
      • Subnets (list) --

        The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.

        • (string) --
    • CreationTime (datetime) --

      A timestamp that shows when the model was created.

    • ModelArn (string) --

      The Amazon Resource Name (ARN) of the model.

    • EnableNetworkIsolation (boolean) --

      If True , no inbound or outbound network calls can be made to or from the model container.

describe_model_bias_job_definition(**kwargs)

Returns a description of a model bias job definition.

See also: AWS API Documentation

Request Syntax

response = client.describe_model_bias_job_definition(
    JobDefinitionName='string'
)
Parameters
JobDefinitionName (string) --

[REQUIRED]

The name of the model bias job definition. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.

Return type
dict
Returns
Response Syntax
{
    'JobDefinitionArn': 'string',
    'JobDefinitionName': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'ModelBiasBaselineConfig': {
        'BaseliningJobName': 'string',
        'ConstraintsResource': {
            'S3Uri': 'string'
        }
    },
    'ModelBiasAppSpecification': {
        'ImageUri': 'string',
        'ConfigUri': 'string',
        'Environment': {
            'string': 'string'
        }
    },
    'ModelBiasJobInput': {
        'EndpointInput': {
            'EndpointName': 'string',
            'LocalPath': 'string',
            'S3InputMode': 'Pipe'|'File',
            'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
            'FeaturesAttribute': 'string',
            'InferenceAttribute': 'string',
            'ProbabilityAttribute': 'string',
            'ProbabilityThresholdAttribute': 123.0,
            'StartTimeOffset': 'string',
            'EndTimeOffset': 'string'
        },
        'BatchTransformInput': {
            'DataCapturedDestinationS3Uri': 'string',
            'DatasetFormat': {
                'Csv': {
                    'Header': True|False
                },
                'Json': {
                    'Line': True|False
                },
                'Parquet': {}
            },
            'LocalPath': 'string',
            'S3InputMode': 'Pipe'|'File',
            'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
            'FeaturesAttribute': 'string',
            'InferenceAttribute': 'string',
            'ProbabilityAttribute': 'string',
            'ProbabilityThresholdAttribute': 123.0,
            'StartTimeOffset': 'string',
            'EndTimeOffset': 'string'
        },
        'GroundTruthS3Input': {
            'S3Uri': 'string'
        }
    },
    'ModelBiasJobOutputConfig': {
        'MonitoringOutputs': [
            {
                'S3Output': {
                    'S3Uri': 'string',
                    'LocalPath': 'string',
                    'S3UploadMode': 'Continuous'|'EndOfJob'
                }
            },
        ],
        'KmsKeyId': 'string'
    },
    'JobResources': {
        'ClusterConfig': {
            'InstanceCount': 123,
            'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
            'VolumeSizeInGB': 123,
            'VolumeKmsKeyId': 'string'
        }
    },
    'NetworkConfig': {
        'EnableInterContainerTrafficEncryption': True|False,
        'EnableNetworkIsolation': True|False,
        'VpcConfig': {
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ]
        }
    },
    'RoleArn': 'string',
    'StoppingCondition': {
        'MaxRuntimeInSeconds': 123
    }
}

Response Structure

  • (dict) --
    • JobDefinitionArn (string) --

      The Amazon Resource Name (ARN) of the model bias job.

    • JobDefinitionName (string) --

      The name of the bias job definition. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.

    • CreationTime (datetime) --

      The time at which the model bias job was created.

    • ModelBiasBaselineConfig (dict) --

      The baseline configuration for a model bias job.

      • BaseliningJobName (string) --

        The name of the baseline model bias job.

      • ConstraintsResource (dict) --

        The constraints resource for a monitoring job.

        • S3Uri (string) --

          The Amazon S3 URI for the constraints resource.

    • ModelBiasAppSpecification (dict) --

      Configures the model bias job to run a specified Docker container image.

      • ImageUri (string) --

        The container image to be run by the model bias job.

      • ConfigUri (string) --

        JSON formatted S3 file that defines bias parameters. For more information on this JSON configuration file, see Configure bias parameters.

      • Environment (dict) --

        Sets the environment variables in the Docker container.

        • (string) --
          • (string) --
    • ModelBiasJobInput (dict) --

      Inputs for the model bias job.

      • EndpointInput (dict) --

        Input object for the endpoint

        • EndpointName (string) --

          An endpoint in customer's account which has enabled DataCaptureConfig enabled.

        • LocalPath (string) --

          Path to the filesystem where the endpoint data is available to the container.

        • S3InputMode (string) --

          Whether the Pipe or File is used as the input mode for transferring data for the monitoring job. Pipe mode is recommended for large datasets. File mode is useful for small files that fit in memory. Defaults to File .

        • S3DataDistributionType (string) --

          Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defaults to FullyReplicated

        • FeaturesAttribute (string) --

          The attributes of the input data that are the input features.

        • InferenceAttribute (string) --

          The attribute of the input data that represents the ground truth label.

        • ProbabilityAttribute (string) --

          In a classification problem, the attribute that represents the class probability.

        • ProbabilityThresholdAttribute (float) --

          The threshold for the class probability to be evaluated as a positive result.

        • StartTimeOffset (string) --

          If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

        • EndTimeOffset (string) --

          If specified, monitoring jobs substract this time from the end time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

      • BatchTransformInput (dict) --

        Input object for the batch transform job.

        • DataCapturedDestinationS3Uri (string) --

          The Amazon S3 location being used to capture the data.

        • DatasetFormat (dict) --

          The dataset format for your batch transform job.

          • Csv (dict) --

            The CSV dataset used in the monitoring job.

            • Header (boolean) --

              Indicates if the CSV data has a header.

          • Json (dict) --

            The JSON dataset used in the monitoring job

            • Line (boolean) --

              Indicates if the file should be read as a json object per line.

          • Parquet (dict) --

            The Parquet dataset used in the monitoring job

        • LocalPath (string) --

          Path to the filesystem where the batch transform data is available to the container.

        • S3InputMode (string) --

          Whether the Pipe or File is used as the input mode for transferring data for the monitoring job. Pipe mode is recommended for large datasets. File mode is useful for small files that fit in memory. Defaults to File .

        • S3DataDistributionType (string) --

          Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defaults to FullyReplicated

        • FeaturesAttribute (string) --

          The attributes of the input data that are the input features.

        • InferenceAttribute (string) --

          The attribute of the input data that represents the ground truth label.

        • ProbabilityAttribute (string) --

          In a classification problem, the attribute that represents the class probability.

        • ProbabilityThresholdAttribute (float) --

          The threshold for the class probability to be evaluated as a positive result.

        • StartTimeOffset (string) --

          If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

        • EndTimeOffset (string) --

          If specified, monitoring jobs substract this time from the end time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

      • GroundTruthS3Input (dict) --

        Location of ground truth labels to use in model bias job.

        • S3Uri (string) --

          The address of the Amazon S3 location of the ground truth labels.

    • ModelBiasJobOutputConfig (dict) --

      The output configuration for monitoring jobs.

      • MonitoringOutputs (list) --

        Monitoring outputs for monitoring jobs. This is where the output of the periodic monitoring jobs is uploaded.

        • (dict) --

          The output object for a monitoring job.

          • S3Output (dict) --

            The Amazon S3 storage location where the results of a monitoring job are saved.

            • S3Uri (string) --

              A URI that identifies the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job.

            • LocalPath (string) --

              The local path to the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job. LocalPath is an absolute path for the output data.

            • S3UploadMode (string) --

              Whether to upload the results of the monitoring job continuously or after the job completes.

      • KmsKeyId (string) --

        The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.

    • JobResources (dict) --

      Identifies the resources to deploy for a monitoring job.

      • ClusterConfig (dict) --

        The configuration for the cluster resources used to run the processing job.

        • InstanceCount (integer) --

          The number of ML compute instances to use in the model monitoring job. For distributed processing jobs, specify a value greater than 1. The default value is 1.

        • InstanceType (string) --

          The ML compute instance type for the processing job.

        • VolumeSizeInGB (integer) --

          The size of the ML storage volume, in gigabytes, that you want to provision. You must specify sufficient ML storage for your scenario.

        • VolumeKmsKeyId (string) --

          The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.

    • NetworkConfig (dict) --

      Networking options for a model bias job.

      • EnableInterContainerTrafficEncryption (boolean) --

        Whether to encrypt all communications between the instances used for the monitoring jobs. Choose True to encrypt communications. Encryption provides greater security for distributed jobs, but the processing might take longer.

      • EnableNetworkIsolation (boolean) --

        Whether to allow inbound and outbound network calls to and from the containers used for the monitoring job.

      • VpcConfig (dict) --

        Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud.

        • SecurityGroupIds (list) --

          The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

          • (string) --
        • Subnets (list) --

          The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.

          • (string) --
    • RoleArn (string) --

      The Amazon Resource Name (ARN) of the Amazon Web Services Identity and Access Management (IAM) role that has read permission to the input data location and write permission to the output data location in Amazon S3.

    • StoppingCondition (dict) --

      A time limit for how long the monitoring job is allowed to run before stopping.

      • MaxRuntimeInSeconds (integer) --

        The maximum runtime allowed in seconds.

        Note

        The MaxRuntimeInSeconds cannot exceed the frequency of the job. For data quality and model explainability, this can be up to 3600 seconds for an hourly schedule. For model bias and model quality hourly schedules, this can be up to 1800 seconds.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_model_card(**kwargs)

Describes the content, creation time, and security configuration of an Amazon SageMaker Model Card.

See also: AWS API Documentation

Request Syntax

response = client.describe_model_card(
    ModelCardName='string',
    ModelCardVersion=123
)
Parameters
  • ModelCardName (string) --

    [REQUIRED]

    The name of the model card to describe.

  • ModelCardVersion (integer) -- The version of the model card to describe. If a version is not provided, then the latest version of the model card is described.
Return type

dict

Returns

Response Syntax

{
    'ModelCardArn': 'string',
    'ModelCardName': 'string',
    'ModelCardVersion': 123,
    'Content': 'string',
    'ModelCardStatus': 'Draft'|'PendingReview'|'Approved'|'Archived',
    'SecurityConfig': {
        'KmsKeyId': 'string'
    },
    'CreationTime': datetime(2015, 1, 1),
    'CreatedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    },
    'LastModifiedTime': datetime(2015, 1, 1),
    'LastModifiedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    },
    'ModelCardProcessingStatus': 'DeleteInProgress'|'DeletePending'|'ContentDeleted'|'ExportJobsDeleted'|'DeleteCompleted'|'DeleteFailed'
}

Response Structure

  • (dict) --

    • ModelCardArn (string) --

      The Amazon Resource Name (ARN) of the model card.

    • ModelCardName (string) --

      The name of the model card.

    • ModelCardVersion (integer) --

      The version of the model card.

    • Content (string) --

      The content of the model card.

    • ModelCardStatus (string) --

      The approval status of the model card within your organization. Different organizations might have different criteria for model card review and approval.

      • Draft : The model card is a work in progress.
      • PendingReview : The model card is pending review.
      • Approved : The model card is approved.
      • Archived : The model card is archived. No more updates should be made to the model card, but it can still be exported.
    • SecurityConfig (dict) --

      The security configuration used to protect model card content.

      • KmsKeyId (string) --

        A Key Management Service key ID to use for encrypting a model card.

    • CreationTime (datetime) --

      The date and time the model card was created.

    • CreatedBy (dict) --

      Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

    • LastModifiedTime (datetime) --

      The date and time the model card was last modified.

    • LastModifiedBy (dict) --

      Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

    • ModelCardProcessingStatus (string) --

      The processing status of model card deletion. The ModelCardProcessingStatus updates throughout the different deletion steps.

      • DeletePending : Model card deletion request received.
      • DeleteInProgress : Model card deletion is in progress.
      • ContentDeleted : Deleted model card content.
      • ExportJobsDeleted : Deleted all export jobs associated with the model card.
      • DeleteCompleted : Successfully deleted the model card.
      • DeleteFailed : The model card failed to delete.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_model_card_export_job(**kwargs)

Describes an Amazon SageMaker Model Card export job.

See also: AWS API Documentation

Request Syntax

response = client.describe_model_card_export_job(
    ModelCardExportJobArn='string'
)
Parameters
ModelCardExportJobArn (string) --

[REQUIRED]

The Amazon Resource Name (ARN) of the model card export job to describe.

Return type
dict
Returns
Response Syntax
{
    'ModelCardExportJobName': 'string',
    'ModelCardExportJobArn': 'string',
    'Status': 'InProgress'|'Completed'|'Failed',
    'ModelCardName': 'string',
    'ModelCardVersion': 123,
    'OutputConfig': {
        'S3OutputPath': 'string'
    },
    'CreatedAt': datetime(2015, 1, 1),
    'LastModifiedAt': datetime(2015, 1, 1),
    'FailureReason': 'string',
    'ExportArtifacts': {
        'S3ExportArtifacts': 'string'
    }
}

Response Structure

  • (dict) --
    • ModelCardExportJobName (string) --

      The name of the model card export job to describe.

    • ModelCardExportJobArn (string) --

      The Amazon Resource Name (ARN) of the model card export job.

    • Status (string) --

      The completion status of the model card export job.

      • InProgress : The model card export job is in progress.
      • Completed : The model card export job is complete.
      • Failed : The model card export job failed. To see the reason for the failure, see the FailureReason field in the response to a DescribeModelCardExportJob call.
    • ModelCardName (string) --

      The name of the model card that the model export job exports.

    • ModelCardVersion (integer) --

      The version of the model card that the model export job exports.

    • OutputConfig (dict) --

      The export output details for the model card.

      • S3OutputPath (string) --

        The Amazon S3 output path to export your model card PDF.

    • CreatedAt (datetime) --

      The date and time that the model export job was created.

    • LastModifiedAt (datetime) --

      The date and time that the model export job was last modified.

    • FailureReason (string) --

      The failure reason if the model export job fails.

    • ExportArtifacts (dict) --

      The exported model card artifacts.

      • S3ExportArtifacts (string) --

        The Amazon S3 URI of the exported model artifacts.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_model_explainability_job_definition(**kwargs)

Returns a description of a model explainability job definition.

See also: AWS API Documentation

Request Syntax

response = client.describe_model_explainability_job_definition(
    JobDefinitionName='string'
)
Parameters
JobDefinitionName (string) --

[REQUIRED]

The name of the model explainability job definition. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.

Return type
dict
Returns
Response Syntax
{
    'JobDefinitionArn': 'string',
    'JobDefinitionName': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'ModelExplainabilityBaselineConfig': {
        'BaseliningJobName': 'string',
        'ConstraintsResource': {
            'S3Uri': 'string'
        }
    },
    'ModelExplainabilityAppSpecification': {
        'ImageUri': 'string',
        'ConfigUri': 'string',
        'Environment': {
            'string': 'string'
        }
    },
    'ModelExplainabilityJobInput': {
        'EndpointInput': {
            'EndpointName': 'string',
            'LocalPath': 'string',
            'S3InputMode': 'Pipe'|'File',
            'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
            'FeaturesAttribute': 'string',
            'InferenceAttribute': 'string',
            'ProbabilityAttribute': 'string',
            'ProbabilityThresholdAttribute': 123.0,
            'StartTimeOffset': 'string',
            'EndTimeOffset': 'string'
        },
        'BatchTransformInput': {
            'DataCapturedDestinationS3Uri': 'string',
            'DatasetFormat': {
                'Csv': {
                    'Header': True|False
                },
                'Json': {
                    'Line': True|False
                },
                'Parquet': {}
            },
            'LocalPath': 'string',
            'S3InputMode': 'Pipe'|'File',
            'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
            'FeaturesAttribute': 'string',
            'InferenceAttribute': 'string',
            'ProbabilityAttribute': 'string',
            'ProbabilityThresholdAttribute': 123.0,
            'StartTimeOffset': 'string',
            'EndTimeOffset': 'string'
        }
    },
    'ModelExplainabilityJobOutputConfig': {
        'MonitoringOutputs': [
            {
                'S3Output': {
                    'S3Uri': 'string',
                    'LocalPath': 'string',
                    'S3UploadMode': 'Continuous'|'EndOfJob'
                }
            },
        ],
        'KmsKeyId': 'string'
    },
    'JobResources': {
        'ClusterConfig': {
            'InstanceCount': 123,
            'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
            'VolumeSizeInGB': 123,
            'VolumeKmsKeyId': 'string'
        }
    },
    'NetworkConfig': {
        'EnableInterContainerTrafficEncryption': True|False,
        'EnableNetworkIsolation': True|False,
        'VpcConfig': {
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ]
        }
    },
    'RoleArn': 'string',
    'StoppingCondition': {
        'MaxRuntimeInSeconds': 123
    }
}

Response Structure

  • (dict) --
    • JobDefinitionArn (string) --

      The Amazon Resource Name (ARN) of the model explainability job.

    • JobDefinitionName (string) --

      The name of the explainability job definition. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.

    • CreationTime (datetime) --

      The time at which the model explainability job was created.

    • ModelExplainabilityBaselineConfig (dict) --

      The baseline configuration for a model explainability job.

      • BaseliningJobName (string) --

        The name of the baseline model explainability job.

      • ConstraintsResource (dict) --

        The constraints resource for a monitoring job.

        • S3Uri (string) --

          The Amazon S3 URI for the constraints resource.

    • ModelExplainabilityAppSpecification (dict) --

      Configures the model explainability job to run a specified Docker container image.

      • ImageUri (string) --

        The container image to be run by the model explainability job.

      • ConfigUri (string) --

        JSON formatted S3 file that defines explainability parameters. For more information on this JSON configuration file, see Configure model explainability parameters.

      • Environment (dict) --

        Sets the environment variables in the Docker container.

        • (string) --
          • (string) --
    • ModelExplainabilityJobInput (dict) --

      Inputs for the model explainability job.

      • EndpointInput (dict) --

        Input object for the endpoint

        • EndpointName (string) --

          An endpoint in customer's account which has enabled DataCaptureConfig enabled.

        • LocalPath (string) --

          Path to the filesystem where the endpoint data is available to the container.

        • S3InputMode (string) --

          Whether the Pipe or File is used as the input mode for transferring data for the monitoring job. Pipe mode is recommended for large datasets. File mode is useful for small files that fit in memory. Defaults to File .

        • S3DataDistributionType (string) --

          Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defaults to FullyReplicated

        • FeaturesAttribute (string) --

          The attributes of the input data that are the input features.

        • InferenceAttribute (string) --

          The attribute of the input data that represents the ground truth label.

        • ProbabilityAttribute (string) --

          In a classification problem, the attribute that represents the class probability.

        • ProbabilityThresholdAttribute (float) --

          The threshold for the class probability to be evaluated as a positive result.

        • StartTimeOffset (string) --

          If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

        • EndTimeOffset (string) --

          If specified, monitoring jobs substract this time from the end time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

      • BatchTransformInput (dict) --

        Input object for the batch transform job.

        • DataCapturedDestinationS3Uri (string) --

          The Amazon S3 location being used to capture the data.

        • DatasetFormat (dict) --

          The dataset format for your batch transform job.

          • Csv (dict) --

            The CSV dataset used in the monitoring job.

            • Header (boolean) --

              Indicates if the CSV data has a header.

          • Json (dict) --

            The JSON dataset used in the monitoring job

            • Line (boolean) --

              Indicates if the file should be read as a json object per line.

          • Parquet (dict) --

            The Parquet dataset used in the monitoring job

        • LocalPath (string) --

          Path to the filesystem where the batch transform data is available to the container.

        • S3InputMode (string) --

          Whether the Pipe or File is used as the input mode for transferring data for the monitoring job. Pipe mode is recommended for large datasets. File mode is useful for small files that fit in memory. Defaults to File .

        • S3DataDistributionType (string) --

          Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defaults to FullyReplicated

        • FeaturesAttribute (string) --

          The attributes of the input data that are the input features.

        • InferenceAttribute (string) --

          The attribute of the input data that represents the ground truth label.

        • ProbabilityAttribute (string) --

          In a classification problem, the attribute that represents the class probability.

        • ProbabilityThresholdAttribute (float) --

          The threshold for the class probability to be evaluated as a positive result.

        • StartTimeOffset (string) --

          If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

        • EndTimeOffset (string) --

          If specified, monitoring jobs substract this time from the end time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

    • ModelExplainabilityJobOutputConfig (dict) --

      The output configuration for monitoring jobs.

      • MonitoringOutputs (list) --

        Monitoring outputs for monitoring jobs. This is where the output of the periodic monitoring jobs is uploaded.

        • (dict) --

          The output object for a monitoring job.

          • S3Output (dict) --

            The Amazon S3 storage location where the results of a monitoring job are saved.

            • S3Uri (string) --

              A URI that identifies the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job.

            • LocalPath (string) --

              The local path to the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job. LocalPath is an absolute path for the output data.

            • S3UploadMode (string) --

              Whether to upload the results of the monitoring job continuously or after the job completes.

      • KmsKeyId (string) --

        The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.

    • JobResources (dict) --

      Identifies the resources to deploy for a monitoring job.

      • ClusterConfig (dict) --

        The configuration for the cluster resources used to run the processing job.

        • InstanceCount (integer) --

          The number of ML compute instances to use in the model monitoring job. For distributed processing jobs, specify a value greater than 1. The default value is 1.

        • InstanceType (string) --

          The ML compute instance type for the processing job.

        • VolumeSizeInGB (integer) --

          The size of the ML storage volume, in gigabytes, that you want to provision. You must specify sufficient ML storage for your scenario.

        • VolumeKmsKeyId (string) --

          The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.

    • NetworkConfig (dict) --

      Networking options for a model explainability job.

      • EnableInterContainerTrafficEncryption (boolean) --

        Whether to encrypt all communications between the instances used for the monitoring jobs. Choose True to encrypt communications. Encryption provides greater security for distributed jobs, but the processing might take longer.

      • EnableNetworkIsolation (boolean) --

        Whether to allow inbound and outbound network calls to and from the containers used for the monitoring job.

      • VpcConfig (dict) --

        Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud.

        • SecurityGroupIds (list) --

          The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

          • (string) --
        • Subnets (list) --

          The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.

          • (string) --
    • RoleArn (string) --

      The Amazon Resource Name (ARN) of the Amazon Web Services Identity and Access Management (IAM) role that has read permission to the input data location and write permission to the output data location in Amazon S3.

    • StoppingCondition (dict) --

      A time limit for how long the monitoring job is allowed to run before stopping.

      • MaxRuntimeInSeconds (integer) --

        The maximum runtime allowed in seconds.

        Note

        The MaxRuntimeInSeconds cannot exceed the frequency of the job. For data quality and model explainability, this can be up to 3600 seconds for an hourly schedule. For model bias and model quality hourly schedules, this can be up to 1800 seconds.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_model_package(**kwargs)

Returns a description of the specified model package, which is used to create SageMaker models or list them on Amazon Web Services Marketplace.

To create models in SageMaker, buyers can subscribe to model packages listed on Amazon Web Services Marketplace.

See also: AWS API Documentation

Request Syntax

response = client.describe_model_package(
    ModelPackageName='string'
)
Parameters
ModelPackageName (string) --

[REQUIRED]

The name or Amazon Resource Name (ARN) of the model package to describe.

When you specify a name, the name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).

Return type
dict
Returns
Response Syntax
{
    'ModelPackageName': 'string',
    'ModelPackageGroupName': 'string',
    'ModelPackageVersion': 123,
    'ModelPackageArn': 'string',
    'ModelPackageDescription': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'InferenceSpecification': {
        'Containers': [
            {
                'ContainerHostname': 'string',
                'Image': 'string',
                'ImageDigest': 'string',
                'ModelDataUrl': 'string',
                'ProductId': 'string',
                'Environment': {
                    'string': 'string'
                },
                'ModelInput': {
                    'DataInputConfig': 'string'
                },
                'Framework': 'string',
                'FrameworkVersion': 'string',
                'NearestModelName': 'string'
            },
        ],
        'SupportedTransformInstanceTypes': [
            'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
        ],
        'SupportedRealtimeInferenceInstanceTypes': [
            'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge',
        ],
        'SupportedContentTypes': [
            'string',
        ],
        'SupportedResponseMIMETypes': [
            'string',
        ]
    },
    'SourceAlgorithmSpecification': {
        'SourceAlgorithms': [
            {
                'ModelDataUrl': 'string',
                'AlgorithmName': 'string'
            },
        ]
    },
    'ValidationSpecification': {
        'ValidationRole': 'string',
        'ValidationProfiles': [
            {
                'ProfileName': 'string',
                'TransformJobDefinition': {
                    'MaxConcurrentTransforms': 123,
                    'MaxPayloadInMB': 123,
                    'BatchStrategy': 'MultiRecord'|'SingleRecord',
                    'Environment': {
                        'string': 'string'
                    },
                    'TransformInput': {
                        'DataSource': {
                            'S3DataSource': {
                                'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                                'S3Uri': 'string'
                            }
                        },
                        'ContentType': 'string',
                        'CompressionType': 'None'|'Gzip',
                        'SplitType': 'None'|'Line'|'RecordIO'|'TFRecord'
                    },
                    'TransformOutput': {
                        'S3OutputPath': 'string',
                        'Accept': 'string',
                        'AssembleWith': 'None'|'Line',
                        'KmsKeyId': 'string'
                    },
                    'TransformResources': {
                        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
                        'InstanceCount': 123,
                        'VolumeKmsKeyId': 'string'
                    }
                }
            },
        ]
    },
    'ModelPackageStatus': 'Pending'|'InProgress'|'Completed'|'Failed'|'Deleting',
    'ModelPackageStatusDetails': {
        'ValidationStatuses': [
            {
                'Name': 'string',
                'Status': 'NotStarted'|'InProgress'|'Completed'|'Failed',
                'FailureReason': 'string'
            },
        ],
        'ImageScanStatuses': [
            {
                'Name': 'string',
                'Status': 'NotStarted'|'InProgress'|'Completed'|'Failed',
                'FailureReason': 'string'
            },
        ]
    },
    'CertifyForMarketplace': True|False,
    'ModelApprovalStatus': 'Approved'|'Rejected'|'PendingManualApproval',
    'CreatedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    },
    'MetadataProperties': {
        'CommitId': 'string',
        'Repository': 'string',
        'GeneratedBy': 'string',
        'ProjectId': 'string'
    },
    'ModelMetrics': {
        'ModelQuality': {
            'Statistics': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'Constraints': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        },
        'ModelDataQuality': {
            'Statistics': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'Constraints': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        },
        'Bias': {
            'Report': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'PreTrainingReport': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'PostTrainingReport': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        },
        'Explainability': {
            'Report': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        }
    },
    'LastModifiedTime': datetime(2015, 1, 1),
    'LastModifiedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    },
    'ApprovalDescription': 'string',
    'CustomerMetadataProperties': {
        'string': 'string'
    },
    'DriftCheckBaselines': {
        'Bias': {
            'ConfigFile': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'PreTrainingConstraints': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'PostTrainingConstraints': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        },
        'Explainability': {
            'Constraints': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'ConfigFile': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        },
        'ModelQuality': {
            'Statistics': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'Constraints': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        },
        'ModelDataQuality': {
            'Statistics': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'Constraints': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        }
    },
    'Domain': 'string',
    'Task': 'string',
    'SamplePayloadUrl': 'string',
    'AdditionalInferenceSpecifications': [
        {
            'Name': 'string',
            'Description': 'string',
            'Containers': [
                {
                    'ContainerHostname': 'string',
                    'Image': 'string',
                    'ImageDigest': 'string',
                    'ModelDataUrl': 'string',
                    'ProductId': 'string',
                    'Environment': {
                        'string': 'string'
                    },
                    'ModelInput': {
                        'DataInputConfig': 'string'
                    },
                    'Framework': 'string',
                    'FrameworkVersion': 'string',
                    'NearestModelName': 'string'
                },
            ],
            'SupportedTransformInstanceTypes': [
                'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
            ],
            'SupportedRealtimeInferenceInstanceTypes': [
                'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge',
            ],
            'SupportedContentTypes': [
                'string',
            ],
            'SupportedResponseMIMETypes': [
                'string',
            ]
        },
    ]
}

Response Structure

  • (dict) --
    • ModelPackageName (string) --

      The name of the model package being described.

    • ModelPackageGroupName (string) --

      If the model is a versioned model, the name of the model group that the versioned model belongs to.

    • ModelPackageVersion (integer) --

      The version of the model package.

    • ModelPackageArn (string) --

      The Amazon Resource Name (ARN) of the model package.

    • ModelPackageDescription (string) --

      A brief summary of the model package.

    • CreationTime (datetime) --

      A timestamp specifying when the model package was created.

    • InferenceSpecification (dict) --

      Details about inference jobs that can be run with models based on this model package.

      • Containers (list) --

        The Amazon ECR registry path of the Docker image that contains the inference code.

        • (dict) --

          Describes the Docker container for the model package.

          • ContainerHostname (string) --

            The DNS host name for the Docker container.

          • Image (string) --

            The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.

            If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

          • ImageDigest (string) --

            An MD5 hash of the training algorithm that identifies the Docker image used for training.

          • ModelDataUrl (string) --

            The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).

            Note

            The model artifacts must be in an S3 bucket that is in the same region as the model package.

          • ProductId (string) --

            The Amazon Web Services Marketplace product ID of the model package.

          • Environment (dict) --

            The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.

            • (string) --
              • (string) --
          • ModelInput (dict) --

            A structure with Model Input details.

            • DataInputConfig (string) --

              The input configuration object for the model.

          • Framework (string) --

            The machine learning framework of the model package container image.

          • FrameworkVersion (string) --

            The framework version of the Model Package Container Image.

          • NearestModelName (string) --

            The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata .

      • SupportedTransformInstanceTypes (list) --

        A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.

        This parameter is required for unversioned models, and optional for versioned models.

        • (string) --
      • SupportedRealtimeInferenceInstanceTypes (list) --

        A list of the instance types that are used to generate inferences in real-time.

        This parameter is required for unversioned models, and optional for versioned models.

        • (string) --
      • SupportedContentTypes (list) --

        The supported MIME types for the input data.

        • (string) --
      • SupportedResponseMIMETypes (list) --

        The supported MIME types for the output data.

        • (string) --
    • SourceAlgorithmSpecification (dict) --

      Details about the algorithm that was used to create the model package.

      • SourceAlgorithms (list) --

        A list of the algorithms that were used to create a model package.

        • (dict) --

          Specifies an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your SageMaker account or an algorithm in Amazon Web Services Marketplace that you are subscribed to.

          • ModelDataUrl (string) --

            The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).

            Note

            The model artifacts must be in an S3 bucket that is in the same region as the algorithm.

          • AlgorithmName (string) --

            The name of an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your SageMaker account or an algorithm in Amazon Web Services Marketplace that you are subscribed to.

    • ValidationSpecification (dict) --

      Configurations for one or more transform jobs that SageMaker runs to test the model package.

      • ValidationRole (string) --

        The IAM roles to be used for the validation of the model package.

      • ValidationProfiles (list) --

        An array of ModelPackageValidationProfile objects, each of which specifies a batch transform job that SageMaker runs to validate your model package.

        • (dict) --

          Contains data, such as the inputs and targeted instance types that are used in the process of validating the model package.

          The data provided in the validation profile is made available to your buyers on Amazon Web Services Marketplace.

          • ProfileName (string) --

            The name of the profile for the model package.

          • TransformJobDefinition (dict) --

            The TransformJobDefinition object that describes the transform job used for the validation of the model package.

            • MaxConcurrentTransforms (integer) --

              The maximum number of parallel requests that can be sent to each instance in a transform job. The default value is 1.

            • MaxPayloadInMB (integer) --

              The maximum payload size allowed, in MB. A payload is the data portion of a record (without metadata).

            • BatchStrategy (string) --

              A string that determines the number of records included in a single mini-batch.

              SingleRecord means only one record is used per mini-batch. MultiRecord means a mini-batch is set to contain as many records that can fit within the MaxPayloadInMB limit.
            • Environment (dict) --

              The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.

              • (string) --
                • (string) --
            • TransformInput (dict) --

              A description of the input source and the way the transform job consumes it.

              • DataSource (dict) --

                Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.

                • S3DataSource (dict) --

                  The S3 location of the data source that is associated with a channel.

                  • S3DataType (string) --

                    If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.

                    If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.

                    The following values are compatible: ManifestFile , S3Prefix

                    The following value is not compatible: AugmentedManifestFile

                  • S3Uri (string) --

                    Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

                    • A key name prefix might look like this: s3://bucketname/exampleprefix .
                    • A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following S3Uris : s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uris in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.
              • ContentType (string) --

                The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.

              • CompressionType (string) --

                If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None .

              • SplitType (string) --

                The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType is None , which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line to split records on a newline character boundary. SplitType also supports a number of record-oriented binary data formats. Currently, the supported record formats are:

                • RecordIO
                • TFRecord

                When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord , Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord , Amazon SageMaker sends individual records in each request.

                Note

                Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of BatchStrategy is set to SingleRecord . Padding is not removed if the value of BatchStrategy is set to MultiRecord .

                For more information about RecordIO , see Create a Dataset Using RecordIO in the MXNet documentation. For more information about TFRecord , see Consuming TFRecord data in the TensorFlow documentation.

            • TransformOutput (dict) --

              Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.

              • S3OutputPath (string) --

                The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix .

                For every S3 object used as input for the transform job, batch transform stores the transformed data with an . out suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv , batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out . Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an . out file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.

              • Accept (string) --

                The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.

              • AssembleWith (string) --

                Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None . To add a newline character at the end of every transformed record, specify Line .

              • KmsKeyId (string) --

                The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

                • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
                • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
                • Alias name: alias/ExampleAlias
                • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

                If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

                The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .

            • TransformResources (dict) --

              Identifies the ML compute instances for the transform job.

              • InstanceType (string) --

                The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ml.m5.large instance types.

              • InstanceCount (integer) --

                The number of ML compute instances to use in the transform job. The default value is 1 , and the maximum is 100 . For distributed transform jobs, specify a value greater than 1 .

              • VolumeKmsKeyId (string) --

                The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job.

                Note

                Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

                For a list of instance types that support local instance storage, see Instance Store Volumes.

                For more information about local instance storage encryption, see SSD Instance Store Volumes.

                The VolumeKmsKeyId can be any of the following formats:

                • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
                • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
                • Alias name: alias/ExampleAlias
                • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
    • ModelPackageStatus (string) --

      The current status of the model package.

    • ModelPackageStatusDetails (dict) --

      Details about the current status of the model package.

      • ValidationStatuses (list) --

        The validation status of the model package.

        • (dict) --

          Represents the overall status of a model package.

          • Name (string) --

            The name of the model package for which the overall status is being reported.

          • Status (string) --

            The current status.

          • FailureReason (string) --

            if the overall status is Failed , the reason for the failure.

      • ImageScanStatuses (list) --

        The status of the scan of the Docker image container for the model package.

        • (dict) --

          Represents the overall status of a model package.

          • Name (string) --

            The name of the model package for which the overall status is being reported.

          • Status (string) --

            The current status.

          • FailureReason (string) --

            if the overall status is Failed , the reason for the failure.

    • CertifyForMarketplace (boolean) --

      Whether the model package is certified for listing on Amazon Web Services Marketplace.

    • ModelApprovalStatus (string) --

      The approval status of the model package.

    • CreatedBy (dict) --

      Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

    • MetadataProperties (dict) --

      Metadata properties of the tracking entity, trial, or trial component.

      • CommitId (string) --

        The commit ID.

      • Repository (string) --

        The repository.

      • GeneratedBy (string) --

        The entity this entity was generated by.

      • ProjectId (string) --

        The project ID.

    • ModelMetrics (dict) --

      Metrics for the model.

      • ModelQuality (dict) --

        Metrics that measure the quality of a model.

        • Statistics (dict) --

          Model quality statistics.

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

        • Constraints (dict) --

          Model quality constraints.

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

      • ModelDataQuality (dict) --

        Metrics that measure the quality of the input data for a model.

        • Statistics (dict) --

          Data quality statistics for a model.

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

        • Constraints (dict) --

          Data quality constraints for a model.

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

      • Bias (dict) --

        Metrics that measure bais in a model.

        • Report (dict) --

          The bias report for a model

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

        • PreTrainingReport (dict) --

          The pre-training bias report for a model.

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

        • PostTrainingReport (dict) --

          The post-training bias report for a model.

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

      • Explainability (dict) --

        Metrics that help explain a model.

        • Report (dict) --

          The explainability report for a model.

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

    • LastModifiedTime (datetime) --

      The last time that the model package was modified.

    • LastModifiedBy (dict) --

      Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

    • ApprovalDescription (string) --

      A description provided for the model approval.

    • CustomerMetadataProperties (dict) --

      The metadata properties associated with the model package versions.

      • (string) --
        • (string) --
    • DriftCheckBaselines (dict) --

      Represents the drift check baselines that can be used when the model monitor is set using the model package. For more information, see the topic on Drift Detection against Previous Baselines in SageMaker Pipelines in the Amazon SageMaker Developer Guide .

      • Bias (dict) --

        Represents the drift check bias baselines that can be used when the model monitor is set using the model package.

        • ConfigFile (dict) --

          The bias config file for a model.

          • ContentType (string) --

            The type of content stored in the file source.

          • ContentDigest (string) --

            The digest of the file source.

          • S3Uri (string) --

            The Amazon S3 URI for the file source.

        • PreTrainingConstraints (dict) --

          The pre-training constraints.

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

        • PostTrainingConstraints (dict) --

          The post-training constraints.

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

      • Explainability (dict) --

        Represents the drift check explainability baselines that can be used when the model monitor is set using the model package.

        • Constraints (dict) --

          The drift check explainability constraints.

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

        • ConfigFile (dict) --

          The explainability config file for the model.

          • ContentType (string) --

            The type of content stored in the file source.

          • ContentDigest (string) --

            The digest of the file source.

          • S3Uri (string) --

            The Amazon S3 URI for the file source.

      • ModelQuality (dict) --

        Represents the drift check model quality baselines that can be used when the model monitor is set using the model package.

        • Statistics (dict) --

          The drift check model quality statistics.

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

        • Constraints (dict) --

          The drift check model quality constraints.

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

      • ModelDataQuality (dict) --

        Represents the drift check model data quality baselines that can be used when the model monitor is set using the model package.

        • Statistics (dict) --

          The drift check model data quality statistics.

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

        • Constraints (dict) --

          The drift check model data quality constraints.

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

    • Domain (string) --

      The machine learning domain of the model package you specified. Common machine learning domains include computer vision and natural language processing.

    • Task (string) --

      The machine learning task you specified that your model package accomplishes. Common machine learning tasks include object detection and image classification.

    • SamplePayloadUrl (string) --

      The Amazon Simple Storage Service (Amazon S3) path where the sample payload are stored. This path points to a single gzip compressed tar archive (.tar.gz suffix).

    • AdditionalInferenceSpecifications (list) --

      An array of additional Inference Specification objects. Each additional Inference Specification specifies artifacts based on this model package that can be used on inference endpoints. Generally used with SageMaker Neo to store the compiled artifacts.

      • (dict) --

        A structure of additional Inference Specification. Additional Inference Specification specifies details about inference jobs that can be run with models based on this model package

        • Name (string) --

          A unique name to identify the additional inference specification. The name must be unique within the list of your additional inference specifications for a particular model package.

        • Description (string) --

          A description of the additional Inference specification

        • Containers (list) --

          The Amazon ECR registry path of the Docker image that contains the inference code.

          • (dict) --

            Describes the Docker container for the model package.

            • ContainerHostname (string) --

              The DNS host name for the Docker container.

            • Image (string) --

              The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.

              If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

            • ImageDigest (string) --

              An MD5 hash of the training algorithm that identifies the Docker image used for training.

            • ModelDataUrl (string) --

              The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).

              Note

              The model artifacts must be in an S3 bucket that is in the same region as the model package.

            • ProductId (string) --

              The Amazon Web Services Marketplace product ID of the model package.

            • Environment (dict) --

              The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.

              • (string) --
                • (string) --
            • ModelInput (dict) --

              A structure with Model Input details.

              • DataInputConfig (string) --

                The input configuration object for the model.

            • Framework (string) --

              The machine learning framework of the model package container image.

            • FrameworkVersion (string) --

              The framework version of the Model Package Container Image.

            • NearestModelName (string) --

              The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata .

        • SupportedTransformInstanceTypes (list) --

          A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.

          • (string) --
        • SupportedRealtimeInferenceInstanceTypes (list) --

          A list of the instance types that are used to generate inferences in real-time.

          • (string) --
        • SupportedContentTypes (list) --

          The supported MIME types for the input data.

          • (string) --
        • SupportedResponseMIMETypes (list) --

          The supported MIME types for the output data.

          • (string) --
describe_model_package_group(**kwargs)

Gets a description for the specified model group.

See also: AWS API Documentation

Request Syntax

response = client.describe_model_package_group(
    ModelPackageGroupName='string'
)
Parameters
ModelPackageGroupName (string) --

[REQUIRED]

The name of gthe model group to describe.

Return type
dict
Returns
Response Syntax
{
    'ModelPackageGroupName': 'string',
    'ModelPackageGroupArn': 'string',
    'ModelPackageGroupDescription': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'CreatedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    },
    'ModelPackageGroupStatus': 'Pending'|'InProgress'|'Completed'|'Failed'|'Deleting'|'DeleteFailed'
}

Response Structure

  • (dict) --
    • ModelPackageGroupName (string) --

      The name of the model group.

    • ModelPackageGroupArn (string) --

      The Amazon Resource Name (ARN) of the model group.

    • ModelPackageGroupDescription (string) --

      A description of the model group.

    • CreationTime (datetime) --

      The time that the model group was created.

    • CreatedBy (dict) --

      Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

    • ModelPackageGroupStatus (string) --

      The status of the model group.

describe_model_quality_job_definition(**kwargs)

Returns a description of a model quality job definition.

See also: AWS API Documentation

Request Syntax

response = client.describe_model_quality_job_definition(
    JobDefinitionName='string'
)
Parameters
JobDefinitionName (string) --

[REQUIRED]

The name of the model quality job. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.

Return type
dict
Returns
Response Syntax
{
    'JobDefinitionArn': 'string',
    'JobDefinitionName': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'ModelQualityBaselineConfig': {
        'BaseliningJobName': 'string',
        'ConstraintsResource': {
            'S3Uri': 'string'
        }
    },
    'ModelQualityAppSpecification': {
        'ImageUri': 'string',
        'ContainerEntrypoint': [
            'string',
        ],
        'ContainerArguments': [
            'string',
        ],
        'RecordPreprocessorSourceUri': 'string',
        'PostAnalyticsProcessorSourceUri': 'string',
        'ProblemType': 'BinaryClassification'|'MulticlassClassification'|'Regression',
        'Environment': {
            'string': 'string'
        }
    },
    'ModelQualityJobInput': {
        'EndpointInput': {
            'EndpointName': 'string',
            'LocalPath': 'string',
            'S3InputMode': 'Pipe'|'File',
            'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
            'FeaturesAttribute': 'string',
            'InferenceAttribute': 'string',
            'ProbabilityAttribute': 'string',
            'ProbabilityThresholdAttribute': 123.0,
            'StartTimeOffset': 'string',
            'EndTimeOffset': 'string'
        },
        'BatchTransformInput': {
            'DataCapturedDestinationS3Uri': 'string',
            'DatasetFormat': {
                'Csv': {
                    'Header': True|False
                },
                'Json': {
                    'Line': True|False
                },
                'Parquet': {}
            },
            'LocalPath': 'string',
            'S3InputMode': 'Pipe'|'File',
            'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
            'FeaturesAttribute': 'string',
            'InferenceAttribute': 'string',
            'ProbabilityAttribute': 'string',
            'ProbabilityThresholdAttribute': 123.0,
            'StartTimeOffset': 'string',
            'EndTimeOffset': 'string'
        },
        'GroundTruthS3Input': {
            'S3Uri': 'string'
        }
    },
    'ModelQualityJobOutputConfig': {
        'MonitoringOutputs': [
            {
                'S3Output': {
                    'S3Uri': 'string',
                    'LocalPath': 'string',
                    'S3UploadMode': 'Continuous'|'EndOfJob'
                }
            },
        ],
        'KmsKeyId': 'string'
    },
    'JobResources': {
        'ClusterConfig': {
            'InstanceCount': 123,
            'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
            'VolumeSizeInGB': 123,
            'VolumeKmsKeyId': 'string'
        }
    },
    'NetworkConfig': {
        'EnableInterContainerTrafficEncryption': True|False,
        'EnableNetworkIsolation': True|False,
        'VpcConfig': {
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ]
        }
    },
    'RoleArn': 'string',
    'StoppingCondition': {
        'MaxRuntimeInSeconds': 123
    }
}

Response Structure

  • (dict) --
    • JobDefinitionArn (string) --

      The Amazon Resource Name (ARN) of the model quality job.

    • JobDefinitionName (string) --

      The name of the quality job definition. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.

    • CreationTime (datetime) --

      The time at which the model quality job was created.

    • ModelQualityBaselineConfig (dict) --

      The baseline configuration for a model quality job.

      • BaseliningJobName (string) --

        The name of the job that performs baselining for the monitoring job.

      • ConstraintsResource (dict) --

        The constraints resource for a monitoring job.

        • S3Uri (string) --

          The Amazon S3 URI for the constraints resource.

    • ModelQualityAppSpecification (dict) --

      Configures the model quality job to run a specified Docker container image.

      • ImageUri (string) --

        The address of the container image that the monitoring job runs.

      • ContainerEntrypoint (list) --

        Specifies the entrypoint for a container that the monitoring job runs.

        • (string) --
      • ContainerArguments (list) --

        An array of arguments for the container used to run the monitoring job.

        • (string) --
      • RecordPreprocessorSourceUri (string) --

        An Amazon S3 URI to a script that is called per row prior to running analysis. It can base64 decode the payload and convert it into a flatted json so that the built-in container can use the converted data. Applicable only for the built-in (first party) containers.

      • PostAnalyticsProcessorSourceUri (string) --

        An Amazon S3 URI to a script that is called after analysis has been performed. Applicable only for the built-in (first party) containers.

      • ProblemType (string) --

        The machine learning problem type of the model that the monitoring job monitors.

      • Environment (dict) --

        Sets the environment variables in the container that the monitoring job runs.

        • (string) --
          • (string) --
    • ModelQualityJobInput (dict) --

      Inputs for the model quality job.

      • EndpointInput (dict) --

        Input object for the endpoint

        • EndpointName (string) --

          An endpoint in customer's account which has enabled DataCaptureConfig enabled.

        • LocalPath (string) --

          Path to the filesystem where the endpoint data is available to the container.

        • S3InputMode (string) --

          Whether the Pipe or File is used as the input mode for transferring data for the monitoring job. Pipe mode is recommended for large datasets. File mode is useful for small files that fit in memory. Defaults to File .

        • S3DataDistributionType (string) --

          Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defaults to FullyReplicated

        • FeaturesAttribute (string) --

          The attributes of the input data that are the input features.

        • InferenceAttribute (string) --

          The attribute of the input data that represents the ground truth label.

        • ProbabilityAttribute (string) --

          In a classification problem, the attribute that represents the class probability.

        • ProbabilityThresholdAttribute (float) --

          The threshold for the class probability to be evaluated as a positive result.

        • StartTimeOffset (string) --

          If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

        • EndTimeOffset (string) --

          If specified, monitoring jobs substract this time from the end time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

      • BatchTransformInput (dict) --

        Input object for the batch transform job.

        • DataCapturedDestinationS3Uri (string) --

          The Amazon S3 location being used to capture the data.

        • DatasetFormat (dict) --

          The dataset format for your batch transform job.

          • Csv (dict) --

            The CSV dataset used in the monitoring job.

            • Header (boolean) --

              Indicates if the CSV data has a header.

          • Json (dict) --

            The JSON dataset used in the monitoring job

            • Line (boolean) --

              Indicates if the file should be read as a json object per line.

          • Parquet (dict) --

            The Parquet dataset used in the monitoring job

        • LocalPath (string) --

          Path to the filesystem where the batch transform data is available to the container.

        • S3InputMode (string) --

          Whether the Pipe or File is used as the input mode for transferring data for the monitoring job. Pipe mode is recommended for large datasets. File mode is useful for small files that fit in memory. Defaults to File .

        • S3DataDistributionType (string) --

          Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defaults to FullyReplicated

        • FeaturesAttribute (string) --

          The attributes of the input data that are the input features.

        • InferenceAttribute (string) --

          The attribute of the input data that represents the ground truth label.

        • ProbabilityAttribute (string) --

          In a classification problem, the attribute that represents the class probability.

        • ProbabilityThresholdAttribute (float) --

          The threshold for the class probability to be evaluated as a positive result.

        • StartTimeOffset (string) --

          If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

        • EndTimeOffset (string) --

          If specified, monitoring jobs substract this time from the end time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

      • GroundTruthS3Input (dict) --

        The ground truth label provided for the model.

        • S3Uri (string) --

          The address of the Amazon S3 location of the ground truth labels.

    • ModelQualityJobOutputConfig (dict) --

      The output configuration for monitoring jobs.

      • MonitoringOutputs (list) --

        Monitoring outputs for monitoring jobs. This is where the output of the periodic monitoring jobs is uploaded.

        • (dict) --

          The output object for a monitoring job.

          • S3Output (dict) --

            The Amazon S3 storage location where the results of a monitoring job are saved.

            • S3Uri (string) --

              A URI that identifies the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job.

            • LocalPath (string) --

              The local path to the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job. LocalPath is an absolute path for the output data.

            • S3UploadMode (string) --

              Whether to upload the results of the monitoring job continuously or after the job completes.

      • KmsKeyId (string) --

        The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.

    • JobResources (dict) --

      Identifies the resources to deploy for a monitoring job.

      • ClusterConfig (dict) --

        The configuration for the cluster resources used to run the processing job.

        • InstanceCount (integer) --

          The number of ML compute instances to use in the model monitoring job. For distributed processing jobs, specify a value greater than 1. The default value is 1.

        • InstanceType (string) --

          The ML compute instance type for the processing job.

        • VolumeSizeInGB (integer) --

          The size of the ML storage volume, in gigabytes, that you want to provision. You must specify sufficient ML storage for your scenario.

        • VolumeKmsKeyId (string) --

          The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.

    • NetworkConfig (dict) --

      Networking options for a model quality job.

      • EnableInterContainerTrafficEncryption (boolean) --

        Whether to encrypt all communications between the instances used for the monitoring jobs. Choose True to encrypt communications. Encryption provides greater security for distributed jobs, but the processing might take longer.

      • EnableNetworkIsolation (boolean) --

        Whether to allow inbound and outbound network calls to and from the containers used for the monitoring job.

      • VpcConfig (dict) --

        Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud.

        • SecurityGroupIds (list) --

          The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

          • (string) --
        • Subnets (list) --

          The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.

          • (string) --
    • RoleArn (string) --

      The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.

    • StoppingCondition (dict) --

      A time limit for how long the monitoring job is allowed to run before stopping.

      • MaxRuntimeInSeconds (integer) --

        The maximum runtime allowed in seconds.

        Note

        The MaxRuntimeInSeconds cannot exceed the frequency of the job. For data quality and model explainability, this can be up to 3600 seconds for an hourly schedule. For model bias and model quality hourly schedules, this can be up to 1800 seconds.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_monitoring_schedule(**kwargs)

Describes the schedule for a monitoring job.

See also: AWS API Documentation

Request Syntax

response = client.describe_monitoring_schedule(
    MonitoringScheduleName='string'
)
Parameters
MonitoringScheduleName (string) --

[REQUIRED]

Name of a previously created monitoring schedule.

Return type
dict
Returns
Response Syntax
{
    'MonitoringScheduleArn': 'string',
    'MonitoringScheduleName': 'string',
    'MonitoringScheduleStatus': 'Pending'|'Failed'|'Scheduled'|'Stopped',
    'MonitoringType': 'DataQuality'|'ModelQuality'|'ModelBias'|'ModelExplainability',
    'FailureReason': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'MonitoringScheduleConfig': {
        'ScheduleConfig': {
            'ScheduleExpression': 'string'
        },
        'MonitoringJobDefinition': {
            'BaselineConfig': {
                'BaseliningJobName': 'string',
                'ConstraintsResource': {
                    'S3Uri': 'string'
                },
                'StatisticsResource': {
                    'S3Uri': 'string'
                }
            },
            'MonitoringInputs': [
                {
                    'EndpointInput': {
                        'EndpointName': 'string',
                        'LocalPath': 'string',
                        'S3InputMode': 'Pipe'|'File',
                        'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                        'FeaturesAttribute': 'string',
                        'InferenceAttribute': 'string',
                        'ProbabilityAttribute': 'string',
                        'ProbabilityThresholdAttribute': 123.0,
                        'StartTimeOffset': 'string',
                        'EndTimeOffset': 'string'
                    },
                    'BatchTransformInput': {
                        'DataCapturedDestinationS3Uri': 'string',
                        'DatasetFormat': {
                            'Csv': {
                                'Header': True|False
                            },
                            'Json': {
                                'Line': True|False
                            },
                            'Parquet': {}
                        },
                        'LocalPath': 'string',
                        'S3InputMode': 'Pipe'|'File',
                        'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                        'FeaturesAttribute': 'string',
                        'InferenceAttribute': 'string',
                        'ProbabilityAttribute': 'string',
                        'ProbabilityThresholdAttribute': 123.0,
                        'StartTimeOffset': 'string',
                        'EndTimeOffset': 'string'
                    }
                },
            ],
            'MonitoringOutputConfig': {
                'MonitoringOutputs': [
                    {
                        'S3Output': {
                            'S3Uri': 'string',
                            'LocalPath': 'string',
                            'S3UploadMode': 'Continuous'|'EndOfJob'
                        }
                    },
                ],
                'KmsKeyId': 'string'
            },
            'MonitoringResources': {
                'ClusterConfig': {
                    'InstanceCount': 123,
                    'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
                    'VolumeSizeInGB': 123,
                    'VolumeKmsKeyId': 'string'
                }
            },
            'MonitoringAppSpecification': {
                'ImageUri': 'string',
                'ContainerEntrypoint': [
                    'string',
                ],
                'ContainerArguments': [
                    'string',
                ],
                'RecordPreprocessorSourceUri': 'string',
                'PostAnalyticsProcessorSourceUri': 'string'
            },
            'StoppingCondition': {
                'MaxRuntimeInSeconds': 123
            },
            'Environment': {
                'string': 'string'
            },
            'NetworkConfig': {
                'EnableInterContainerTrafficEncryption': True|False,
                'EnableNetworkIsolation': True|False,
                'VpcConfig': {
                    'SecurityGroupIds': [
                        'string',
                    ],
                    'Subnets': [
                        'string',
                    ]
                }
            },
            'RoleArn': 'string'
        },
        'MonitoringJobDefinitionName': 'string',
        'MonitoringType': 'DataQuality'|'ModelQuality'|'ModelBias'|'ModelExplainability'
    },
    'EndpointName': 'string',
    'LastMonitoringExecutionSummary': {
        'MonitoringScheduleName': 'string',
        'ScheduledTime': datetime(2015, 1, 1),
        'CreationTime': datetime(2015, 1, 1),
        'LastModifiedTime': datetime(2015, 1, 1),
        'MonitoringExecutionStatus': 'Pending'|'Completed'|'CompletedWithViolations'|'InProgress'|'Failed'|'Stopping'|'Stopped',
        'ProcessingJobArn': 'string',
        'EndpointName': 'string',
        'FailureReason': 'string',
        'MonitoringJobDefinitionName': 'string',
        'MonitoringType': 'DataQuality'|'ModelQuality'|'ModelBias'|'ModelExplainability'
    }
}

Response Structure

  • (dict) --
    • MonitoringScheduleArn (string) --

      The Amazon Resource Name (ARN) of the monitoring schedule.

    • MonitoringScheduleName (string) --

      Name of the monitoring schedule.

    • MonitoringScheduleStatus (string) --

      The status of an monitoring job.

    • MonitoringType (string) --

      The type of the monitoring job that this schedule runs. This is one of the following values.

      • DATA_QUALITY - The schedule is for a data quality monitoring job.
      • MODEL_QUALITY - The schedule is for a model quality monitoring job.
      • MODEL_BIAS - The schedule is for a bias monitoring job.
      • MODEL_EXPLAINABILITY - The schedule is for an explainability monitoring job.
    • FailureReason (string) --

      A string, up to one KB in size, that contains the reason a monitoring job failed, if it failed.

    • CreationTime (datetime) --

      The time at which the monitoring job was created.

    • LastModifiedTime (datetime) --

      The time at which the monitoring job was last modified.

    • MonitoringScheduleConfig (dict) --

      The configuration object that specifies the monitoring schedule and defines the monitoring job.

      • ScheduleConfig (dict) --

        Configures the monitoring schedule.

        • ScheduleExpression (string) --

          A cron expression that describes details about the monitoring schedule.

          Currently the only supported cron expressions are:

          • If you want to set the job to start every hour, please use the following: Hourly: cron(0 * ? * * *)
          • If you want to start the job daily: cron(0 [00-23] ? * * *)

          For example, the following are valid cron expressions:

          • Daily at noon UTC: cron(0 12 ? * * *)
          • Daily at midnight UTC: cron(0 0 ? * * *)

          To support running every 6, 12 hours, the following are also supported:

          cron(0 [00-23]/[01-24] ? * * *)

          For example, the following are valid cron expressions:

          • Every 12 hours, starting at 5pm UTC: cron(0 17/12 ? * * *)
          • Every two hours starting at midnight: cron(0 0/2 ? * * *)

          Note

          • Even though the cron expression is set to start at 5PM UTC, note that there could be a delay of 0-20 minutes from the actual requested time to run the execution.
          • We recommend that if you would like a daily schedule, you do not provide this parameter. Amazon SageMaker will pick a time for running every day.
      • MonitoringJobDefinition (dict) --

        Defines the monitoring job.

        • BaselineConfig (dict) --

          Baseline configuration used to validate that the data conforms to the specified constraints and statistics

          • BaseliningJobName (string) --

            The name of the job that performs baselining for the monitoring job.

          • ConstraintsResource (dict) --

            The baseline constraint file in Amazon S3 that the current monitoring job should validated against.

            • S3Uri (string) --

              The Amazon S3 URI for the constraints resource.

          • StatisticsResource (dict) --

            The baseline statistics file in Amazon S3 that the current monitoring job should be validated against.

            • S3Uri (string) --

              The Amazon S3 URI for the statistics resource.

        • MonitoringInputs (list) --

          The array of inputs for the monitoring job. Currently we support monitoring an Amazon SageMaker Endpoint.

          • (dict) --

            The inputs for a monitoring job.

            • EndpointInput (dict) --

              The endpoint for a monitoring job.

              • EndpointName (string) --

                An endpoint in customer's account which has enabled DataCaptureConfig enabled.

              • LocalPath (string) --

                Path to the filesystem where the endpoint data is available to the container.

              • S3InputMode (string) --

                Whether the Pipe or File is used as the input mode for transferring data for the monitoring job. Pipe mode is recommended for large datasets. File mode is useful for small files that fit in memory. Defaults to File .

              • S3DataDistributionType (string) --

                Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defaults to FullyReplicated

              • FeaturesAttribute (string) --

                The attributes of the input data that are the input features.

              • InferenceAttribute (string) --

                The attribute of the input data that represents the ground truth label.

              • ProbabilityAttribute (string) --

                In a classification problem, the attribute that represents the class probability.

              • ProbabilityThresholdAttribute (float) --

                The threshold for the class probability to be evaluated as a positive result.

              • StartTimeOffset (string) --

                If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

              • EndTimeOffset (string) --

                If specified, monitoring jobs substract this time from the end time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

            • BatchTransformInput (dict) --

              Input object for the batch transform job.

              • DataCapturedDestinationS3Uri (string) --

                The Amazon S3 location being used to capture the data.

              • DatasetFormat (dict) --

                The dataset format for your batch transform job.

                • Csv (dict) --

                  The CSV dataset used in the monitoring job.

                  • Header (boolean) --

                    Indicates if the CSV data has a header.

                • Json (dict) --

                  The JSON dataset used in the monitoring job

                  • Line (boolean) --

                    Indicates if the file should be read as a json object per line.

                • Parquet (dict) --

                  The Parquet dataset used in the monitoring job

              • LocalPath (string) --

                Path to the filesystem where the batch transform data is available to the container.

              • S3InputMode (string) --

                Whether the Pipe or File is used as the input mode for transferring data for the monitoring job. Pipe mode is recommended for large datasets. File mode is useful for small files that fit in memory. Defaults to File .

              • S3DataDistributionType (string) --

                Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defaults to FullyReplicated

              • FeaturesAttribute (string) --

                The attributes of the input data that are the input features.

              • InferenceAttribute (string) --

                The attribute of the input data that represents the ground truth label.

              • ProbabilityAttribute (string) --

                In a classification problem, the attribute that represents the class probability.

              • ProbabilityThresholdAttribute (float) --

                The threshold for the class probability to be evaluated as a positive result.

              • StartTimeOffset (string) --

                If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

              • EndTimeOffset (string) --

                If specified, monitoring jobs substract this time from the end time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

        • MonitoringOutputConfig (dict) --

          The array of outputs from the monitoring job to be uploaded to Amazon Simple Storage Service (Amazon S3).

          • MonitoringOutputs (list) --

            Monitoring outputs for monitoring jobs. This is where the output of the periodic monitoring jobs is uploaded.

            • (dict) --

              The output object for a monitoring job.

              • S3Output (dict) --

                The Amazon S3 storage location where the results of a monitoring job are saved.

                • S3Uri (string) --

                  A URI that identifies the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job.

                • LocalPath (string) --

                  The local path to the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job. LocalPath is an absolute path for the output data.

                • S3UploadMode (string) --

                  Whether to upload the results of the monitoring job continuously or after the job completes.

          • KmsKeyId (string) --

            The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.

        • MonitoringResources (dict) --

          Identifies the resources, ML compute instances, and ML storage volumes to deploy for a monitoring job. In distributed processing, you specify more than one instance.

          • ClusterConfig (dict) --

            The configuration for the cluster resources used to run the processing job.

            • InstanceCount (integer) --

              The number of ML compute instances to use in the model monitoring job. For distributed processing jobs, specify a value greater than 1. The default value is 1.

            • InstanceType (string) --

              The ML compute instance type for the processing job.

            • VolumeSizeInGB (integer) --

              The size of the ML storage volume, in gigabytes, that you want to provision. You must specify sufficient ML storage for your scenario.

            • VolumeKmsKeyId (string) --

              The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.

        • MonitoringAppSpecification (dict) --

          Configures the monitoring job to run a specified Docker container image.

          • ImageUri (string) --

            The container image to be run by the monitoring job.

          • ContainerEntrypoint (list) --

            Specifies the entrypoint for a container used to run the monitoring job.

            • (string) --
          • ContainerArguments (list) --

            An array of arguments for the container used to run the monitoring job.

            • (string) --
          • RecordPreprocessorSourceUri (string) --

            An Amazon S3 URI to a script that is called per row prior to running analysis. It can base64 decode the payload and convert it into a flatted json so that the built-in container can use the converted data. Applicable only for the built-in (first party) containers.

          • PostAnalyticsProcessorSourceUri (string) --

            An Amazon S3 URI to a script that is called after analysis has been performed. Applicable only for the built-in (first party) containers.

        • StoppingCondition (dict) --

          Specifies a time limit for how long the monitoring job is allowed to run.

          • MaxRuntimeInSeconds (integer) --

            The maximum runtime allowed in seconds.

            Note

            The MaxRuntimeInSeconds cannot exceed the frequency of the job. For data quality and model explainability, this can be up to 3600 seconds for an hourly schedule. For model bias and model quality hourly schedules, this can be up to 1800 seconds.

        • Environment (dict) --

          Sets the environment variables in the Docker container.

          • (string) --
            • (string) --
        • NetworkConfig (dict) --

          Specifies networking options for an monitoring job.

          • EnableInterContainerTrafficEncryption (boolean) --

            Whether to encrypt all communications between distributed processing jobs. Choose True to encrypt communications. Encryption provides greater security for distributed processing jobs, but the processing might take longer.

          • EnableNetworkIsolation (boolean) --

            Whether to allow inbound and outbound network calls to and from the containers used for the processing job.

          • VpcConfig (dict) --

            Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud.

            • SecurityGroupIds (list) --

              The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

              • (string) --
            • Subnets (list) --

              The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.

              • (string) --
        • RoleArn (string) --

          The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.

      • MonitoringJobDefinitionName (string) --

        The name of the monitoring job definition to schedule.

      • MonitoringType (string) --

        The type of the monitoring job definition to schedule.

    • EndpointName (string) --

      The name of the endpoint for the monitoring job.

    • LastMonitoringExecutionSummary (dict) --

      Describes metadata on the last execution to run, if there was one.

      • MonitoringScheduleName (string) --

        The name of the monitoring schedule.

      • ScheduledTime (datetime) --

        The time the monitoring job was scheduled.

      • CreationTime (datetime) --

        The time at which the monitoring job was created.

      • LastModifiedTime (datetime) --

        A timestamp that indicates the last time the monitoring job was modified.

      • MonitoringExecutionStatus (string) --

        The status of the monitoring job.

      • ProcessingJobArn (string) --

        The Amazon Resource Name (ARN) of the monitoring job.

      • EndpointName (string) --

        The name of the endpoint used to run the monitoring job.

      • FailureReason (string) --

        Contains the reason a monitoring job failed, if it failed.

      • MonitoringJobDefinitionName (string) --

        The name of the monitoring job.

      • MonitoringType (string) --

        The type of the monitoring job.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_notebook_instance(**kwargs)

Returns information about a notebook instance.

See also: AWS API Documentation

Request Syntax

response = client.describe_notebook_instance(
    NotebookInstanceName='string'
)
Parameters
NotebookInstanceName (string) --

[REQUIRED]

The name of the notebook instance that you want information about.

Return type
dict
Returns
Response Syntax
{
    'NotebookInstanceArn': 'string',
    'NotebookInstanceName': 'string',
    'NotebookInstanceStatus': 'Pending'|'InService'|'Stopping'|'Stopped'|'Failed'|'Deleting'|'Updating',
    'FailureReason': 'string',
    'Url': 'string',
    'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
    'SubnetId': 'string',
    'SecurityGroups': [
        'string',
    ],
    'RoleArn': 'string',
    'KmsKeyId': 'string',
    'NetworkInterfaceId': 'string',
    'LastModifiedTime': datetime(2015, 1, 1),
    'CreationTime': datetime(2015, 1, 1),
    'NotebookInstanceLifecycleConfigName': 'string',
    'DirectInternetAccess': 'Enabled'|'Disabled',
    'VolumeSizeInGB': 123,
    'AcceleratorTypes': [
        'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge',
    ],
    'DefaultCodeRepository': 'string',
    'AdditionalCodeRepositories': [
        'string',
    ],
    'RootAccess': 'Enabled'|'Disabled',
    'PlatformIdentifier': 'string',
    'InstanceMetadataServiceConfiguration': {
        'MinimumInstanceMetadataServiceVersion': 'string'
    }
}

Response Structure

  • (dict) --
    • NotebookInstanceArn (string) --

      The Amazon Resource Name (ARN) of the notebook instance.

    • NotebookInstanceName (string) --

      The name of the SageMaker notebook instance.

    • NotebookInstanceStatus (string) --

      The status of the notebook instance.

    • FailureReason (string) --

      If status is Failed , the reason it failed.

    • Url (string) --

      The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.

    • InstanceType (string) --

      The type of ML compute instance running on the notebook instance.

    • SubnetId (string) --

      The ID of the VPC subnet.

    • SecurityGroups (list) --

      The IDs of the VPC security groups.

      • (string) --
    • RoleArn (string) --

      The Amazon Resource Name (ARN) of the IAM role associated with the instance.

    • KmsKeyId (string) --

      The Amazon Web Services KMS key ID SageMaker uses to encrypt data when storing it on the ML storage volume attached to the instance.

    • NetworkInterfaceId (string) --

      The network interface IDs that SageMaker created at the time of creating the instance.

    • LastModifiedTime (datetime) --

      A timestamp. Use this parameter to retrieve the time when the notebook instance was last modified.

    • CreationTime (datetime) --

      A timestamp. Use this parameter to return the time when the notebook instance was created

    • NotebookInstanceLifecycleConfigName (string) --

      Returns the name of a notebook instance lifecycle configuration.

      For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance

    • DirectInternetAccess (string) --

      Describes whether SageMaker provides internet access to the notebook instance. If this value is set to Disabled , the notebook instance does not have internet access, and cannot connect to SageMaker training and endpoint services.

      For more information, see Notebook Instances Are Internet-Enabled by Default.

    • VolumeSizeInGB (integer) --

      The size, in GB, of the ML storage volume attached to the notebook instance.

    • AcceleratorTypes (list) --

      A list of the Elastic Inference (EI) instance types associated with this notebook instance. Currently only one EI instance type can be associated with a notebook instance. For more information, see Using Elastic Inference in Amazon SageMaker.

      • (string) --
    • DefaultCodeRepository (string) --

      The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker Notebook Instances.

    • AdditionalCodeRepositories (list) --

      An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker Notebook Instances.

      • (string) --
    • RootAccess (string) --

      Whether root access is enabled or disabled for users of the notebook instance.

      Note

      Lifecycle configurations need root access to be able to set up a notebook instance. Because of this, lifecycle configurations associated with a notebook instance always run with root access even if you disable root access for users.

    • PlatformIdentifier (string) --

      The platform identifier of the notebook instance runtime environment.

    • InstanceMetadataServiceConfiguration (dict) --

      Information on the IMDS configuration of the notebook instance

      • MinimumInstanceMetadataServiceVersion (string) --

        Indicates the minimum IMDS version that the notebook instance supports. When passed as part of CreateNotebookInstance , if no value is selected, then it defaults to IMDSv1. This means that both IMDSv1 and IMDSv2 are supported. If passed as part of UpdateNotebookInstance , there is no default.

describe_notebook_instance_lifecycle_config(**kwargs)

Returns a description of a notebook instance lifecycle configuration.

For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.

See also: AWS API Documentation

Request Syntax

response = client.describe_notebook_instance_lifecycle_config(
    NotebookInstanceLifecycleConfigName='string'
)
Parameters
NotebookInstanceLifecycleConfigName (string) --

[REQUIRED]

The name of the lifecycle configuration to describe.

Return type
dict
Returns
Response Syntax
{
    'NotebookInstanceLifecycleConfigArn': 'string',
    'NotebookInstanceLifecycleConfigName': 'string',
    'OnCreate': [
        {
            'Content': 'string'
        },
    ],
    'OnStart': [
        {
            'Content': 'string'
        },
    ],
    'LastModifiedTime': datetime(2015, 1, 1),
    'CreationTime': datetime(2015, 1, 1)
}

Response Structure

  • (dict) --
    • NotebookInstanceLifecycleConfigArn (string) --

      The Amazon Resource Name (ARN) of the lifecycle configuration.

    • NotebookInstanceLifecycleConfigName (string) --

      The name of the lifecycle configuration.

    • OnCreate (list) --

      The shell script that runs only once, when you create a notebook instance.

      • (dict) --

        Contains the notebook instance lifecycle configuration script.

        Each lifecycle configuration script has a limit of 16384 characters.

        The value of the $PATH environment variable that is available to both scripts is /sbin:bin:/usr/sbin:/usr/bin .

        View CloudWatch Logs for notebook instance lifecycle configurations in log group /aws/sagemaker/NotebookInstances in log stream [notebook-instance-name]/[LifecycleConfigHook] .

        Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started.

        For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.

        • Content (string) --

          A base64-encoded string that contains a shell script for a notebook instance lifecycle configuration.

    • OnStart (list) --

      The shell script that runs every time you start a notebook instance, including when you create the notebook instance.

      • (dict) --

        Contains the notebook instance lifecycle configuration script.

        Each lifecycle configuration script has a limit of 16384 characters.

        The value of the $PATH environment variable that is available to both scripts is /sbin:bin:/usr/sbin:/usr/bin .

        View CloudWatch Logs for notebook instance lifecycle configurations in log group /aws/sagemaker/NotebookInstances in log stream [notebook-instance-name]/[LifecycleConfigHook] .

        Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started.

        For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.

        • Content (string) --

          A base64-encoded string that contains a shell script for a notebook instance lifecycle configuration.

    • LastModifiedTime (datetime) --

      A timestamp that tells when the lifecycle configuration was last modified.

    • CreationTime (datetime) --

      A timestamp that tells when the lifecycle configuration was created.

describe_pipeline(**kwargs)

Describes the details of a pipeline.

See also: AWS API Documentation

Request Syntax

response = client.describe_pipeline(
    PipelineName='string'
)
Parameters
PipelineName (string) --

[REQUIRED]

The name of the pipeline to describe.

Return type
dict
Returns
Response Syntax
{
    'PipelineArn': 'string',
    'PipelineName': 'string',
    'PipelineDisplayName': 'string',
    'PipelineDefinition': 'string',
    'PipelineDescription': 'string',
    'RoleArn': 'string',
    'PipelineStatus': 'Active',
    'CreationTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'LastRunTime': datetime(2015, 1, 1),
    'CreatedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    },
    'LastModifiedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    },
    'ParallelismConfiguration': {
        'MaxParallelExecutionSteps': 123
    }
}

Response Structure

  • (dict) --
    • PipelineArn (string) --

      The Amazon Resource Name (ARN) of the pipeline.

    • PipelineName (string) --

      The name of the pipeline.

    • PipelineDisplayName (string) --

      The display name of the pipeline.

    • PipelineDefinition (string) --

      The JSON pipeline definition.

    • PipelineDescription (string) --

      The description of the pipeline.

    • RoleArn (string) --

      The Amazon Resource Name (ARN) that the pipeline uses to execute.

    • PipelineStatus (string) --

      The status of the pipeline execution.

    • CreationTime (datetime) --

      The time when the pipeline was created.

    • LastModifiedTime (datetime) --

      The time when the pipeline was last modified.

    • LastRunTime (datetime) --

      The time when the pipeline was last run.

    • CreatedBy (dict) --

      Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

    • LastModifiedBy (dict) --

      Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

    • ParallelismConfiguration (dict) --

      Lists the parallelism configuration applied to the pipeline.

      • MaxParallelExecutionSteps (integer) --

        The max number of steps that can be executed in parallel.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_pipeline_definition_for_execution(**kwargs)

Describes the details of an execution's pipeline definition.

See also: AWS API Documentation

Request Syntax

response = client.describe_pipeline_definition_for_execution(
    PipelineExecutionArn='string'
)
Parameters
PipelineExecutionArn (string) --

[REQUIRED]

The Amazon Resource Name (ARN) of the pipeline execution.

Return type
dict
Returns
Response Syntax
{
    'PipelineDefinition': 'string',
    'CreationTime': datetime(2015, 1, 1)
}

Response Structure

  • (dict) --
    • PipelineDefinition (string) --

      The JSON pipeline definition.

    • CreationTime (datetime) --

      The time when the pipeline was created.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_pipeline_execution(**kwargs)

Describes the details of a pipeline execution.

See also: AWS API Documentation

Request Syntax

response = client.describe_pipeline_execution(
    PipelineExecutionArn='string'
)
Parameters
PipelineExecutionArn (string) --

[REQUIRED]

The Amazon Resource Name (ARN) of the pipeline execution.

Return type
dict
Returns
Response Syntax
{
    'PipelineArn': 'string',
    'PipelineExecutionArn': 'string',
    'PipelineExecutionDisplayName': 'string',
    'PipelineExecutionStatus': 'Executing'|'Stopping'|'Stopped'|'Failed'|'Succeeded',
    'PipelineExecutionDescription': 'string',
    'PipelineExperimentConfig': {
        'ExperimentName': 'string',
        'TrialName': 'string'
    },
    'FailureReason': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'CreatedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    },
    'LastModifiedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    },
    'ParallelismConfiguration': {
        'MaxParallelExecutionSteps': 123
    }
}

Response Structure

  • (dict) --
    • PipelineArn (string) --

      The Amazon Resource Name (ARN) of the pipeline.

    • PipelineExecutionArn (string) --

      The Amazon Resource Name (ARN) of the pipeline execution.

    • PipelineExecutionDisplayName (string) --

      The display name of the pipeline execution.

    • PipelineExecutionStatus (string) --

      The status of the pipeline execution.

    • PipelineExecutionDescription (string) --

      The description of the pipeline execution.

    • PipelineExperimentConfig (dict) --

      Specifies the names of the experiment and trial created by a pipeline.

      • ExperimentName (string) --

        The name of the experiment.

      • TrialName (string) --

        The name of the trial.

    • FailureReason (string) --

      If the execution failed, a message describing why.

    • CreationTime (datetime) --

      The time when the pipeline execution was created.

    • LastModifiedTime (datetime) --

      The time when the pipeline execution was modified last.

    • CreatedBy (dict) --

      Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

    • LastModifiedBy (dict) --

      Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

    • ParallelismConfiguration (dict) --

      The parallelism configuration applied to the pipeline.

      • MaxParallelExecutionSteps (integer) --

        The max number of steps that can be executed in parallel.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_processing_job(**kwargs)

Returns a description of a processing job.

See also: AWS API Documentation

Request Syntax

response = client.describe_processing_job(
    ProcessingJobName='string'
)
Parameters
ProcessingJobName (string) --

[REQUIRED]

The name of the processing job. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.

Return type
dict
Returns
Response Syntax
{
    'ProcessingInputs': [
        {
            'InputName': 'string',
            'AppManaged': True|False,
            'S3Input': {
                'S3Uri': 'string',
                'LocalPath': 'string',
                'S3DataType': 'ManifestFile'|'S3Prefix',
                'S3InputMode': 'Pipe'|'File',
                'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                'S3CompressionType': 'None'|'Gzip'
            },
            'DatasetDefinition': {
                'AthenaDatasetDefinition': {
                    'Catalog': 'string',
                    'Database': 'string',
                    'QueryString': 'string',
                    'WorkGroup': 'string',
                    'OutputS3Uri': 'string',
                    'KmsKeyId': 'string',
                    'OutputFormat': 'PARQUET'|'ORC'|'AVRO'|'JSON'|'TEXTFILE',
                    'OutputCompression': 'GZIP'|'SNAPPY'|'ZLIB'
                },
                'RedshiftDatasetDefinition': {
                    'ClusterId': 'string',
                    'Database': 'string',
                    'DbUser': 'string',
                    'QueryString': 'string',
                    'ClusterRoleArn': 'string',
                    'OutputS3Uri': 'string',
                    'KmsKeyId': 'string',
                    'OutputFormat': 'PARQUET'|'CSV',
                    'OutputCompression': 'None'|'GZIP'|'BZIP2'|'ZSTD'|'SNAPPY'
                },
                'LocalPath': 'string',
                'DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                'InputMode': 'Pipe'|'File'
            }
        },
    ],
    'ProcessingOutputConfig': {
        'Outputs': [
            {
                'OutputName': 'string',
                'S3Output': {
                    'S3Uri': 'string',
                    'LocalPath': 'string',
                    'S3UploadMode': 'Continuous'|'EndOfJob'
                },
                'FeatureStoreOutput': {
                    'FeatureGroupName': 'string'
                },
                'AppManaged': True|False
            },
        ],
        'KmsKeyId': 'string'
    },
    'ProcessingJobName': 'string',
    'ProcessingResources': {
        'ClusterConfig': {
            'InstanceCount': 123,
            'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
            'VolumeSizeInGB': 123,
            'VolumeKmsKeyId': 'string'
        }
    },
    'StoppingCondition': {
        'MaxRuntimeInSeconds': 123
    },
    'AppSpecification': {
        'ImageUri': 'string',
        'ContainerEntrypoint': [
            'string',
        ],
        'ContainerArguments': [
            'string',
        ]
    },
    'Environment': {
        'string': 'string'
    },
    'NetworkConfig': {
        'EnableInterContainerTrafficEncryption': True|False,
        'EnableNetworkIsolation': True|False,
        'VpcConfig': {
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ]
        }
    },
    'RoleArn': 'string',
    'ExperimentConfig': {
        'ExperimentName': 'string',
        'TrialName': 'string',
        'TrialComponentDisplayName': 'string',
        'RunName': 'string'
    },
    'ProcessingJobArn': 'string',
    'ProcessingJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
    'ExitMessage': 'string',
    'FailureReason': 'string',
    'ProcessingEndTime': datetime(2015, 1, 1),
    'ProcessingStartTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'CreationTime': datetime(2015, 1, 1),
    'MonitoringScheduleArn': 'string',
    'AutoMLJobArn': 'string',
    'TrainingJobArn': 'string'
}

Response Structure

  • (dict) --
    • ProcessingInputs (list) --

      The inputs for a processing job.

      • (dict) --

        The inputs for a processing job. The processing input must specify exactly one of either S3Input or DatasetDefinition types.

        • InputName (string) --

          The name for the processing job input.

        • AppManaged (boolean) --

          When True , input operations such as data download are managed natively by the processing job application. When False (default), input operations are managed by Amazon SageMaker.

        • S3Input (dict) --

          Configuration for downloading input data from Amazon S3 into the processing container.

          • S3Uri (string) --

            The URI of the Amazon S3 prefix Amazon SageMaker downloads data required to run a processing job.

          • LocalPath (string) --

            The local path in your container where you want Amazon SageMaker to write input data to. LocalPath is an absolute path to the input data and must begin with /opt/ml/processing/ . LocalPath is a required parameter when AppManaged is False (default).

          • S3DataType (string) --

            Whether you use an S3Prefix or a ManifestFile for the data type. If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for the processing job. If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for the processing job.

          • S3InputMode (string) --

            Whether to use File or Pipe input mode. In File mode, Amazon SageMaker copies the data from the input source onto the local ML storage volume before starting your processing container. This is the most commonly used input mode. In Pipe mode, Amazon SageMaker streams input data from the source directly to your processing container into named pipes without using the ML storage volume.

          • S3DataDistributionType (string) --

            Whether to distribute the data from Amazon S3 to all processing instances with FullyReplicated , or whether the data from Amazon S3 is shared by Amazon S3 key, downloading one shard of data to each processing instance.

          • S3CompressionType (string) --

            Whether to GZIP-decompress the data in Amazon S3 as it is streamed into the processing container. Gzip can only be used when Pipe mode is specified as the S3InputMode . In Pipe mode, Amazon SageMaker streams input data from the source directly to your container without using the EBS volume.

        • DatasetDefinition (dict) --

          Configuration for a Dataset Definition input.

          • AthenaDatasetDefinition (dict) --

            Configuration for Athena Dataset Definition input.

            • Catalog (string) --

              The name of the data catalog used in Athena query execution.

            • Database (string) --

              The name of the database used in the Athena query execution.

            • QueryString (string) --

              The SQL query statements, to be executed.

            • WorkGroup (string) --

              The name of the workgroup in which the Athena query is being started.

            • OutputS3Uri (string) --

              The location in Amazon S3 where Athena query results are stored.

            • KmsKeyId (string) --

              The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data generated from an Athena query execution.

            • OutputFormat (string) --

              The data storage format for Athena query results.

            • OutputCompression (string) --

              The compression used for Athena query results.

          • RedshiftDatasetDefinition (dict) --

            Configuration for Redshift Dataset Definition input.

            • ClusterId (string) --

              The Redshift cluster Identifier.

            • Database (string) --

              The name of the Redshift database used in Redshift query execution.

            • DbUser (string) --

              The database user name used in Redshift query execution.

            • QueryString (string) --

              The SQL query statements to be executed.

            • ClusterRoleArn (string) --

              The IAM role attached to your Redshift cluster that Amazon SageMaker uses to generate datasets.

            • OutputS3Uri (string) --

              The location in Amazon S3 where the Redshift query results are stored.

            • KmsKeyId (string) --

              The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data from a Redshift execution.

            • OutputFormat (string) --

              The data storage format for Redshift query results.

            • OutputCompression (string) --

              The compression used for Redshift query results.

          • LocalPath (string) --

            The local path where you want Amazon SageMaker to download the Dataset Definition inputs to run a processing job. LocalPath is an absolute path to the input data. This is a required parameter when AppManaged is False (default).

          • DataDistributionType (string) --

            Whether the generated dataset is FullyReplicated or ShardedByS3Key (default).

          • InputMode (string) --

            Whether to use File or Pipe input mode. In File (default) mode, Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used input mode. In Pipe mode, Amazon SageMaker streams input data from the source directly to your algorithm without using the EBS volume.

    • ProcessingOutputConfig (dict) --

      Output configuration for the processing job.

      • Outputs (list) --

        An array of outputs configuring the data to upload from the processing container.

        • (dict) --

          Describes the results of a processing job. The processing output must specify exactly one of either S3Output or FeatureStoreOutput types.

          • OutputName (string) --

            The name for the processing job output.

          • S3Output (dict) --

            Configuration for processing job outputs in Amazon S3.

            • S3Uri (string) --

              A URI that identifies the Amazon S3 bucket where you want Amazon SageMaker to save the results of a processing job.

            • LocalPath (string) --

              The local path of a directory where you want Amazon SageMaker to upload its contents to Amazon S3. LocalPath is an absolute path to a directory containing output files. This directory will be created by the platform and exist when your container's entrypoint is invoked.

            • S3UploadMode (string) --

              Whether to upload the results of the processing job continuously or after the job completes.

          • FeatureStoreOutput (dict) --

            Configuration for processing job outputs in Amazon SageMaker Feature Store. This processing output type is only supported when AppManaged is specified.

            • FeatureGroupName (string) --

              The name of the Amazon SageMaker FeatureGroup to use as the destination for processing job output. Note that your processing script is responsible for putting records into your Feature Store.

          • AppManaged (boolean) --

            When True , output operations such as data upload are managed natively by the processing job application. When False (default), output operations are managed by Amazon SageMaker.

      • KmsKeyId (string) --

        The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the processing job output. KmsKeyId can be an ID of a KMS key, ARN of a KMS key, alias of a KMS key, or alias of a KMS key. The KmsKeyId is applied to all outputs.

    • ProcessingJobName (string) --

      The name of the processing job. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.

    • ProcessingResources (dict) --

      Identifies the resources, ML compute instances, and ML storage volumes to deploy for a processing job. In distributed training, you specify more than one instance.

      • ClusterConfig (dict) --

        The configuration for the resources in a cluster used to run the processing job.

        • InstanceCount (integer) --

          The number of ML compute instances to use in the processing job. For distributed processing jobs, specify a value greater than 1. The default value is 1.

        • InstanceType (string) --

          The ML compute instance type for the processing job.

        • VolumeSizeInGB (integer) --

          The size of the ML storage volume in gigabytes that you want to provision. You must specify sufficient ML storage for your scenario.

          Note

          Certain Nitro-based instances include local storage with a fixed total size, dependent on the instance type. When using these instances for processing, Amazon SageMaker mounts the local instance storage instead of Amazon EBS gp2 storage. You can't request a VolumeSizeInGB greater than the total size of the local instance storage.

          For a list of instance types that support local instance storage, including the total size per instance type, see Instance Store Volumes.

        • VolumeKmsKeyId (string) --

          The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the processing job.

          Note

          Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

          For a list of instance types that support local instance storage, see Instance Store Volumes.

          For more information about local instance storage encryption, see SSD Instance Store Volumes.

    • StoppingCondition (dict) --

      The time limit for how long the processing job is allowed to run.

      • MaxRuntimeInSeconds (integer) --

        Specifies the maximum runtime in seconds.

    • AppSpecification (dict) --

      Configures the processing job to run a specified container image.

      • ImageUri (string) --

        The container image to be run by the processing job.

      • ContainerEntrypoint (list) --

        The entrypoint for a container used to run a processing job.

        • (string) --
      • ContainerArguments (list) --

        The arguments for a container used to run a processing job.

        • (string) --
    • Environment (dict) --

      The environment variables set in the Docker container.

      • (string) --
        • (string) --
    • NetworkConfig (dict) --

      Networking options for a processing job.

      • EnableInterContainerTrafficEncryption (boolean) --

        Whether to encrypt all communications between distributed processing jobs. Choose True to encrypt communications. Encryption provides greater security for distributed processing jobs, but the processing might take longer.

      • EnableNetworkIsolation (boolean) --

        Whether to allow inbound and outbound network calls to and from the containers used for the processing job.

      • VpcConfig (dict) --

        Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud.

        • SecurityGroupIds (list) --

          The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

          • (string) --
        • Subnets (list) --

          The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.

          • (string) --
    • RoleArn (string) --

      The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.

    • ExperimentConfig (dict) --

      The configuration information used to create an experiment.

      • ExperimentName (string) --

        The name of an existing experiment to associate with the trial component.

      • TrialName (string) --

        The name of an existing trial to associate the trial component with. If not specified, a new trial is created.

      • TrialComponentDisplayName (string) --

        The display name for the trial component. If this key isn't specified, the display name is the trial component name.

      • RunName (string) --

        The name of the experiment run to associate with the trial component.

    • ProcessingJobArn (string) --

      The Amazon Resource Name (ARN) of the processing job.

    • ProcessingJobStatus (string) --

      Provides the status of a processing job.

    • ExitMessage (string) --

      An optional string, up to one KB in size, that contains metadata from the processing container when the processing job exits.

    • FailureReason (string) --

      A string, up to one KB in size, that contains the reason a processing job failed, if it failed.

    • ProcessingEndTime (datetime) --

      The time at which the processing job completed.

    • ProcessingStartTime (datetime) --

      The time at which the processing job started.

    • LastModifiedTime (datetime) --

      The time at which the processing job was last modified.

    • CreationTime (datetime) --

      The time at which the processing job was created.

    • MonitoringScheduleArn (string) --

      The ARN of a monitoring schedule for an endpoint associated with this processing job.

    • AutoMLJobArn (string) --

      The ARN of an AutoML job associated with this processing job.

    • TrainingJobArn (string) --

      The ARN of a training job associated with this processing job.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_project(**kwargs)

Describes the details of a project.

See also: AWS API Documentation

Request Syntax

response = client.describe_project(
    ProjectName='string'
)
Parameters
ProjectName (string) --

[REQUIRED]

The name of the project to describe.

Return type
dict
Returns
Response Syntax
{
    'ProjectArn': 'string',
    'ProjectName': 'string',
    'ProjectId': 'string',
    'ProjectDescription': 'string',
    'ServiceCatalogProvisioningDetails': {
        'ProductId': 'string',
        'ProvisioningArtifactId': 'string',
        'PathId': 'string',
        'ProvisioningParameters': [
            {
                'Key': 'string',
                'Value': 'string'
            },
        ]
    },
    'ServiceCatalogProvisionedProductDetails': {
        'ProvisionedProductId': 'string',
        'ProvisionedProductStatusMessage': 'string'
    },
    'ProjectStatus': 'Pending'|'CreateInProgress'|'CreateCompleted'|'CreateFailed'|'DeleteInProgress'|'DeleteFailed'|'DeleteCompleted'|'UpdateInProgress'|'UpdateCompleted'|'UpdateFailed',
    'CreatedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    },
    'CreationTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'LastModifiedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    }
}

Response Structure

  • (dict) --
    • ProjectArn (string) --

      The Amazon Resource Name (ARN) of the project.

    • ProjectName (string) --

      The name of the project.

    • ProjectId (string) --

      The ID of the project.

    • ProjectDescription (string) --

      The description of the project.

    • ServiceCatalogProvisioningDetails (dict) --

      Information used to provision a service catalog product. For information, see What is Amazon Web Services Service Catalog.

      • ProductId (string) --

        The ID of the product to provision.

      • ProvisioningArtifactId (string) --

        The ID of the provisioning artifact.

      • PathId (string) --

        The path identifier of the product. This value is optional if the product has a default path, and required if the product has more than one path.

      • ProvisioningParameters (list) --

        A list of key value pairs that you specify when you provision a product.

        • (dict) --

          A key value pair used when you provision a project as a service catalog product. For information, see What is Amazon Web Services Service Catalog.

          • Key (string) --

            The key that identifies a provisioning parameter.

          • Value (string) --

            The value of the provisioning parameter.

    • ServiceCatalogProvisionedProductDetails (dict) --

      Information about a provisioned service catalog product.

      • ProvisionedProductId (string) --

        The ID of the provisioned product.

      • ProvisionedProductStatusMessage (string) --

        The current status of the product.

        • AVAILABLE - Stable state, ready to perform any operation. The most recent operation succeeded and completed.
        • UNDER_CHANGE - Transitive state. Operations performed might not have valid results. Wait for an AVAILABLE status before performing operations.
        • TAINTED - Stable state, ready to perform any operation. The stack has completed the requested operation but is not exactly what was requested. For example, a request to update to a new version failed and the stack rolled back to the current version.
        • ERROR - An unexpected error occurred. The provisioned product exists but the stack is not running. For example, CloudFormation received a parameter value that was not valid and could not launch the stack.
        • PLAN_IN_PROGRESS - Transitive state. The plan operations were performed to provision a new product, but resources have not yet been created. After reviewing the list of resources to be created, execute the plan. Wait for an AVAILABLE status before performing operations.
    • ProjectStatus (string) --

      The status of the project.

    • CreatedBy (dict) --

      Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

    • CreationTime (datetime) --

      The time when the project was created.

    • LastModifiedTime (datetime) --

      The timestamp when project was last modified.

    • LastModifiedBy (dict) --

      Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

describe_space(**kwargs)

Describes the space.

See also: AWS API Documentation

Request Syntax

response = client.describe_space(
    DomainId='string',
    SpaceName='string'
)
Parameters
  • DomainId (string) --

    [REQUIRED]

    The ID of the associated Domain.

  • SpaceName (string) --

    [REQUIRED]

    The name of the space.

Return type

dict

Returns

Response Syntax

{
    'DomainId': 'string',
    'SpaceArn': 'string',
    'SpaceName': 'string',
    'HomeEfsFileSystemUid': 'string',
    'Status': 'Deleting'|'Failed'|'InService'|'Pending'|'Updating'|'Update_Failed'|'Delete_Failed',
    'LastModifiedTime': datetime(2015, 1, 1),
    'CreationTime': datetime(2015, 1, 1),
    'FailureReason': 'string',
    'SpaceSettings': {
        'JupyterServerAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'LifecycleConfigArns': [
                'string',
            ],
            'CodeRepositories': [
                {
                    'RepositoryUrl': 'string'
                },
            ]
        },
        'KernelGatewayAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'CustomImages': [
                {
                    'ImageName': 'string',
                    'ImageVersionNumber': 123,
                    'AppImageConfigName': 'string'
                },
            ],
            'LifecycleConfigArns': [
                'string',
            ]
        }
    }
}

Response Structure

  • (dict) --

    • DomainId (string) --

      The ID of the associated Domain.

    • SpaceArn (string) --

      The space's Amazon Resource Name (ARN).

    • SpaceName (string) --

      The name of the space.

    • HomeEfsFileSystemUid (string) --

      The ID of the space's profile in the Amazon Elastic File System volume.

    • Status (string) --

      The status.

    • LastModifiedTime (datetime) --

      The last modified time.

    • CreationTime (datetime) --

      The creation time.

    • FailureReason (string) --

      The failure reason.

    • SpaceSettings (dict) --

      A collection of space settings.

      • JupyterServerAppSettings (dict) --

        The JupyterServer app settings.

        • DefaultResourceSpec (dict) --

          The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.

          • SageMakerImageArn (string) --

            The ARN of the SageMaker image that the image version belongs to.

          • SageMakerImageVersionArn (string) --

            The ARN of the image version created on the instance.

          • InstanceType (string) --

            The instance type that the image version runs on.

            Note

            JupyterServer apps only support the system value.

            For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

          • LifecycleConfigArn (string) --

            The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

        • LifecycleConfigArns (list) --

          The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter is also required.

          Note

          To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.

          • (string) --
        • CodeRepositories (list) --

          A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.

          • (dict) --

            A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.

            • RepositoryUrl (string) --

              The URL of the Git repository.

      • KernelGatewayAppSettings (dict) --

        The KernelGateway app settings.

        • DefaultResourceSpec (dict) --

          The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app.

          Note

          The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the Amazon Web Services Command Line Interface or Amazon Web Services CloudFormation and the instance type parameter value is not passed.

          • SageMakerImageArn (string) --

            The ARN of the SageMaker image that the image version belongs to.

          • SageMakerImageVersionArn (string) --

            The ARN of the image version created on the instance.

          • InstanceType (string) --

            The instance type that the image version runs on.

            Note

            JupyterServer apps only support the system value.

            For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

          • LifecycleConfigArn (string) --

            The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

        • CustomImages (list) --

          A list of custom SageMaker images that are configured to run as a KernelGateway app.

          • (dict) --

            A custom SageMaker image. For more information, see Bring your own SageMaker image.

            • ImageName (string) --

              The name of the CustomImage. Must be unique to your account.

            • ImageVersionNumber (integer) --

              The version number of the CustomImage.

            • AppImageConfigName (string) --

              The name of the AppImageConfig.

        • LifecycleConfigArns (list) --

          The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.

          Note

          To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.

          • (string) --

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_studio_lifecycle_config(**kwargs)

Describes the Studio Lifecycle Configuration.

See also: AWS API Documentation

Request Syntax

response = client.describe_studio_lifecycle_config(
    StudioLifecycleConfigName='string'
)
Parameters
StudioLifecycleConfigName (string) --

[REQUIRED]

The name of the Studio Lifecycle Configuration to describe.

Return type
dict
Returns
Response Syntax
{
    'StudioLifecycleConfigArn': 'string',
    'StudioLifecycleConfigName': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'StudioLifecycleConfigContent': 'string',
    'StudioLifecycleConfigAppType': 'JupyterServer'|'KernelGateway'
}

Response Structure

  • (dict) --
    • StudioLifecycleConfigArn (string) --

      The ARN of the Lifecycle Configuration to describe.

    • StudioLifecycleConfigName (string) --

      The name of the Studio Lifecycle Configuration that is described.

    • CreationTime (datetime) --

      The creation time of the Studio Lifecycle Configuration.

    • LastModifiedTime (datetime) --

      This value is equivalent to CreationTime because Studio Lifecycle Configurations are immutable.

    • StudioLifecycleConfigContent (string) --

      The content of your Studio Lifecycle Configuration script.

    • StudioLifecycleConfigAppType (string) --

      The App type that the Lifecycle Configuration is attached to.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_subscribed_workteam(**kwargs)

Gets information about a work team provided by a vendor. It returns details about the subscription with a vendor in the Amazon Web Services Marketplace.

See also: AWS API Documentation

Request Syntax

response = client.describe_subscribed_workteam(
    WorkteamArn='string'
)
Parameters
WorkteamArn (string) --

[REQUIRED]

The Amazon Resource Name (ARN) of the subscribed work team to describe.

Return type
dict
Returns
Response Syntax
{
    'SubscribedWorkteam': {
        'WorkteamArn': 'string',
        'MarketplaceTitle': 'string',
        'SellerName': 'string',
        'MarketplaceDescription': 'string',
        'ListingId': 'string'
    }
}

Response Structure

  • (dict) --
    • SubscribedWorkteam (dict) --

      A Workteam instance that contains information about the work team.

      • WorkteamArn (string) --

        The Amazon Resource Name (ARN) of the vendor that you have subscribed.

      • MarketplaceTitle (string) --

        The title of the service provided by the vendor in the Amazon Marketplace.

      • SellerName (string) --

        The name of the vendor in the Amazon Marketplace.

      • MarketplaceDescription (string) --

        The description of the vendor from the Amazon Marketplace.

      • ListingId (string) --

        Marketplace product listing ID.

describe_training_job(**kwargs)

Returns information about a training job.

Some of the attributes below only appear if the training job successfully starts. If the training job fails, TrainingJobStatus is Failed and, depending on the FailureReason , attributes like TrainingStartTime , TrainingTimeInSeconds , TrainingEndTime , and BillableTimeInSeconds may not be present in the response.

See also: AWS API Documentation

Request Syntax

response = client.describe_training_job(
    TrainingJobName='string'
)
Parameters
TrainingJobName (string) --

[REQUIRED]

The name of the training job.

Return type
dict
Returns
Response Syntax
{
    'TrainingJobName': 'string',
    'TrainingJobArn': 'string',
    'TuningJobArn': 'string',
    'LabelingJobArn': 'string',
    'AutoMLJobArn': 'string',
    'ModelArtifacts': {
        'S3ModelArtifacts': 'string'
    },
    'TrainingJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
    'SecondaryStatus': 'Starting'|'LaunchingMLInstances'|'PreparingTrainingStack'|'Downloading'|'DownloadingTrainingImage'|'Training'|'Uploading'|'Stopping'|'Stopped'|'MaxRuntimeExceeded'|'Completed'|'Failed'|'Interrupted'|'MaxWaitTimeExceeded'|'Updating'|'Restarting',
    'FailureReason': 'string',
    'HyperParameters': {
        'string': 'string'
    },
    'AlgorithmSpecification': {
        'TrainingImage': 'string',
        'AlgorithmName': 'string',
        'TrainingInputMode': 'Pipe'|'File'|'FastFile',
        'MetricDefinitions': [
            {
                'Name': 'string',
                'Regex': 'string'
            },
        ],
        'EnableSageMakerMetricsTimeSeries': True|False,
        'ContainerEntrypoint': [
            'string',
        ],
        'ContainerArguments': [
            'string',
        ],
        'TrainingImageConfig': {
            'TrainingRepositoryAccessMode': 'Platform'|'Vpc',
            'TrainingRepositoryAuthConfig': {
                'TrainingRepositoryCredentialsProviderArn': 'string'
            }
        }
    },
    'RoleArn': 'string',
    'InputDataConfig': [
        {
            'ChannelName': 'string',
            'DataSource': {
                'S3DataSource': {
                    'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                    'S3Uri': 'string',
                    'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                    'AttributeNames': [
                        'string',
                    ],
                    'InstanceGroupNames': [
                        'string',
                    ]
                },
                'FileSystemDataSource': {
                    'FileSystemId': 'string',
                    'FileSystemAccessMode': 'rw'|'ro',
                    'FileSystemType': 'EFS'|'FSxLustre',
                    'DirectoryPath': 'string'
                }
            },
            'ContentType': 'string',
            'CompressionType': 'None'|'Gzip',
            'RecordWrapperType': 'None'|'RecordIO',
            'InputMode': 'Pipe'|'File'|'FastFile',
            'ShuffleConfig': {
                'Seed': 123
            }
        },
    ],
    'OutputDataConfig': {
        'KmsKeyId': 'string',
        'S3OutputPath': 'string'
    },
    'ResourceConfig': {
        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge',
        'InstanceCount': 123,
        'VolumeSizeInGB': 123,
        'VolumeKmsKeyId': 'string',
        'InstanceGroups': [
            {
                'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge',
                'InstanceCount': 123,
                'InstanceGroupName': 'string'
            },
        ],
        'KeepAlivePeriodInSeconds': 123
    },
    'VpcConfig': {
        'SecurityGroupIds': [
            'string',
        ],
        'Subnets': [
            'string',
        ]
    },
    'StoppingCondition': {
        'MaxRuntimeInSeconds': 123,
        'MaxWaitTimeInSeconds': 123
    },
    'CreationTime': datetime(2015, 1, 1),
    'TrainingStartTime': datetime(2015, 1, 1),
    'TrainingEndTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'SecondaryStatusTransitions': [
        {
            'Status': 'Starting'|'LaunchingMLInstances'|'PreparingTrainingStack'|'Downloading'|'DownloadingTrainingImage'|'Training'|'Uploading'|'Stopping'|'Stopped'|'MaxRuntimeExceeded'|'Completed'|'Failed'|'Interrupted'|'MaxWaitTimeExceeded'|'Updating'|'Restarting',
            'StartTime': datetime(2015, 1, 1),
            'EndTime': datetime(2015, 1, 1),
            'StatusMessage': 'string'
        },
    ],
    'FinalMetricDataList': [
        {
            'MetricName': 'string',
            'Value': ...,
            'Timestamp': datetime(2015, 1, 1)
        },
    ],
    'EnableNetworkIsolation': True|False,
    'EnableInterContainerTrafficEncryption': True|False,
    'EnableManagedSpotTraining': True|False,
    'CheckpointConfig': {
        'S3Uri': 'string',
        'LocalPath': 'string'
    },
    'TrainingTimeInSeconds': 123,
    'BillableTimeInSeconds': 123,
    'DebugHookConfig': {
        'LocalPath': 'string',
        'S3OutputPath': 'string',
        'HookParameters': {
            'string': 'string'
        },
        'CollectionConfigurations': [
            {
                'CollectionName': 'string',
                'CollectionParameters': {
                    'string': 'string'
                }
            },
        ]
    },
    'ExperimentConfig': {
        'ExperimentName': 'string',
        'TrialName': 'string',
        'TrialComponentDisplayName': 'string',
        'RunName': 'string'
    },
    'DebugRuleConfigurations': [
        {
            'RuleConfigurationName': 'string',
            'LocalPath': 'string',
            'S3OutputPath': 'string',
            'RuleEvaluatorImage': 'string',
            'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
            'VolumeSizeInGB': 123,
            'RuleParameters': {
                'string': 'string'
            }
        },
    ],
    'TensorBoardOutputConfig': {
        'LocalPath': 'string',
        'S3OutputPath': 'string'
    },
    'DebugRuleEvaluationStatuses': [
        {
            'RuleConfigurationName': 'string',
            'RuleEvaluationJobArn': 'string',
            'RuleEvaluationStatus': 'InProgress'|'NoIssuesFound'|'IssuesFound'|'Error'|'Stopping'|'Stopped',
            'StatusDetails': 'string',
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],
    'ProfilerConfig': {
        'S3OutputPath': 'string',
        'ProfilingIntervalInMilliseconds': 123,
        'ProfilingParameters': {
            'string': 'string'
        },
        'DisableProfiler': True|False
    },
    'ProfilerRuleConfigurations': [
        {
            'RuleConfigurationName': 'string',
            'LocalPath': 'string',
            'S3OutputPath': 'string',
            'RuleEvaluatorImage': 'string',
            'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
            'VolumeSizeInGB': 123,
            'RuleParameters': {
                'string': 'string'
            }
        },
    ],
    'ProfilerRuleEvaluationStatuses': [
        {
            'RuleConfigurationName': 'string',
            'RuleEvaluationJobArn': 'string',
            'RuleEvaluationStatus': 'InProgress'|'NoIssuesFound'|'IssuesFound'|'Error'|'Stopping'|'Stopped',
            'StatusDetails': 'string',
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],
    'ProfilingStatus': 'Enabled'|'Disabled',
    'RetryStrategy': {
        'MaximumRetryAttempts': 123
    },
    'Environment': {
        'string': 'string'
    },
    'WarmPoolStatus': {
        'Status': 'Available'|'Terminated'|'Reused'|'InUse',
        'ResourceRetainedBillableTimeInSeconds': 123,
        'ReusedByJob': 'string'
    }
}

Response Structure

  • (dict) --
    • TrainingJobName (string) --

      Name of the model training job.

    • TrainingJobArn (string) --

      The Amazon Resource Name (ARN) of the training job.

    • TuningJobArn (string) --

      The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job was launched by a hyperparameter tuning job.

    • LabelingJobArn (string) --

      The Amazon Resource Name (ARN) of the SageMaker Ground Truth labeling job that created the transform or training job.

    • AutoMLJobArn (string) --

      The Amazon Resource Name (ARN) of an AutoML job.

    • ModelArtifacts (dict) --

      Information about the Amazon S3 location that is configured for storing model artifacts.

      • S3ModelArtifacts (string) --

        The path of the S3 object that contains the model artifacts. For example, s3://bucket-name/keynameprefix/model.tar.gz .

    • TrainingJobStatus (string) --

      The status of the training job.

      SageMaker provides the following training job statuses:

      • InProgress - The training is in progress.
      • Completed - The training job has completed.
      • Failed - The training job has failed. To see the reason for the failure, see the FailureReason field in the response to a DescribeTrainingJobResponse call.
      • Stopping - The training job is stopping.
      • Stopped - The training job has stopped.

      For more detailed information, see SecondaryStatus .

    • SecondaryStatus (string) --

      Provides detailed information about the state of the training job. For detailed information on the secondary status of the training job, see StatusMessage under SecondaryStatusTransition.

      SageMaker provides primary statuses and secondary statuses that apply to each of them:

      InProgress
      • Starting - Starting the training job.
      • Downloading - An optional stage for algorithms that support File training input mode. It indicates that data is being downloaded to the ML storage volumes.
      • Training - Training is in progress.
      • Interrupted - The job stopped because the managed spot training instances were interrupted.
      • Uploading - Training is complete and the model artifacts are being uploaded to the S3 location.

        Completed

      • Completed - The training job has completed.

        Failed

      • Failed - The training job has failed. The reason for the failure is returned in the FailureReason field of DescribeTrainingJobResponse .

        Stopped

      • MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed runtime.
      • MaxWaitTimeExceeded - The job stopped because it exceeded the maximum allowed wait time.
      • Stopped - The training job has stopped.

        Stopping

      • Stopping - Stopping the training job.

      Warning

      Valid values for SecondaryStatus are subject to change.

      We no longer support the following secondary statuses:

      • LaunchingMLInstances
      • PreparingTraining
      • DownloadingTrainingImage
    • FailureReason (string) --

      If the training job failed, the reason it failed.

    • HyperParameters (dict) --

      Algorithm-specific parameters.

      • (string) --
        • (string) --
    • AlgorithmSpecification (dict) --

      Information about the algorithm used for training, and algorithm metadata.

      • TrainingImage (string) --

        The registry path of the Docker image that contains the training algorithm. For information about docker registry paths for SageMaker built-in algorithms, see Docker Registry Paths and Example Code in the Amazon SageMaker developer guide . SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information about using your custom training container, see Using Your Own Algorithms with Amazon SageMaker.

        Note

        You must specify either the algorithm name to the AlgorithmName parameter or the image URI of the algorithm container to the TrainingImage parameter.

        For more information, see the note in the AlgorithmName parameter description.

      • AlgorithmName (string) --

        The name of the algorithm resource to use for the training job. This must be an algorithm resource that you created or subscribe to on Amazon Web Services Marketplace.

        Note

        You must specify either the algorithm name to the AlgorithmName parameter or the image URI of the algorithm container to the TrainingImage parameter.

        Note that the AlgorithmName parameter is mutually exclusive with the TrainingImage parameter. If you specify a value for the AlgorithmName parameter, you can't specify a value for TrainingImage , and vice versa.

        If you specify values for both parameters, the training job might break; if you don't specify any value for both parameters, the training job might raise a null error.

      • TrainingInputMode (string) --

        The training input mode that the algorithm supports. For more information about input modes, see Algorithms.

        Pipe mode

        If an algorithm supports Pipe mode, Amazon SageMaker streams data directly from Amazon S3 to the container.

        File mode

        If an algorithm supports File mode, SageMaker downloads the training data from S3 to the provisioned ML storage volume, and mounts the directory to the Docker volume for the training container.

        You must provision the ML storage volume with sufficient capacity to accommodate the data downloaded from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container uses the ML storage volume to also store intermediate information, if any.

        For distributed algorithms, training data is distributed uniformly. Your training duration is predictable if the input data objects sizes are approximately the same. SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed when one host in a training cluster is overloaded, thus becoming a bottleneck in training.

        FastFile mode

        If an algorithm supports FastFile mode, SageMaker streams data directly from S3 to the container with no code changes, and provides file system access to the data. Users can author their training script to interact with these files as if they were stored on disk.

        FastFile mode works best when the data is read sequentially. Augmented manifest files aren't supported. The startup time is lower when there are fewer files in the S3 bucket provided.
      • MetricDefinitions (list) --

        A list of metric definition objects. Each object specifies the metric name and regular expressions used to parse algorithm logs. SageMaker publishes each metric to Amazon CloudWatch.

        • (dict) --

          Specifies a metric that the training algorithm writes to stderr or stdout . SageMakerhyperparameter tuning captures all defined metrics. You specify one metric that a hyperparameter tuning job uses as its objective metric to choose the best training job.

          • Name (string) --

            The name of the metric.

          • Regex (string) --

            A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining Objective Metrics.

      • EnableSageMakerMetricsTimeSeries (boolean) --

        To generate and save time-series metrics during training, set to true . The default is false and time-series metrics aren't generated except in the following cases:

        • You use one of the SageMaker built-in algorithms
        • You use one of the following Prebuilt SageMaker Docker Images:
          • Tensorflow (version >= 1.15)
          • MXNet (version >= 1.6)
          • PyTorch (version >= 1.3)
        • You specify at least one MetricDefinition
      • ContainerEntrypoint (list) --

        The entrypoint script for a Docker container used to run a training job. This script takes precedence over the default train processing instructions. See How Amazon SageMaker Runs Your Training Image for more information.

        • (string) --
      • ContainerArguments (list) --

        The arguments for a container used to run a training job. See How Amazon SageMaker Runs Your Training Image for additional information.

        • (string) --
      • TrainingImageConfig (dict) --

        The configuration to use an image from a private Docker registry for a training job.

        • TrainingRepositoryAccessMode (string) --

          The method that your training job will use to gain access to the images in your private Docker registry. For access to an image in a private Docker registry, set to Vpc .

        • TrainingRepositoryAuthConfig (dict) --

          An object containing authentication information for a private Docker registry containing your training images.

          • TrainingRepositoryCredentialsProviderArn (string) --

            The Amazon Resource Name (ARN) of an Amazon Web Services Lambda function used to give SageMaker access credentials to your private Docker registry.

    • RoleArn (string) --

      The Amazon Web Services Identity and Access Management (IAM) role configured for the training job.

    • InputDataConfig (list) --

      An array of Channel objects that describes each data input channel.

      • (dict) --

        A channel is a named input source that training algorithms can consume.

        • ChannelName (string) --

          The name of the channel.

        • DataSource (dict) --

          The location of the channel data.

          • S3DataSource (dict) --

            The S3 location of the data source that is associated with a channel.

            • S3DataType (string) --

              If you choose S3Prefix , S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix for model training.

              If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want SageMaker to use for model training.

              If you choose AugmentedManifestFile , S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel's input mode is Pipe .

            • S3Uri (string) --

              Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

              • A key name prefix might look like this: s3://bucketname/exampleprefix
              • A manifest might look like this: s3://bucketname/example.manifest A manifest is an S3 object which is a JSON file consisting of an array of elements. The first element is a prefix which is followed by one or more suffixes. SageMaker appends the suffix elements to the prefix to get a full set of S3Uri . Note that the prefix must be a valid non-empty S3Uri that precludes users from specifying a manifest whose individual S3Uri is sourced from different S3 buckets. The following code example shows a valid manifest format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] This JSON is equivalent to the following S3Uri list: s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uri in this manifest is the input data for the channel for this data source. The object that each S3Uri points to must be readable by the IAM role that SageMaker uses to perform tasks on your behalf.
            • S3DataDistributionType (string) --

              If you want SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated .

              If you want SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key . If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.

              Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.

              In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key . If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File ), this copies 1/n of the number of objects.

            • AttributeNames (list) --

              A list of one or more attribute names to use that are found in a specified augmented manifest file.

              • (string) --
            • InstanceGroupNames (list) --

              A list of names of instance groups that get data from the S3 data source.

              • (string) --
          • FileSystemDataSource (dict) --

            The file system that is associated with a channel.

            • FileSystemId (string) --

              The file system id.

            • FileSystemAccessMode (string) --

              The access mode of the mount of the directory associated with the channel. A directory can be mounted either in ro (read-only) or rw (read-write) mode.

            • FileSystemType (string) --

              The file system type.

            • DirectoryPath (string) --

              The full path to the directory to associate with the channel.

        • ContentType (string) --

          The MIME type of the data.

        • CompressionType (string) --

          If training data is compressed, the compression type. The default value is None . CompressionType is used only in Pipe input mode. In File mode, leave this field unset or set it to None.

        • RecordWrapperType (string) --

          Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.

          In File mode, leave this field unset or set it to None.

        • InputMode (string) --

          (Optional) The input mode to use for the data channel in a training job. If you don't set a value for InputMode , SageMaker uses the value set for TrainingInputMode . Use this parameter to override the TrainingInputMode setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use File input mode. To stream data directly from Amazon S3 to the container, choose Pipe input mode.

          To use a model for incremental training, choose File input model.

        • ShuffleConfig (dict) --

          A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType , this shuffles the results of the S3 key prefix matches. If you use ManifestFile , the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile , the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value.

          For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key , the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.

          • Seed (integer) --

            Determines the shuffling order in ShuffleConfig value.

    • OutputDataConfig (dict) --

      The S3 path where model artifacts that you configured when creating the job are stored. SageMaker creates subfolders for model artifacts.

      • KmsKeyId (string) --

        The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

        • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
        • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
        • // KMS Key Alias "alias/ExampleAlias"
        • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

        If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

        The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob , CreateTransformJob , or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .

      • S3OutputPath (string) --

        Identifies the S3 path where you want SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix .

    • ResourceConfig (dict) --

      Resources, including ML compute instances and ML storage volumes, that are configured for model training.

      • InstanceType (string) --

        The ML compute instance type.

        Note

        SageMaker Training on Amazon Elastic Compute Cloud (EC2) P4de instances is in preview release starting December 9th, 2022.

        Amazon EC2 P4de instances (currently in preview) are powered by 8 NVIDIA A100 GPUs with 80GB high-performance HBM2e GPU memory, which accelerate the speed of training ML models that need to be trained on large datasets of high-resolution data. In this preview release, Amazon SageMaker supports ML training jobs on P4de instances ( ml.p4de.24xlarge ) to reduce model training time. The ml.p4de.24xlarge instances are available in the following Amazon Web Services Regions.
        • US East (N. Virginia) (us-east-1)
        • US West (Oregon) (us-west-2)

        To request quota limit increase and start using P4de instances, contact the SageMaker Training service team through your account team.

      • InstanceCount (integer) --

        The number of ML compute instances to use. For distributed training, provide a value greater than 1.

      • VolumeSizeInGB (integer) --

        The size of the ML storage volume that you want to provision.

        ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.

        When using an ML instance with NVMe SSD volumes, SageMaker doesn't provision Amazon EBS General Purpose SSD (gp2) storage. Available storage is fixed to the NVMe-type instance's storage capacity. SageMaker configures storage paths for training datasets, checkpoints, model artifacts, and outputs to use the entire capacity of the instance storage. For example, ML instance families with the NVMe-type instance storage include ml.p4d , ml.g4dn , and ml.g5 .

        When using an ML instance with the EBS-only storage option and without instance storage, you must define the size of EBS volume through VolumeSizeInGB in the ResourceConfig API. For example, ML instance families that use EBS volumes include ml.c5 and ml.p2 .

        To look up instance types and their instance storage types and volumes, see Amazon EC2 Instance Types.

        To find the default local paths defined by the SageMaker training platform, see Amazon SageMaker Training Storage Folders for Training Datasets, Checkpoints, Model Artifacts, and Outputs.

      • VolumeKmsKeyId (string) --

        The Amazon Web Services KMS key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.

        Note

        Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

        For a list of instance types that support local instance storage, see Instance Store Volumes.

        For more information about local instance storage encryption, see SSD Instance Store Volumes.

        The VolumeKmsKeyId can be in any of the following formats:

        • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
        • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
      • InstanceGroups (list) --

        The configuration of a heterogeneous cluster in JSON format.

        • (dict) --

          Defines an instance group for heterogeneous cluster training. When requesting a training job using the CreateTrainingJob API, you can configure multiple instance groups .

          • InstanceType (string) --

            Specifies the instance type of the instance group.

          • InstanceCount (integer) --

            Specifies the number of instances of the instance group.

          • InstanceGroupName (string) --

            Specifies the name of the instance group.

      • KeepAlivePeriodInSeconds (integer) --

        The duration of time in seconds to retain configured resources in a warm pool for subsequent training jobs.

    • VpcConfig (dict) --

      A VpcConfig object that specifies the VPC that this training job has access to. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.

      • SecurityGroupIds (list) --

        The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

        • (string) --
      • Subnets (list) --

        The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.

        • (string) --
    • StoppingCondition (dict) --

      Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.

      To stop a job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.

      • MaxRuntimeInSeconds (integer) --

        The maximum length of time, in seconds, that a training or compilation job can run before it is stopped.

        For compilation jobs, if the job does not complete during this time, a TimeOut error is generated. We recommend starting with 900 seconds and increasing as necessary based on your model.

        For all other jobs, if the job does not complete during this time, SageMaker ends the job. When RetryStrategy is specified in the job request, MaxRuntimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt. The default value is 1 day. The maximum value is 28 days.

        The maximum time that a TrainingJob can run in total, including any time spent publishing metrics or archiving and uploading models after it has been stopped, is 30 days.

      • MaxWaitTimeInSeconds (integer) --

        The maximum length of time, in seconds, that a managed Spot training job has to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the job can run. It must be equal to or greater than MaxRuntimeInSeconds . If the job does not complete during this time, SageMaker ends the job.

        When RetryStrategy is specified in the job request, MaxWaitTimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt.

    • CreationTime (datetime) --

      A timestamp that indicates when the training job was created.

    • TrainingStartTime (datetime) --

      Indicates the time when the training job starts on training instances. You are billed for the time interval between this time and the value of TrainingEndTime . The start time in CloudWatch Logs might be later than this time. The difference is due to the time it takes to download the training data and to the size of the training container.

    • TrainingEndTime (datetime) --

      Indicates the time when the training job ends on training instances. You are billed for the time interval between the value of TrainingStartTime and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when SageMaker detects a job failure.

    • LastModifiedTime (datetime) --

      A timestamp that indicates when the status of the training job was last modified.

    • SecondaryStatusTransitions (list) --

      A history of all of the secondary statuses that the training job has transitioned through.

      • (dict) --

        An array element of DescribeTrainingJobResponse$SecondaryStatusTransitions. It provides additional details about a status that the training job has transitioned through. A training job can be in one of several states, for example, starting, downloading, training, or uploading. Within each state, there are a number of intermediate states. For example, within the starting state, SageMaker could be starting the training job or launching the ML instances. These transitional states are referred to as the job's secondary status.

        • Status (string) --

          Contains a secondary status information from a training job.

          Status might be one of the following secondary statuses:

          InProgress
          • Starting - Starting the training job.
          • Downloading - An optional stage for algorithms that support File training input mode. It indicates that data is being downloaded to the ML storage volumes.
          • Training - Training is in progress.
          • Uploading - Training is complete and the model artifacts are being uploaded to the S3 location.

            Completed

          • Completed - The training job has completed.

            Failed

          • Failed - The training job has failed. The reason for the failure is returned in the FailureReason field of DescribeTrainingJobResponse .

            Stopped

          • MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed runtime.
          • Stopped - The training job has stopped.

            Stopping

          • Stopping - Stopping the training job.

          We no longer support the following secondary statuses:

          • LaunchingMLInstances
          • PreparingTrainingStack
          • DownloadingTrainingImage
        • StartTime (datetime) --

          A timestamp that shows when the training job transitioned to the current secondary status state.

        • EndTime (datetime) --

          A timestamp that shows when the training job transitioned out of this secondary status state into another secondary status state or when the training job has ended.

        • StatusMessage (string) --

          A detailed description of the progress within a secondary status.

          SageMaker provides secondary statuses and status messages that apply to each of them:

          Starting
          • Starting the training job.
          • Launching requested ML instances.
          • Insufficient capacity error from EC2 while launching instances, retrying!
          • Launched instance was unhealthy, replacing it!
          • Preparing the instances for training.

            Training

          • Downloading the training image.
          • Training image download completed. Training in progress.

          Warning

          Status messages are subject to change. Therefore, we recommend not including them in code that programmatically initiates actions. For examples, don't use status messages in if statements.

          To have an overview of your training job's progress, view TrainingJobStatus and SecondaryStatus in DescribeTrainingJob, and StatusMessage together. For example, at the start of a training job, you might see the following:

          • TrainingJobStatus - InProgress
          • SecondaryStatus - Training
          • StatusMessage - Downloading the training image
    • FinalMetricDataList (list) --

      A collection of MetricData objects that specify the names, values, and dates and times that the training algorithm emitted to Amazon CloudWatch.

      • (dict) --

        The name, value, and date and time of a metric that was emitted to Amazon CloudWatch.

        • MetricName (string) --

          The name of the metric.

        • Value (float) --

          The value of the metric.

        • Timestamp (datetime) --

          The date and time that the algorithm emitted the metric.

    • EnableNetworkIsolation (boolean) --

      If you want to allow inbound or outbound network calls, except for calls between peers within a training cluster for distributed training, choose True . If you enable network isolation for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.

    • EnableInterContainerTrafficEncryption (boolean) --

      To encrypt all communications between ML compute instances in distributed training, choose True . Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithms in distributed training.

    • EnableManagedSpotTraining (boolean) --

      A Boolean indicating whether managed spot training is enabled ( True ) or not ( False ).

    • CheckpointConfig (dict) --

      Contains information about the output location for managed spot training checkpoint data.

      • S3Uri (string) --

        Identifies the S3 path where you want SageMaker to store checkpoints. For example, s3://bucket-name/key-name-prefix .

      • LocalPath (string) --

        (Optional) The local directory where checkpoints are written. The default directory is /opt/ml/checkpoints/ .

    • TrainingTimeInSeconds (integer) --

      The training time in seconds.

    • BillableTimeInSeconds (integer) --

      The billable time in seconds. Billable time refers to the absolute wall-clock time.

      Multiply BillableTimeInSeconds by the number of instances ( InstanceCount ) in your training cluster to get the total compute time SageMaker bills you if you run distributed training. The formula is as follows: BillableTimeInSeconds * InstanceCount .

      You can calculate the savings from using managed spot training using the formula (1 - BillableTimeInSeconds / TrainingTimeInSeconds) * 100 . For example, if BillableTimeInSeconds is 100 and TrainingTimeInSeconds is 500, the savings is 80%.

    • DebugHookConfig (dict) --

      Configuration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the DebugHookConfig parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.

      • LocalPath (string) --

        Path to local storage location for metrics and tensors. Defaults to /opt/ml/output/tensors/ .

      • S3OutputPath (string) --

        Path to Amazon S3 storage location for metrics and tensors.

      • HookParameters (dict) --

        Configuration information for the Amazon SageMaker Debugger hook parameters.

        • (string) --
          • (string) --
      • CollectionConfigurations (list) --

        Configuration information for Amazon SageMaker Debugger tensor collections. To learn more about how to configure the CollectionConfiguration parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.

        • (dict) --

          Configuration information for the Amazon SageMaker Debugger output tensor collections.

          • CollectionName (string) --

            The name of the tensor collection. The name must be unique relative to other rule configuration names.

          • CollectionParameters (dict) --

            Parameter values for the tensor collection. The allowed parameters are "name" , "include_regex" , "reduction_config" , "save_config" , "tensor_names" , and "save_histogram" .

            • (string) --
              • (string) --
    • ExperimentConfig (dict) --

      Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:

      • CreateProcessingJob
      • CreateTrainingJob
      • CreateTransformJob
      • ExperimentName (string) --

        The name of an existing experiment to associate with the trial component.

      • TrialName (string) --

        The name of an existing trial to associate the trial component with. If not specified, a new trial is created.

      • TrialComponentDisplayName (string) --

        The display name for the trial component. If this key isn't specified, the display name is the trial component name.

      • RunName (string) --

        The name of the experiment run to associate with the trial component.

    • DebugRuleConfigurations (list) --

      Configuration information for Amazon SageMaker Debugger rules for debugging output tensors.

      • (dict) --

        Configuration information for SageMaker Debugger rules for debugging. To learn more about how to configure the DebugRuleConfiguration parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.

        • RuleConfigurationName (string) --

          The name of the rule configuration. It must be unique relative to other rule configuration names.

        • LocalPath (string) --

          Path to local storage location for output of rules. Defaults to /opt/ml/processing/output/rule/ .

        • S3OutputPath (string) --

          Path to Amazon S3 storage location for rules.

        • RuleEvaluatorImage (string) --

          The Amazon Elastic Container (ECR) Image for the managed rule evaluation.

        • InstanceType (string) --

          The instance type to deploy a custom rule for debugging a training job.

        • VolumeSizeInGB (integer) --

          The size, in GB, of the ML storage volume attached to the processing instance.

        • RuleParameters (dict) --

          Runtime configuration for rule container.

          • (string) --
            • (string) --
    • TensorBoardOutputConfig (dict) --

      Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.

      • LocalPath (string) --

        Path to local storage location for tensorBoard output. Defaults to /opt/ml/output/tensorboard .

      • S3OutputPath (string) --

        Path to Amazon S3 storage location for TensorBoard output.

    • DebugRuleEvaluationStatuses (list) --

      Evaluation status of Amazon SageMaker Debugger rules for debugging on a training job.

      • (dict) --

        Information about the status of the rule evaluation.

        • RuleConfigurationName (string) --

          The name of the rule configuration.

        • RuleEvaluationJobArn (string) --

          The Amazon Resource Name (ARN) of the rule evaluation job.

        • RuleEvaluationStatus (string) --

          Status of the rule evaluation.

        • StatusDetails (string) --

          Details from the rule evaluation.

        • LastModifiedTime (datetime) --

          Timestamp when the rule evaluation status was last modified.

    • ProfilerConfig (dict) --

      Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.

      • S3OutputPath (string) --

        Path to Amazon S3 storage location for system and framework metrics.

      • ProfilingIntervalInMilliseconds (integer) --

        A time interval for capturing system metrics in milliseconds. Available values are 100, 200, 500, 1000 (1 second), 5000 (5 seconds), and 60000 (1 minute) milliseconds. The default value is 500 milliseconds.

      • ProfilingParameters (dict) --

        Configuration information for capturing framework metrics. Available key strings for different profiling options are DetailedProfilingConfig , PythonProfilingConfig , and DataLoaderProfilingConfig . The following codes are configuration structures for the ProfilingParameters parameter. To learn more about how to configure the ProfilingParameters parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.

        • (string) --
          • (string) --
      • DisableProfiler (boolean) --

        Configuration to turn off Amazon SageMaker Debugger's system monitoring and profiling functionality. To turn it off, set to True .

    • ProfilerRuleConfigurations (list) --

      Configuration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.

      • (dict) --

        Configuration information for profiling rules.

        • RuleConfigurationName (string) --

          The name of the rule configuration. It must be unique relative to other rule configuration names.

        • LocalPath (string) --

          Path to local storage location for output of rules. Defaults to /opt/ml/processing/output/rule/ .

        • S3OutputPath (string) --

          Path to Amazon S3 storage location for rules.

        • RuleEvaluatorImage (string) --

          The Amazon Elastic Container Registry Image for the managed rule evaluation.

        • InstanceType (string) --

          The instance type to deploy a custom rule for profiling a training job.

        • VolumeSizeInGB (integer) --

          The size, in GB, of the ML storage volume attached to the processing instance.

        • RuleParameters (dict) --

          Runtime configuration for rule container.

          • (string) --
            • (string) --
    • ProfilerRuleEvaluationStatuses (list) --

      Evaluation status of Amazon SageMaker Debugger rules for profiling on a training job.

      • (dict) --

        Information about the status of the rule evaluation.

        • RuleConfigurationName (string) --

          The name of the rule configuration.

        • RuleEvaluationJobArn (string) --

          The Amazon Resource Name (ARN) of the rule evaluation job.

        • RuleEvaluationStatus (string) --

          Status of the rule evaluation.

        • StatusDetails (string) --

          Details from the rule evaluation.

        • LastModifiedTime (datetime) --

          Timestamp when the rule evaluation status was last modified.

    • ProfilingStatus (string) --

      Profiling status of a training job.

    • RetryStrategy (dict) --

      The number of times to retry the job when the job fails due to an InternalServerError .

      • MaximumRetryAttempts (integer) --

        The number of times to retry the job. When the job is retried, it's SecondaryStatus is changed to STARTING .

    • Environment (dict) --

      The environment variables to set in the Docker container.

      • (string) --
        • (string) --
    • WarmPoolStatus (dict) --

      The status of the warm pool associated with the training job.

      • Status (string) --

        The status of the warm pool.

        • InUse : The warm pool is in use for the training job.
        • Available : The warm pool is available to reuse for a matching training job.
        • Reused : The warm pool moved to a matching training job for reuse.
        • Terminated : The warm pool is no longer available. Warm pools are unavailable if they are terminated by a user, terminated for a patch update, or terminated for exceeding the specified KeepAlivePeriodInSeconds .
      • ResourceRetainedBillableTimeInSeconds (integer) --

        The billable time in seconds used by the warm pool. Billable time refers to the absolute wall-clock time.

        Multiply ResourceRetainedBillableTimeInSeconds by the number of instances ( InstanceCount ) in your training cluster to get the total compute time SageMaker bills you if you run warm pool training. The formula is as follows: ResourceRetainedBillableTimeInSeconds * InstanceCount .

      • ReusedByJob (string) --

        The name of the matching training job that reused the warm pool.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_transform_job(**kwargs)

Returns information about a transform job.

See also: AWS API Documentation

Request Syntax

response = client.describe_transform_job(
    TransformJobName='string'
)
Parameters
TransformJobName (string) --

[REQUIRED]

The name of the transform job that you want to view details of.

Return type
dict
Returns
Response Syntax
{
    'TransformJobName': 'string',
    'TransformJobArn': 'string',
    'TransformJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
    'FailureReason': 'string',
    'ModelName': 'string',
    'MaxConcurrentTransforms': 123,
    'ModelClientConfig': {
        'InvocationsTimeoutInSeconds': 123,
        'InvocationsMaxRetries': 123
    },
    'MaxPayloadInMB': 123,
    'BatchStrategy': 'MultiRecord'|'SingleRecord',
    'Environment': {
        'string': 'string'
    },
    'TransformInput': {
        'DataSource': {
            'S3DataSource': {
                'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                'S3Uri': 'string'
            }
        },
        'ContentType': 'string',
        'CompressionType': 'None'|'Gzip',
        'SplitType': 'None'|'Line'|'RecordIO'|'TFRecord'
    },
    'TransformOutput': {
        'S3OutputPath': 'string',
        'Accept': 'string',
        'AssembleWith': 'None'|'Line',
        'KmsKeyId': 'string'
    },
    'DataCaptureConfig': {
        'DestinationS3Uri': 'string',
        'KmsKeyId': 'string',
        'GenerateInferenceId': True|False
    },
    'TransformResources': {
        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
        'InstanceCount': 123,
        'VolumeKmsKeyId': 'string'
    },
    'CreationTime': datetime(2015, 1, 1),
    'TransformStartTime': datetime(2015, 1, 1),
    'TransformEndTime': datetime(2015, 1, 1),
    'LabelingJobArn': 'string',
    'AutoMLJobArn': 'string',
    'DataProcessing': {
        'InputFilter': 'string',
        'OutputFilter': 'string',
        'JoinSource': 'Input'|'None'
    },
    'ExperimentConfig': {
        'ExperimentName': 'string',
        'TrialName': 'string',
        'TrialComponentDisplayName': 'string',
        'RunName': 'string'
    }
}

Response Structure

  • (dict) --
    • TransformJobName (string) --

      The name of the transform job.

    • TransformJobArn (string) --

      The Amazon Resource Name (ARN) of the transform job.

    • TransformJobStatus (string) --

      The status of the transform job. If the transform job failed, the reason is returned in the FailureReason field.

    • FailureReason (string) --

      If the transform job failed, FailureReason describes why it failed. A transform job creates a log file, which includes error messages, and stores it as an Amazon S3 object. For more information, see Log Amazon SageMaker Events with Amazon CloudWatch.

    • ModelName (string) --

      The name of the model used in the transform job.

    • MaxConcurrentTransforms (integer) --

      The maximum number of parallel requests on each instance node that can be launched in a transform job. The default value is 1.

    • ModelClientConfig (dict) --

      The timeout and maximum number of retries for processing a transform job invocation.

      • InvocationsTimeoutInSeconds (integer) --

        The timeout value in seconds for an invocation request. The default value is 600.

      • InvocationsMaxRetries (integer) --

        The maximum number of retries when invocation requests are failing. The default value is 3.

    • MaxPayloadInMB (integer) --

      The maximum payload size, in MB, used in the transform job.

    • BatchStrategy (string) --

      Specifies the number of records to include in a mini-batch for an HTTP inference request. A record is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.

      To enable the batch strategy, you must set SplitType to Line , RecordIO , or TFRecord .

    • Environment (dict) --

      The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.

      • (string) --
        • (string) --
    • TransformInput (dict) --

      Describes the dataset to be transformed and the Amazon S3 location where it is stored.

      • DataSource (dict) --

        Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.

        • S3DataSource (dict) --

          The S3 location of the data source that is associated with a channel.

          • S3DataType (string) --

            If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.

            If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.

            The following values are compatible: ManifestFile , S3Prefix

            The following value is not compatible: AugmentedManifestFile

          • S3Uri (string) --

            Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

            • A key name prefix might look like this: s3://bucketname/exampleprefix .
            • A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following S3Uris : s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uris in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.
      • ContentType (string) --

        The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.

      • CompressionType (string) --

        If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None .

      • SplitType (string) --

        The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType is None , which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line to split records on a newline character boundary. SplitType also supports a number of record-oriented binary data formats. Currently, the supported record formats are:

        • RecordIO
        • TFRecord

        When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord , Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord , Amazon SageMaker sends individual records in each request.

        Note

        Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of BatchStrategy is set to SingleRecord . Padding is not removed if the value of BatchStrategy is set to MultiRecord .

        For more information about RecordIO , see Create a Dataset Using RecordIO in the MXNet documentation. For more information about TFRecord , see Consuming TFRecord data in the TensorFlow documentation.

    • TransformOutput (dict) --

      Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.

      • S3OutputPath (string) --

        The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix .

        For every S3 object used as input for the transform job, batch transform stores the transformed data with an . out suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv , batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out . Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an . out file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.

      • Accept (string) --

        The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.

      • AssembleWith (string) --

        Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None . To add a newline character at the end of every transformed record, specify Line .

      • KmsKeyId (string) --

        The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

        • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
        • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
        • Alias name: alias/ExampleAlias
        • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

        If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

        The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .

    • DataCaptureConfig (dict) --

      Configuration to control how SageMaker captures inference data.

      • DestinationS3Uri (string) --

        The Amazon S3 location being used to capture the data.

      • KmsKeyId (string) --

        The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the batch transform job.

        The KmsKeyId can be any of the following formats:

        • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
        • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
        • Alias name: alias/ExampleAlias
        • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
      • GenerateInferenceId (boolean) --

        Flag that indicates whether to append inference id to the output.

    • TransformResources (dict) --

      Describes the resources, including ML instance types and ML instance count, to use for the transform job.

      • InstanceType (string) --

        The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ml.m5.large instance types.

      • InstanceCount (integer) --

        The number of ML compute instances to use in the transform job. The default value is 1 , and the maximum is 100 . For distributed transform jobs, specify a value greater than 1 .

      • VolumeKmsKeyId (string) --

        The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job.

        Note

        Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

        For a list of instance types that support local instance storage, see Instance Store Volumes.

        For more information about local instance storage encryption, see SSD Instance Store Volumes.

        The VolumeKmsKeyId can be any of the following formats:

        • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
        • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
        • Alias name: alias/ExampleAlias
        • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
    • CreationTime (datetime) --

      A timestamp that shows when the transform Job was created.

    • TransformStartTime (datetime) --

      Indicates when the transform job starts on ML instances. You are billed for the time interval between this time and the value of TransformEndTime .

    • TransformEndTime (datetime) --

      Indicates when the transform job has been completed, or has stopped or failed. You are billed for the time interval between this time and the value of TransformStartTime .

    • LabelingJobArn (string) --

      The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created the transform or training job.

    • AutoMLJobArn (string) --

      The Amazon Resource Name (ARN) of the AutoML transform job.

    • DataProcessing (dict) --

      The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see Associate Prediction Results with their Corresponding Input Records.

      • InputFilter (string) --

        A JSONPath expression used to select a portion of the input data to pass to the algorithm. Use the InputFilter parameter to exclude fields, such as an ID column, from the input. If you want SageMaker to pass the entire input dataset to the algorithm, accept the default value $ .

        Examples: "$" , "$[1:]" , "$.features"

      • OutputFilter (string) --

        A JSONPath expression used to select a portion of the joined dataset to save in the output file for a batch transform job. If you want SageMaker to store the entire input dataset in the output file, leave the default value, $ . If you specify indexes that aren't within the dimension size of the joined dataset, you get an error.

        Examples: "$" , "$[0,5:]" , "$['id','SageMakerOutput']"

      • JoinSource (string) --

        Specifies the source of the data to join with the transformed data. The valid values are None and Input . The default value is None , which specifies not to join the input with the transformed data. If you want the batch transform job to join the original input data with the transformed data, set JoinSource to Input . You can specify OutputFilter as an additional filter to select a portion of the joined dataset and store it in the output file.

        For JSON or JSONLines objects, such as a JSON array, SageMaker adds the transformed data to the input JSON object in an attribute called SageMakerOutput . The joined result for JSON must be a key-value pair object. If the input is not a key-value pair object, SageMaker creates a new JSON file. In the new JSON file, and the input data is stored under the SageMakerInput key and the results are stored in SageMakerOutput .

        For CSV data, SageMaker takes each row as a JSON array and joins the transformed data with the input by appending each transformed row to the end of the input. The joined data has the original input data followed by the transformed data and the output is a CSV file.

        For information on how joining in applied, see Workflow for Associating Inferences with Input Records.

    • ExperimentConfig (dict) --

      Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:

      • CreateProcessingJob
      • CreateTrainingJob
      • CreateTransformJob
      • ExperimentName (string) --

        The name of an existing experiment to associate with the trial component.

      • TrialName (string) --

        The name of an existing trial to associate the trial component with. If not specified, a new trial is created.

      • TrialComponentDisplayName (string) --

        The display name for the trial component. If this key isn't specified, the display name is the trial component name.

      • RunName (string) --

        The name of the experiment run to associate with the trial component.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_trial(**kwargs)

Provides a list of a trial's properties.

See also: AWS API Documentation

Request Syntax

response = client.describe_trial(
    TrialName='string'
)
Parameters
TrialName (string) --

[REQUIRED]

The name of the trial to describe.

Return type
dict
Returns
Response Syntax
{
    'TrialName': 'string',
    'TrialArn': 'string',
    'DisplayName': 'string',
    'ExperimentName': 'string',
    'Source': {
        'SourceArn': 'string',
        'SourceType': 'string'
    },
    'CreationTime': datetime(2015, 1, 1),
    'CreatedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    },
    'LastModifiedTime': datetime(2015, 1, 1),
    'LastModifiedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    },
    'MetadataProperties': {
        'CommitId': 'string',
        'Repository': 'string',
        'GeneratedBy': 'string',
        'ProjectId': 'string'
    }
}

Response Structure

  • (dict) --
    • TrialName (string) --

      The name of the trial.

    • TrialArn (string) --

      The Amazon Resource Name (ARN) of the trial.

    • DisplayName (string) --

      The name of the trial as displayed. If DisplayName isn't specified, TrialName is displayed.

    • ExperimentName (string) --

      The name of the experiment the trial is part of.

    • Source (dict) --

      The Amazon Resource Name (ARN) of the source and, optionally, the job type.

      • SourceArn (string) --

        The Amazon Resource Name (ARN) of the source.

      • SourceType (string) --

        The source job type.

    • CreationTime (datetime) --

      When the trial was created.

    • CreatedBy (dict) --

      Who created the trial.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

    • LastModifiedTime (datetime) --

      When the trial was last modified.

    • LastModifiedBy (dict) --

      Who last modified the trial.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

    • MetadataProperties (dict) --

      Metadata properties of the tracking entity, trial, or trial component.

      • CommitId (string) --

        The commit ID.

      • Repository (string) --

        The repository.

      • GeneratedBy (string) --

        The entity this entity was generated by.

      • ProjectId (string) --

        The project ID.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_trial_component(**kwargs)

Provides a list of a trials component's properties.

See also: AWS API Documentation

Request Syntax

response = client.describe_trial_component(
    TrialComponentName='string'
)
Parameters
TrialComponentName (string) --

[REQUIRED]

The name of the trial component to describe.

Return type
dict
Returns
Response Syntax
{
    'TrialComponentName': 'string',
    'TrialComponentArn': 'string',
    'DisplayName': 'string',
    'Source': {
        'SourceArn': 'string',
        'SourceType': 'string'
    },
    'Status': {
        'PrimaryStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
        'Message': 'string'
    },
    'StartTime': datetime(2015, 1, 1),
    'EndTime': datetime(2015, 1, 1),
    'CreationTime': datetime(2015, 1, 1),
    'CreatedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    },
    'LastModifiedTime': datetime(2015, 1, 1),
    'LastModifiedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    },
    'Parameters': {
        'string': {
            'StringValue': 'string',
            'NumberValue': 123.0
        }
    },
    'InputArtifacts': {
        'string': {
            'MediaType': 'string',
            'Value': 'string'
        }
    },
    'OutputArtifacts': {
        'string': {
            'MediaType': 'string',
            'Value': 'string'
        }
    },
    'MetadataProperties': {
        'CommitId': 'string',
        'Repository': 'string',
        'GeneratedBy': 'string',
        'ProjectId': 'string'
    },
    'Metrics': [
        {
            'MetricName': 'string',
            'SourceArn': 'string',
            'TimeStamp': datetime(2015, 1, 1),
            'Max': 123.0,
            'Min': 123.0,
            'Last': 123.0,
            'Count': 123,
            'Avg': 123.0,
            'StdDev': 123.0
        },
    ],
    'LineageGroupArn': 'string',
    'Sources': [
        {
            'SourceArn': 'string',
            'SourceType': 'string'
        },
    ]
}

Response Structure

  • (dict) --
    • TrialComponentName (string) --

      The name of the trial component.

    • TrialComponentArn (string) --

      The Amazon Resource Name (ARN) of the trial component.

    • DisplayName (string) --

      The name of the component as displayed. If DisplayName isn't specified, TrialComponentName is displayed.

    • Source (dict) --

      The Amazon Resource Name (ARN) of the source and, optionally, the job type.

      • SourceArn (string) --

        The source Amazon Resource Name (ARN).

      • SourceType (string) --

        The source job type.

    • Status (dict) --

      The status of the component. States include:

      • InProgress
      • Completed
      • Failed
      • PrimaryStatus (string) --

        The status of the trial component.

      • Message (string) --

        If the component failed, a message describing why.

    • StartTime (datetime) --

      When the component started.

    • EndTime (datetime) --

      When the component ended.

    • CreationTime (datetime) --

      When the component was created.

    • CreatedBy (dict) --

      Who created the trial component.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

    • LastModifiedTime (datetime) --

      When the component was last modified.

    • LastModifiedBy (dict) --

      Who last modified the component.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

    • Parameters (dict) --

      The hyperparameters of the component.

      • (string) --
        • (dict) --

          The value of a hyperparameter. Only one of NumberValue or StringValue can be specified.

          This object is specified in the CreateTrialComponent request.

          • StringValue (string) --

            The string value of a categorical hyperparameter. If you specify a value for this parameter, you can't specify the NumberValue parameter.

          • NumberValue (float) --

            The numeric value of a numeric hyperparameter. If you specify a value for this parameter, you can't specify the StringValue parameter.

    • InputArtifacts (dict) --

      The input artifacts of the component.

      • (string) --
        • (dict) --

          Represents an input or output artifact of a trial component. You specify TrialComponentArtifact as part of the InputArtifacts and OutputArtifacts parameters in the CreateTrialComponent request.

          Examples of input artifacts are datasets, algorithms, hyperparameters, source code, and instance types. Examples of output artifacts are metrics, snapshots, logs, and images.

          • MediaType (string) --

            The media type of the artifact, which indicates the type of data in the artifact file. The media type consists of a type and a subtype concatenated with a slash (/) character, for example, text/csv, image/jpeg, and s3/uri. The type specifies the category of the media. The subtype specifies the kind of data.

          • Value (string) --

            The location of the artifact.

    • OutputArtifacts (dict) --

      The output artifacts of the component.

      • (string) --
        • (dict) --

          Represents an input or output artifact of a trial component. You specify TrialComponentArtifact as part of the InputArtifacts and OutputArtifacts parameters in the CreateTrialComponent request.

          Examples of input artifacts are datasets, algorithms, hyperparameters, source code, and instance types. Examples of output artifacts are metrics, snapshots, logs, and images.

          • MediaType (string) --

            The media type of the artifact, which indicates the type of data in the artifact file. The media type consists of a type and a subtype concatenated with a slash (/) character, for example, text/csv, image/jpeg, and s3/uri. The type specifies the category of the media. The subtype specifies the kind of data.

          • Value (string) --

            The location of the artifact.

    • MetadataProperties (dict) --

      Metadata properties of the tracking entity, trial, or trial component.

      • CommitId (string) --

        The commit ID.

      • Repository (string) --

        The repository.

      • GeneratedBy (string) --

        The entity this entity was generated by.

      • ProjectId (string) --

        The project ID.

    • Metrics (list) --

      The metrics for the component.

      • (dict) --

        A summary of the metrics of a trial component.

        • MetricName (string) --

          The name of the metric.

        • SourceArn (string) --

          The Amazon Resource Name (ARN) of the source.

        • TimeStamp (datetime) --

          When the metric was last updated.

        • Max (float) --

          The maximum value of the metric.

        • Min (float) --

          The minimum value of the metric.

        • Last (float) --

          The most recent value of the metric.

        • Count (integer) --

          The number of samples used to generate the metric.

        • Avg (float) --

          The average value of the metric.

        • StdDev (float) --

          The standard deviation of the metric.

    • LineageGroupArn (string) --

      The Amazon Resource Name (ARN) of the lineage group.

    • Sources (list) --

      A list of ARNs and, if applicable, job types for multiple sources of an experiment run.

      • (dict) --

        The Amazon Resource Name (ARN) and job type of the source of a trial component.

        • SourceArn (string) --

          The source Amazon Resource Name (ARN).

        • SourceType (string) --

          The source job type.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_user_profile(**kwargs)

Describes a user profile. For more information, see CreateUserProfile .

See also: AWS API Documentation

Request Syntax

response = client.describe_user_profile(
    DomainId='string',
    UserProfileName='string'
)
Parameters
  • DomainId (string) --

    [REQUIRED]

    The domain ID.

  • UserProfileName (string) --

    [REQUIRED]

    The user profile name. This value is not case sensitive.

Return type

dict

Returns

Response Syntax

{
    'DomainId': 'string',
    'UserProfileArn': 'string',
    'UserProfileName': 'string',
    'HomeEfsFileSystemUid': 'string',
    'Status': 'Deleting'|'Failed'|'InService'|'Pending'|'Updating'|'Update_Failed'|'Delete_Failed',
    'LastModifiedTime': datetime(2015, 1, 1),
    'CreationTime': datetime(2015, 1, 1),
    'FailureReason': 'string',
    'SingleSignOnUserIdentifier': 'string',
    'SingleSignOnUserValue': 'string',
    'UserSettings': {
        'ExecutionRole': 'string',
        'SecurityGroups': [
            'string',
        ],
        'SharingSettings': {
            'NotebookOutputOption': 'Allowed'|'Disabled',
            'S3OutputPath': 'string',
            'S3KmsKeyId': 'string'
        },
        'JupyterServerAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'LifecycleConfigArns': [
                'string',
            ],
            'CodeRepositories': [
                {
                    'RepositoryUrl': 'string'
                },
            ]
        },
        'KernelGatewayAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'CustomImages': [
                {
                    'ImageName': 'string',
                    'ImageVersionNumber': 123,
                    'AppImageConfigName': 'string'
                },
            ],
            'LifecycleConfigArns': [
                'string',
            ]
        },
        'TensorBoardAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            }
        },
        'RStudioServerProAppSettings': {
            'AccessStatus': 'ENABLED'|'DISABLED',
            'UserGroup': 'R_STUDIO_ADMIN'|'R_STUDIO_USER'
        },
        'RSessionAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'CustomImages': [
                {
                    'ImageName': 'string',
                    'ImageVersionNumber': 123,
                    'AppImageConfigName': 'string'
                },
            ]
        },
        'CanvasAppSettings': {
            'TimeSeriesForecastingSettings': {
                'Status': 'ENABLED'|'DISABLED',
                'AmazonForecastRoleArn': 'string'
            }
        }
    }
}

Response Structure

  • (dict) --

    • DomainId (string) --

      The ID of the domain that contains the profile.

    • UserProfileArn (string) --

      The user profile Amazon Resource Name (ARN).

    • UserProfileName (string) --

      The user profile name.

    • HomeEfsFileSystemUid (string) --

      The ID of the user's profile in the Amazon Elastic File System (EFS) volume.

    • Status (string) --

      The status.

    • LastModifiedTime (datetime) --

      The last modified time.

    • CreationTime (datetime) --

      The creation time.

    • FailureReason (string) --

      The failure reason.

    • SingleSignOnUserIdentifier (string) --

      The IAM Identity Center user identifier.

    • SingleSignOnUserValue (string) --

      The IAM Identity Center user value.

    • UserSettings (dict) --

      A collection of settings.

      • ExecutionRole (string) --

        The execution role for the user.

      • SecurityGroups (list) --

        The security groups for the Amazon Virtual Private Cloud (VPC) that Studio uses for communication.

        Optional when the CreateDomain.AppNetworkAccessType parameter is set to PublicInternetOnly .

        Required when the CreateDomain.AppNetworkAccessType parameter is set to VpcOnly .

        Amazon SageMaker adds a security group to allow NFS traffic from SageMaker Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown.

        • (string) --
      • SharingSettings (dict) --

        Specifies options for sharing SageMaker Studio notebooks.

        • NotebookOutputOption (string) --

          Whether to include the notebook cell output when sharing the notebook. The default is Disabled .

        • S3OutputPath (string) --

          When NotebookOutputOption is Allowed , the Amazon S3 bucket used to store the shared notebook snapshots.

        • S3KmsKeyId (string) --

          When NotebookOutputOption is Allowed , the Amazon Web Services Key Management Service (KMS) encryption key ID used to encrypt the notebook cell output in the Amazon S3 bucket.

      • JupyterServerAppSettings (dict) --

        The Jupyter server's app settings.

        • DefaultResourceSpec (dict) --

          The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.

          • SageMakerImageArn (string) --

            The ARN of the SageMaker image that the image version belongs to.

          • SageMakerImageVersionArn (string) --

            The ARN of the image version created on the instance.

          • InstanceType (string) --

            The instance type that the image version runs on.

            Note

            JupyterServer apps only support the system value.

            For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

          • LifecycleConfigArn (string) --

            The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

        • LifecycleConfigArns (list) --

          The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter is also required.

          Note

          To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.

          • (string) --
        • CodeRepositories (list) --

          A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.

          • (dict) --

            A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.

            • RepositoryUrl (string) --

              The URL of the Git repository.

      • KernelGatewayAppSettings (dict) --

        The kernel gateway app settings.

        • DefaultResourceSpec (dict) --

          The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app.

          Note

          The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the Amazon Web Services Command Line Interface or Amazon Web Services CloudFormation and the instance type parameter value is not passed.

          • SageMakerImageArn (string) --

            The ARN of the SageMaker image that the image version belongs to.

          • SageMakerImageVersionArn (string) --

            The ARN of the image version created on the instance.

          • InstanceType (string) --

            The instance type that the image version runs on.

            Note

            JupyterServer apps only support the system value.

            For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

          • LifecycleConfigArn (string) --

            The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

        • CustomImages (list) --

          A list of custom SageMaker images that are configured to run as a KernelGateway app.

          • (dict) --

            A custom SageMaker image. For more information, see Bring your own SageMaker image.

            • ImageName (string) --

              The name of the CustomImage. Must be unique to your account.

            • ImageVersionNumber (integer) --

              The version number of the CustomImage.

            • AppImageConfigName (string) --

              The name of the AppImageConfig.

        • LifecycleConfigArns (list) --

          The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.

          Note

          To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.

          • (string) --
      • TensorBoardAppSettings (dict) --

        The TensorBoard app settings.

        • DefaultResourceSpec (dict) --

          The default instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.

          • SageMakerImageArn (string) --

            The ARN of the SageMaker image that the image version belongs to.

          • SageMakerImageVersionArn (string) --

            The ARN of the image version created on the instance.

          • InstanceType (string) --

            The instance type that the image version runs on.

            Note

            JupyterServer apps only support the system value.

            For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

          • LifecycleConfigArn (string) --

            The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

      • RStudioServerProAppSettings (dict) --

        A collection of settings that configure user interaction with the RStudioServerPro app.

        • AccessStatus (string) --

          Indicates whether the current user has access to the RStudioServerPro app.

        • UserGroup (string) --

          The level of permissions that the user has within the RStudioServerPro app. This value defaults to User. The Admin value allows the user access to the RStudio Administrative Dashboard.

      • RSessionAppSettings (dict) --

        A collection of settings that configure the RSessionGateway app.

        • DefaultResourceSpec (dict) --

          Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that the version runs on.

          • SageMakerImageArn (string) --

            The ARN of the SageMaker image that the image version belongs to.

          • SageMakerImageVersionArn (string) --

            The ARN of the image version created on the instance.

          • InstanceType (string) --

            The instance type that the image version runs on.

            Note

            JupyterServer apps only support the system value.

            For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

          • LifecycleConfigArn (string) --

            The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

        • CustomImages (list) --

          A list of custom SageMaker images that are configured to run as a RSession app.

          • (dict) --

            A custom SageMaker image. For more information, see Bring your own SageMaker image.

            • ImageName (string) --

              The name of the CustomImage. Must be unique to your account.

            • ImageVersionNumber (integer) --

              The version number of the CustomImage.

            • AppImageConfigName (string) --

              The name of the AppImageConfig.

      • CanvasAppSettings (dict) --

        The Canvas app settings.

        • TimeSeriesForecastingSettings (dict) --

          Time series forecast settings for the Canvas app.

          • Status (string) --

            Describes whether time series forecasting is enabled or disabled in the Canvas app.

          • AmazonForecastRoleArn (string) --

            The IAM role that Canvas passes to Amazon Forecast for time series forecasting. By default, Canvas uses the execution role specified in the UserProfile that launches the Canvas app. If an execution role is not specified in the UserProfile , Canvas uses the execution role specified in the Domain that owns the UserProfile . To allow time series forecasting, this IAM role should have the AmazonSageMakerCanvasForecastAccess policy attached and forecast.amazonaws.com added in the trust relationship as a service principal.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
describe_workforce(**kwargs)

Lists private workforce information, including workforce name, Amazon Resource Name (ARN), and, if applicable, allowed IP address ranges ( CIDRs ). Allowable IP address ranges are the IP addresses that workers can use to access tasks.

Warning

This operation applies only to private workforces.

See also: AWS API Documentation

Request Syntax

response = client.describe_workforce(
    WorkforceName='string'
)
Parameters
WorkforceName (string) --

[REQUIRED]

The name of the private workforce whose access you want to restrict. WorkforceName is automatically set to default when a workforce is created and cannot be modified.

Return type
dict
Returns
Response Syntax
{
    'Workforce': {
        'WorkforceName': 'string',
        'WorkforceArn': 'string',
        'LastUpdatedDate': datetime(2015, 1, 1),
        'SourceIpConfig': {
            'Cidrs': [
                'string',
            ]
        },
        'SubDomain': 'string',
        'CognitoConfig': {
            'UserPool': 'string',
            'ClientId': 'string'
        },
        'OidcConfig': {
            'ClientId': 'string',
            'Issuer': 'string',
            'AuthorizationEndpoint': 'string',
            'TokenEndpoint': 'string',
            'UserInfoEndpoint': 'string',
            'LogoutEndpoint': 'string',
            'JwksUri': 'string'
        },
        'CreateDate': datetime(2015, 1, 1),
        'WorkforceVpcConfig': {
            'VpcId': 'string',
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ],
            'VpcEndpointId': 'string'
        },
        'Status': 'Initializing'|'Updating'|'Deleting'|'Failed'|'Active',
        'FailureReason': 'string'
    }
}

Response Structure

  • (dict) --
    • Workforce (dict) --

      A single private workforce, which is automatically created when you create your first private work team. You can create one private work force in each Amazon Web Services Region. By default, any workforce-related API operation used in a specific region will apply to the workforce created in that region. To learn how to create a private workforce, see Create a Private Workforce.

      • WorkforceName (string) --

        The name of the private workforce.

      • WorkforceArn (string) --

        The Amazon Resource Name (ARN) of the private workforce.

      • LastUpdatedDate (datetime) --

        The most recent date that was used to successfully add one or more IP address ranges ( CIDRs ) to a private workforce's allow list.

      • SourceIpConfig (dict) --

        A list of one to ten IP address ranges ( CIDRs ) to be added to the workforce allow list. By default, a workforce isn't restricted to specific IP addresses.

        • Cidrs (list) --

          A list of one to ten Classless Inter-Domain Routing (CIDR) values.

          Maximum: Ten CIDR values

          Note

          The following Length Constraints apply to individual CIDR values in the CIDR value list.

          • (string) --
      • SubDomain (string) --

        The subdomain for your OIDC Identity Provider.

      • CognitoConfig (dict) --

        The configuration of an Amazon Cognito workforce. A single Cognito workforce is created using and corresponds to a single Amazon Cognito user pool.

        • UserPool (string) --

          A user pool is a user directory in Amazon Cognito. With a user pool, your users can sign in to your web or mobile app through Amazon Cognito. Your users can also sign in through social identity providers like Google, Facebook, Amazon, or Apple, and through SAML identity providers.

        • ClientId (string) --

          The client ID for your Amazon Cognito user pool.

      • OidcConfig (dict) --

        The configuration of an OIDC Identity Provider (IdP) private workforce.

        • ClientId (string) --

          The OIDC IdP client ID used to configure your private workforce.

        • Issuer (string) --

          The OIDC IdP issuer used to configure your private workforce.

        • AuthorizationEndpoint (string) --

          The OIDC IdP authorization endpoint used to configure your private workforce.

        • TokenEndpoint (string) --

          The OIDC IdP token endpoint used to configure your private workforce.

        • UserInfoEndpoint (string) --

          The OIDC IdP user information endpoint used to configure your private workforce.

        • LogoutEndpoint (string) --

          The OIDC IdP logout endpoint used to configure your private workforce.

        • JwksUri (string) --

          The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your private workforce.

      • CreateDate (datetime) --

        The date that the workforce is created.

      • WorkforceVpcConfig (dict) --

        The configuration of a VPC workforce.

        • VpcId (string) --

          The ID of the VPC that the workforce uses for communication.

        • SecurityGroupIds (list) --

          The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet.

          • (string) --
        • Subnets (list) --

          The ID of the subnets in the VPC that you want to connect.

          • (string) --
        • VpcEndpointId (string) --

          The IDs for the VPC service endpoints of your VPC workforce when it is created and updated.

      • Status (string) --

        The status of your workforce.

      • FailureReason (string) --

        The reason your workforce failed.

describe_workteam(**kwargs)

Gets information about a specific work team. You can see information such as the create date, the last updated date, membership information, and the work team's Amazon Resource Name (ARN).

See also: AWS API Documentation

Request Syntax

response = client.describe_workteam(
    WorkteamName='string'
)
Parameters
WorkteamName (string) --

[REQUIRED]

The name of the work team to return a description of.

Return type
dict
Returns
Response Syntax
{
    'Workteam': {
        'WorkteamName': 'string',
        'MemberDefinitions': [
            {
                'CognitoMemberDefinition': {
                    'UserPool': 'string',
                    'UserGroup': 'string',
                    'ClientId': 'string'
                },
                'OidcMemberDefinition': {
                    'Groups': [
                        'string',
                    ]
                }
            },
        ],
        'WorkteamArn': 'string',
        'WorkforceArn': 'string',
        'ProductListingIds': [
            'string',
        ],
        'Description': 'string',
        'SubDomain': 'string',
        'CreateDate': datetime(2015, 1, 1),
        'LastUpdatedDate': datetime(2015, 1, 1),
        'NotificationConfiguration': {
            'NotificationTopicArn': 'string'
        }
    }
}

Response Structure

  • (dict) --
    • Workteam (dict) --

      A Workteam instance that contains information about the work team.

      • WorkteamName (string) --

        The name of the work team.

      • MemberDefinitions (list) --

        A list of MemberDefinition objects that contains objects that identify the workers that make up the work team.

        Workforces can be created using Amazon Cognito or your own OIDC Identity Provider (IdP). For private workforces created using Amazon Cognito use CognitoMemberDefinition . For workforces created using your own OIDC identity provider (IdP) use OidcMemberDefinition .

        • (dict) --

          Defines an Amazon Cognito or your own OIDC IdP user group that is part of a work team.

          • CognitoMemberDefinition (dict) --

            The Amazon Cognito user group that is part of the work team.

            • UserPool (string) --

              An identifier for a user pool. The user pool must be in the same region as the service that you are calling.

            • UserGroup (string) --

              An identifier for a user group.

            • ClientId (string) --

              An identifier for an application client. You must create the app client ID using Amazon Cognito.

          • OidcMemberDefinition (dict) --

            A list user groups that exist in your OIDC Identity Provider (IdP). One to ten groups can be used to create a single private work team. When you add a user group to the list of Groups , you can add that user group to one or more private work teams. If you add a user group to a private work team, all workers in that user group are added to the work team.

            • Groups (list) --

              A list of comma seperated strings that identifies user groups in your OIDC IdP. Each user group is made up of a group of private workers.

              • (string) --
      • WorkteamArn (string) --

        The Amazon Resource Name (ARN) that identifies the work team.

      • WorkforceArn (string) --

        The Amazon Resource Name (ARN) of the workforce.

      • ProductListingIds (list) --

        The Amazon Marketplace identifier for a vendor's work team.

        • (string) --
      • Description (string) --

        A description of the work team.

      • SubDomain (string) --

        The URI of the labeling job's user interface. Workers open this URI to start labeling your data objects.

      • CreateDate (datetime) --

        The date and time that the work team was created (timestamp).

      • LastUpdatedDate (datetime) --

        The date and time that the work team was last updated (timestamp).

      • NotificationConfiguration (dict) --

        Configures SNS notifications of available or expiring work items for work teams.

        • NotificationTopicArn (string) --

          The ARN for the Amazon SNS topic to which notifications should be published.

disable_sagemaker_servicecatalog_portfolio()

Disables using Service Catalog in SageMaker. Service Catalog is used to create SageMaker projects.

See also: AWS API Documentation

Request Syntax

response = client.disable_sagemaker_servicecatalog_portfolio()
Return type
dict
Returns
Response Syntax
{}

Response Structure

  • (dict) --
disassociate_trial_component(**kwargs)

Disassociates a trial component from a trial. This doesn't effect other trials the component is associated with. Before you can delete a component, you must disassociate the component from all trials it is associated with. To associate a trial component with a trial, call the AssociateTrialComponent API.

To get a list of the trials a component is associated with, use the Search API. Specify ExperimentTrialComponent for the Resource parameter. The list appears in the response under Results.TrialComponent.Parents .

See also: AWS API Documentation

Request Syntax

response = client.disassociate_trial_component(
    TrialComponentName='string',
    TrialName='string'
)
Parameters
  • TrialComponentName (string) --

    [REQUIRED]

    The name of the component to disassociate from the trial.

  • TrialName (string) --

    [REQUIRED]

    The name of the trial to disassociate from.

Return type

dict

Returns

Response Syntax

{
    'TrialComponentArn': 'string',
    'TrialArn': 'string'
}

Response Structure

  • (dict) --

    • TrialComponentArn (string) --

      The Amazon Resource Name (ARN) of the trial component.

    • TrialArn (string) --

      The Amazon Resource Name (ARN) of the trial.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
enable_sagemaker_servicecatalog_portfolio()

Enables using Service Catalog in SageMaker. Service Catalog is used to create SageMaker projects.

See also: AWS API Documentation

Request Syntax

response = client.enable_sagemaker_servicecatalog_portfolio()
Return type
dict
Returns
Response Syntax
{}

Response Structure

  • (dict) --
get_device_fleet_report(**kwargs)

Describes a fleet.

See also: AWS API Documentation

Request Syntax

response = client.get_device_fleet_report(
    DeviceFleetName='string'
)
Parameters
DeviceFleetName (string) --

[REQUIRED]

The name of the fleet.

Return type
dict
Returns
Response Syntax
{
    'DeviceFleetArn': 'string',
    'DeviceFleetName': 'string',
    'OutputConfig': {
        'S3OutputLocation': 'string',
        'KmsKeyId': 'string',
        'PresetDeploymentType': 'GreengrassV2Component',
        'PresetDeploymentConfig': 'string'
    },
    'Description': 'string',
    'ReportGenerated': datetime(2015, 1, 1),
    'DeviceStats': {
        'ConnectedDeviceCount': 123,
        'RegisteredDeviceCount': 123
    },
    'AgentVersions': [
        {
            'Version': 'string',
            'AgentCount': 123
        },
    ],
    'ModelStats': [
        {
            'ModelName': 'string',
            'ModelVersion': 'string',
            'OfflineDeviceCount': 123,
            'ConnectedDeviceCount': 123,
            'ActiveDeviceCount': 123,
            'SamplingDeviceCount': 123
        },
    ]
}

Response Structure

  • (dict) --
    • DeviceFleetArn (string) --

      The Amazon Resource Name (ARN) of the device.

    • DeviceFleetName (string) --

      The name of the fleet.

    • OutputConfig (dict) --

      The output configuration for storing sample data collected by the fleet.

      • S3OutputLocation (string) --

        The Amazon Simple Storage (S3) bucker URI.

      • KmsKeyId (string) --

        The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume after compilation job. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account.

      • PresetDeploymentType (string) --

        The deployment type SageMaker Edge Manager will create. Currently only supports Amazon Web Services IoT Greengrass Version 2 components.

      • PresetDeploymentConfig (string) --

        The configuration used to create deployment artifacts. Specify configuration options with a JSON string. The available configuration options for each type are:

        • ComponentName (optional) - Name of the GreenGrass V2 component. If not specified, the default name generated consists of "SagemakerEdgeManager" and the name of your SageMaker Edge Manager packaging job.
        • ComponentDescription (optional) - Description of the component.
        • ComponentVersion (optional) - The version of the component.

        Note

        Amazon Web Services IoT Greengrass uses semantic versions for components. Semantic versions follow a*major.minor.patch* number system. For example, version 1.0.0 represents the first major release for a component. For more information, see the semantic version specification.

        • PlatformOS (optional) - The name of the operating system for the platform. Supported platforms include Windows and Linux.
        • PlatformArchitecture (optional) - The processor architecture for the platform. Supported architectures Windows include: Windows32_x86, Windows64_x64. Supported architectures for Linux include: Linux x86_64, Linux ARMV8.
    • Description (string) --

      Description of the fleet.

    • ReportGenerated (datetime) --

      Timestamp of when the report was generated.

    • DeviceStats (dict) --

      Status of devices.

      • ConnectedDeviceCount (integer) --

        The number of devices connected with a heartbeat.

      • RegisteredDeviceCount (integer) --

        The number of registered devices.

    • AgentVersions (list) --

      The versions of Edge Manager agent deployed on the fleet.

      • (dict) --

        Edge Manager agent version.

        • Version (string) --

          Version of the agent.

        • AgentCount (integer) --

          The number of Edge Manager agents.

    • ModelStats (list) --

      Status of model on device.

      • (dict) --

        Status of edge devices with this model.

        • ModelName (string) --

          The name of the model.

        • ModelVersion (string) --

          The model version.

        • OfflineDeviceCount (integer) --

          The number of devices that have this model version and do not have a heart beat.

        • ConnectedDeviceCount (integer) --

          The number of devices that have this model version and have a heart beat.

        • ActiveDeviceCount (integer) --

          The number of devices that have this model version, a heart beat, and are currently running.

        • SamplingDeviceCount (integer) --

          The number of devices with this model version and are producing sample data.

get_lineage_group_policy(**kwargs)

The resource policy for the lineage group.

See also: AWS API Documentation

Request Syntax

response = client.get_lineage_group_policy(
    LineageGroupName='string'
)
Parameters
LineageGroupName (string) --

[REQUIRED]

The name or Amazon Resource Name (ARN) of the lineage group.

Return type
dict
Returns
Response Syntax
{
    'LineageGroupArn': 'string',
    'ResourcePolicy': 'string'
}

Response Structure

  • (dict) --
    • LineageGroupArn (string) --

      The Amazon Resource Name (ARN) of the lineage group.

    • ResourcePolicy (string) --

      The resource policy that gives access to the lineage group in another account.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
get_model_package_group_policy(**kwargs)

Gets a resource policy that manages access for a model group. For information about resource policies, see Identity-based policies and resource-based policies in the Amazon Web Services Identity and Access Management User Guide. .

See also: AWS API Documentation

Request Syntax

response = client.get_model_package_group_policy(
    ModelPackageGroupName='string'
)
Parameters
ModelPackageGroupName (string) --

[REQUIRED]

The name of the model group for which to get the resource policy.

Return type
dict
Returns
Response Syntax
{
    'ResourcePolicy': 'string'
}

Response Structure

  • (dict) --
    • ResourcePolicy (string) --

      The resource policy for the model group.

get_paginator(operation_name)

Create a paginator for an operation.

Parameters
operation_name (string) -- The operation name. This is the same name as the method name on the client. For example, if the method name is create_foo, and you'd normally invoke the operation as client.create_foo(**kwargs), if the create_foo operation can be paginated, you can use the call client.get_paginator("create_foo").
Raises OperationNotPageableError
Raised if the operation is not pageable. You can use the client.can_paginate method to check if an operation is pageable.
Return type
L{botocore.paginate.Paginator}
Returns
A paginator object.
get_sagemaker_servicecatalog_portfolio_status()

Gets the status of Service Catalog in SageMaker. Service Catalog is used to create SageMaker projects.

See also: AWS API Documentation

Request Syntax

response = client.get_sagemaker_servicecatalog_portfolio_status()
Return type
dict
Returns
Response Syntax
{
    'Status': 'Enabled'|'Disabled'
}

Response Structure

  • (dict) --
    • Status (string) --

      Whether Service Catalog is enabled or disabled in SageMaker.

get_search_suggestions(**kwargs)

An auto-complete API for the search functionality in the Amazon SageMaker console. It returns suggestions of possible matches for the property name to use in Search queries. Provides suggestions for HyperParameters , Tags , and Metrics .

See also: AWS API Documentation

Request Syntax

response = client.get_search_suggestions(
    Resource='TrainingJob'|'Experiment'|'ExperimentTrial'|'ExperimentTrialComponent'|'Endpoint'|'ModelPackage'|'ModelPackageGroup'|'Pipeline'|'PipelineExecution'|'FeatureGroup'|'Project'|'FeatureMetadata'|'HyperParameterTuningJob'|'ModelCard'|'Model',
    SuggestionQuery={
        'PropertyNameQuery': {
            'PropertyNameHint': 'string'
        }
    }
)
Parameters
  • Resource (string) --

    [REQUIRED]

    The name of the Amazon SageMaker resource to search for.

  • SuggestionQuery (dict) --

    Limits the property names that are included in the response.

    • PropertyNameQuery (dict) --

      Defines a property name hint. Only property names that begin with the specified hint are included in the response.

      • PropertyNameHint (string) -- [REQUIRED]

        Text that begins a property's name.

Return type

dict

Returns

Response Syntax

{
    'PropertyNameSuggestions': [
        {
            'PropertyName': 'string'
        },
    ]
}

Response Structure

  • (dict) --

    • PropertyNameSuggestions (list) --

      A list of property names for a Resource that match a SuggestionQuery .

      • (dict) --

        A property name returned from a GetSearchSuggestions call that specifies a value in the PropertyNameQuery field.

        • PropertyName (string) --

          A suggested property name based on what you entered in the search textbox in the Amazon SageMaker console.

get_waiter(waiter_name)

Returns an object that can wait for some condition.

Parameters
waiter_name (str) -- The name of the waiter to get. See the waiters section of the service docs for a list of available waiters.
Returns
The specified waiter object.
Return type
botocore.waiter.Waiter
import_hub_content(**kwargs)

Import hub content.

Note

Hub APIs are only callable through SageMaker Studio.

See also: AWS API Documentation

Request Syntax

response = client.import_hub_content(
    HubContentName='string',
    HubContentVersion='string',
    HubContentType='Model'|'Notebook',
    DocumentSchemaVersion='string',
    HubName='string',
    HubContentDisplayName='string',
    HubContentDescription='string',
    HubContentMarkdown='string',
    HubContentDocument='string',
    HubContentSearchKeywords=[
        'string',
    ],
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • HubContentName (string) --

    [REQUIRED]

    The name of the hub content to import.

  • HubContentVersion (string) -- The version of the hub content to import.
  • HubContentType (string) --

    [REQUIRED]

    The type of hub content to import.

  • DocumentSchemaVersion (string) --

    [REQUIRED]

    The version of the hub content schema to import.

  • HubName (string) --

    [REQUIRED]

    The name of the hub to import content into.

  • HubContentDisplayName (string) -- The display name of the hub content to import.
  • HubContentDescription (string) -- A description of the hub content to import.
  • HubContentMarkdown (string) -- A string that provides a description of the hub content. This string can include links, tables, and standard markdown formating.
  • HubContentDocument (string) --

    [REQUIRED]

    The hub content document that describes information about the hub content such as type, associated containers, scripts, and more.

  • HubContentSearchKeywords (list) --

    The searchable keywords of the hub content.

    • (string) --
  • Tags (list) --

    Any tags associated with the hub content.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'HubArn': 'string',
    'HubContentArn': 'string'
}

Response Structure

  • (dict) --

    • HubArn (string) --

      The ARN of the hub that the content was imported into.

    • HubContentArn (string) --

      The ARN of the hub content that was imported.

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceLimitExceeded
  • SageMaker.Client.exceptions.ResourceNotFound
list_actions(**kwargs)

Lists the actions in your account and their properties.

See also: AWS API Documentation

Request Syntax

response = client.list_actions(
    SourceUri='string',
    ActionType='string',
    CreatedAfter=datetime(2015, 1, 1),
    CreatedBefore=datetime(2015, 1, 1),
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123
)
Parameters
  • SourceUri (string) -- A filter that returns only actions with the specified source URI.
  • ActionType (string) -- A filter that returns only actions of the specified type.
  • CreatedAfter (datetime) -- A filter that returns only actions created on or after the specified time.
  • CreatedBefore (datetime) -- A filter that returns only actions created on or before the specified time.
  • SortBy (string) -- The property used to sort results. The default value is CreationTime .
  • SortOrder (string) -- The sort order. The default value is Descending .
  • NextToken (string) -- If the previous call to ListActions didn't return the full set of actions, the call returns a token for getting the next set of actions.
  • MaxResults (integer) -- The maximum number of actions to return in the response. The default value is 10.
Return type

dict

Returns

Response Syntax

{
    'ActionSummaries': [
        {
            'ActionArn': 'string',
            'ActionName': 'string',
            'Source': {
                'SourceUri': 'string',
                'SourceType': 'string',
                'SourceId': 'string'
            },
            'ActionType': 'string',
            'Status': 'Unknown'|'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • ActionSummaries (list) --

      A list of actions and their properties.

      • (dict) --

        Lists the properties of an action . An action represents an action or activity. Some examples are a workflow step and a model deployment. Generally, an action involves at least one input artifact or output artifact.

        • ActionArn (string) --

          The Amazon Resource Name (ARN) of the action.

        • ActionName (string) --

          The name of the action.

        • Source (dict) --

          The source of the action.

          • SourceUri (string) --

            The URI of the source.

          • SourceType (string) --

            The type of the source.

          • SourceId (string) --

            The ID of the source.

        • ActionType (string) --

          The type of the action.

        • Status (string) --

          The status of the action.

        • CreationTime (datetime) --

          When the action was created.

        • LastModifiedTime (datetime) --

          When the action was last modified.

    • NextToken (string) --

      A token for getting the next set of actions, if there are any.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
list_algorithms(**kwargs)

Lists the machine learning algorithms that have been created.

See also: AWS API Documentation

Request Syntax

response = client.list_algorithms(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    MaxResults=123,
    NameContains='string',
    NextToken='string',
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending'
)
Parameters
  • CreationTimeAfter (datetime) -- A filter that returns only algorithms created after the specified time (timestamp).
  • CreationTimeBefore (datetime) -- A filter that returns only algorithms created before the specified time (timestamp).
  • MaxResults (integer) -- The maximum number of algorithms to return in the response.
  • NameContains (string) -- A string in the algorithm name. This filter returns only algorithms whose name contains the specified string.
  • NextToken (string) -- If the response to a previous ListAlgorithms request was truncated, the response includes a NextToken . To retrieve the next set of algorithms, use the token in the next request.
  • SortBy (string) -- The parameter by which to sort the results. The default is CreationTime .
  • SortOrder (string) -- The sort order for the results. The default is Ascending .
Return type

dict

Returns

Response Syntax

{
    'AlgorithmSummaryList': [
        {
            'AlgorithmName': 'string',
            'AlgorithmArn': 'string',
            'AlgorithmDescription': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'AlgorithmStatus': 'Pending'|'InProgress'|'Completed'|'Failed'|'Deleting'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • AlgorithmSummaryList (list) --

      >An array of AlgorithmSummary objects, each of which lists an algorithm.

      • (dict) --

        Provides summary information about an algorithm.

        • AlgorithmName (string) --

          The name of the algorithm that is described by the summary.

        • AlgorithmArn (string) --

          The Amazon Resource Name (ARN) of the algorithm.

        • AlgorithmDescription (string) --

          A brief description of the algorithm.

        • CreationTime (datetime) --

          A timestamp that shows when the algorithm was created.

        • AlgorithmStatus (string) --

          The overall status of the algorithm.

    • NextToken (string) --

      If the response is truncated, SageMaker returns this token. To retrieve the next set of algorithms, use it in the subsequent request.

list_aliases(**kwargs)

Lists the aliases of a specified image or image version.

See also: AWS API Documentation

Request Syntax

response = client.list_aliases(
    ImageName='string',
    Alias='string',
    Version=123,
    MaxResults=123,
    NextToken='string'
)
Parameters
  • ImageName (string) --

    [REQUIRED]

    The name of the image.

  • Alias (string) -- The alias of the image version.
  • Version (integer) -- The version of the image. If image version is not specified, the aliases of all versions of the image are listed.
  • MaxResults (integer) -- The maximum number of aliases to return.
  • NextToken (string) -- If the previous call to ListAliases didn't return the full set of aliases, the call returns a token for retrieving the next set of aliases.
Return type

dict

Returns

Response Syntax

{
    'SageMakerImageVersionAliases': [
        'string',
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • SageMakerImageVersionAliases (list) --

      A list of SageMaker image version aliases.

      • (string) --
    • NextToken (string) --

      A token for getting the next set of aliases, if more aliases exist.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
list_app_image_configs(**kwargs)

Lists the AppImageConfigs in your account and their properties. The list can be filtered by creation time or modified time, and whether the AppImageConfig name contains a specified string.

See also: AWS API Documentation

Request Syntax

response = client.list_app_image_configs(
    MaxResults=123,
    NextToken='string',
    NameContains='string',
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1),
    ModifiedTimeBefore=datetime(2015, 1, 1),
    ModifiedTimeAfter=datetime(2015, 1, 1),
    SortBy='CreationTime'|'LastModifiedTime'|'Name',
    SortOrder='Ascending'|'Descending'
)
Parameters
  • MaxResults (integer) -- The maximum number of AppImageConfigs to return in the response. The default value is 10.
  • NextToken (string) -- If the previous call to ListImages didn't return the full set of AppImageConfigs, the call returns a token for getting the next set of AppImageConfigs.
  • NameContains (string) -- A filter that returns only AppImageConfigs whose name contains the specified string.
  • CreationTimeBefore (datetime) -- A filter that returns only AppImageConfigs created on or before the specified time.
  • CreationTimeAfter (datetime) -- A filter that returns only AppImageConfigs created on or after the specified time.
  • ModifiedTimeBefore (datetime) -- A filter that returns only AppImageConfigs modified on or before the specified time.
  • ModifiedTimeAfter (datetime) -- A filter that returns only AppImageConfigs modified on or after the specified time.
  • SortBy (string) -- The property used to sort results. The default value is CreationTime .
  • SortOrder (string) -- The sort order. The default value is Descending .
Return type

dict

Returns

Response Syntax

{
    'NextToken': 'string',
    'AppImageConfigs': [
        {
            'AppImageConfigArn': 'string',
            'AppImageConfigName': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'KernelGatewayImageConfig': {
                'KernelSpecs': [
                    {
                        'Name': 'string',
                        'DisplayName': 'string'
                    },
                ],
                'FileSystemConfig': {
                    'MountPath': 'string',
                    'DefaultUid': 123,
                    'DefaultGid': 123
                }
            }
        },
    ]
}

Response Structure

  • (dict) --

    • NextToken (string) --

      A token for getting the next set of AppImageConfigs, if there are any.

    • AppImageConfigs (list) --

      A list of AppImageConfigs and their properties.

      • (dict) --

        The configuration for running a SageMaker image as a KernelGateway app.

        • AppImageConfigArn (string) --

          The Amazon Resource Name (ARN) of the AppImageConfig.

        • AppImageConfigName (string) --

          The name of the AppImageConfig. Must be unique to your account.

        • CreationTime (datetime) --

          When the AppImageConfig was created.

        • LastModifiedTime (datetime) --

          When the AppImageConfig was last modified.

        • KernelGatewayImageConfig (dict) --

          The configuration for the file system and kernels in the SageMaker image.

          • KernelSpecs (list) --

            The specification of the Jupyter kernels in the image.

            • (dict) --

              The specification of a Jupyter kernel.

              • Name (string) --

                The name of the Jupyter kernel in the image. This value is case sensitive.

              • DisplayName (string) --

                The display name of the kernel.

          • FileSystemConfig (dict) --

            The Amazon Elastic File System (EFS) storage configuration for a SageMaker image.

            • MountPath (string) --

              The path within the image to mount the user's EFS home directory. The directory should be empty. If not specified, defaults to /home/sagemaker-user .

            • DefaultUid (integer) --

              The default POSIX user ID (UID). If not specified, defaults to 1000 .

            • DefaultGid (integer) --

              The default POSIX group ID (GID). If not specified, defaults to 100 .

list_apps(**kwargs)

Lists apps.

See also: AWS API Documentation

Request Syntax

response = client.list_apps(
    NextToken='string',
    MaxResults=123,
    SortOrder='Ascending'|'Descending',
    SortBy='CreationTime',
    DomainIdEquals='string',
    UserProfileNameEquals='string',
    SpaceNameEquals='string'
)
Parameters
  • NextToken (string) -- If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
  • MaxResults (integer) -- Returns a list up to a specified limit.
  • SortOrder (string) -- The sort order for the results. The default is Ascending.
  • SortBy (string) -- The parameter by which to sort the results. The default is CreationTime.
  • DomainIdEquals (string) -- A parameter to search for the domain ID.
  • UserProfileNameEquals (string) -- A parameter to search by user profile name. If SpaceNameEquals is set, then this value cannot be set.
  • SpaceNameEquals (string) -- A parameter to search by space name. If UserProfileNameEquals is set, then this value cannot be set.
Return type

dict

Returns

Response Syntax

{
    'Apps': [
        {
            'DomainId': 'string',
            'UserProfileName': 'string',
            'AppType': 'JupyterServer'|'KernelGateway'|'TensorBoard'|'RStudioServerPro'|'RSessionGateway',
            'AppName': 'string',
            'Status': 'Deleted'|'Deleting'|'Failed'|'InService'|'Pending',
            'CreationTime': datetime(2015, 1, 1),
            'SpaceName': 'string'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • Apps (list) --

      The list of apps.

      • (dict) --

        Details about an Amazon SageMaker app.

        • DomainId (string) --

          The domain ID.

        • UserProfileName (string) --

          The user profile name.

        • AppType (string) --

          The type of app.

        • AppName (string) --

          The name of the app.

        • Status (string) --

          The status.

        • CreationTime (datetime) --

          The creation time.

        • SpaceName (string) --

          The name of the space.

    • NextToken (string) --

      If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

list_artifacts(**kwargs)

Lists the artifacts in your account and their properties.

See also: AWS API Documentation

Request Syntax

response = client.list_artifacts(
    SourceUri='string',
    ArtifactType='string',
    CreatedAfter=datetime(2015, 1, 1),
    CreatedBefore=datetime(2015, 1, 1),
    SortBy='CreationTime',
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123
)
Parameters
  • SourceUri (string) -- A filter that returns only artifacts with the specified source URI.
  • ArtifactType (string) -- A filter that returns only artifacts of the specified type.
  • CreatedAfter (datetime) -- A filter that returns only artifacts created on or after the specified time.
  • CreatedBefore (datetime) -- A filter that returns only artifacts created on or before the specified time.
  • SortBy (string) -- The property used to sort results. The default value is CreationTime .
  • SortOrder (string) -- The sort order. The default value is Descending .
  • NextToken (string) -- If the previous call to ListArtifacts didn't return the full set of artifacts, the call returns a token for getting the next set of artifacts.
  • MaxResults (integer) -- The maximum number of artifacts to return in the response. The default value is 10.
Return type

dict

Returns

Response Syntax

{
    'ArtifactSummaries': [
        {
            'ArtifactArn': 'string',
            'ArtifactName': 'string',
            'Source': {
                'SourceUri': 'string',
                'SourceTypes': [
                    {
                        'SourceIdType': 'MD5Hash'|'S3ETag'|'S3Version'|'Custom',
                        'Value': 'string'
                    },
                ]
            },
            'ArtifactType': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • ArtifactSummaries (list) --

      A list of artifacts and their properties.

      • (dict) --

        Lists a summary of the properties of an artifact. An artifact represents a URI addressable object or data. Some examples are a dataset and a model.

        • ArtifactArn (string) --

          The Amazon Resource Name (ARN) of the artifact.

        • ArtifactName (string) --

          The name of the artifact.

        • Source (dict) --

          The source of the artifact.

          • SourceUri (string) --

            The URI of the source.

          • SourceTypes (list) --

            A list of source types.

            • (dict) --

              The ID and ID type of an artifact source.

              • SourceIdType (string) --

                The type of ID.

              • Value (string) --

                The ID.

        • ArtifactType (string) --

          The type of the artifact.

        • CreationTime (datetime) --

          When the artifact was created.

        • LastModifiedTime (datetime) --

          When the artifact was last modified.

    • NextToken (string) --

      A token for getting the next set of artifacts, if there are any.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
list_associations(**kwargs)

Lists the associations in your account and their properties.

See also: AWS API Documentation

Request Syntax

response = client.list_associations(
    SourceArn='string',
    DestinationArn='string',
    SourceType='string',
    DestinationType='string',
    AssociationType='ContributedTo'|'AssociatedWith'|'DerivedFrom'|'Produced',
    CreatedAfter=datetime(2015, 1, 1),
    CreatedBefore=datetime(2015, 1, 1),
    SortBy='SourceArn'|'DestinationArn'|'SourceType'|'DestinationType'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123
)
Parameters
  • SourceArn (string) -- A filter that returns only associations with the specified source ARN.
  • DestinationArn (string) -- A filter that returns only associations with the specified destination Amazon Resource Name (ARN).
  • SourceType (string) -- A filter that returns only associations with the specified source type.
  • DestinationType (string) -- A filter that returns only associations with the specified destination type.
  • AssociationType (string) -- A filter that returns only associations of the specified type.
  • CreatedAfter (datetime) -- A filter that returns only associations created on or after the specified time.
  • CreatedBefore (datetime) -- A filter that returns only associations created on or before the specified time.
  • SortBy (string) -- The property used to sort results. The default value is CreationTime .
  • SortOrder (string) -- The sort order. The default value is Descending .
  • NextToken (string) -- If the previous call to ListAssociations didn't return the full set of associations, the call returns a token for getting the next set of associations.
  • MaxResults (integer) -- The maximum number of associations to return in the response. The default value is 10.
Return type

dict

Returns

Response Syntax

{
    'AssociationSummaries': [
        {
            'SourceArn': 'string',
            'DestinationArn': 'string',
            'SourceType': 'string',
            'DestinationType': 'string',
            'AssociationType': 'ContributedTo'|'AssociatedWith'|'DerivedFrom'|'Produced',
            'SourceName': 'string',
            'DestinationName': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'CreatedBy': {
                'UserProfileArn': 'string',
                'UserProfileName': 'string',
                'DomainId': 'string'
            }
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • AssociationSummaries (list) --

      A list of associations and their properties.

      • (dict) --

        Lists a summary of the properties of an association. An association is an entity that links other lineage or experiment entities. An example would be an association between a training job and a model.

        • SourceArn (string) --

          The ARN of the source.

        • DestinationArn (string) --

          The Amazon Resource Name (ARN) of the destination.

        • SourceType (string) --

          The source type.

        • DestinationType (string) --

          The destination type.

        • AssociationType (string) --

          The type of the association.

        • SourceName (string) --

          The name of the source.

        • DestinationName (string) --

          The name of the destination.

        • CreationTime (datetime) --

          When the association was created.

        • CreatedBy (dict) --

          Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

          • UserProfileArn (string) --

            The Amazon Resource Name (ARN) of the user's profile.

          • UserProfileName (string) --

            The name of the user's profile.

          • DomainId (string) --

            The domain associated with the user.

    • NextToken (string) --

      A token for getting the next set of associations, if there are any.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
list_auto_ml_jobs(**kwargs)

Request a list of jobs.

See also: AWS API Documentation

Request Syntax

response = client.list_auto_ml_jobs(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    NameContains='string',
    StatusEquals='Completed'|'InProgress'|'Failed'|'Stopped'|'Stopping',
    SortOrder='Ascending'|'Descending',
    SortBy='Name'|'CreationTime'|'Status',
    MaxResults=123,
    NextToken='string'
)
Parameters
  • CreationTimeAfter (datetime) -- Request a list of jobs, using a filter for time.
  • CreationTimeBefore (datetime) -- Request a list of jobs, using a filter for time.
  • LastModifiedTimeAfter (datetime) -- Request a list of jobs, using a filter for time.
  • LastModifiedTimeBefore (datetime) -- Request a list of jobs, using a filter for time.
  • NameContains (string) -- Request a list of jobs, using a search filter for name.
  • StatusEquals (string) -- Request a list of jobs, using a filter for status.
  • SortOrder (string) -- The sort order for the results. The default is Descending .
  • SortBy (string) -- The parameter by which to sort the results. The default is Name .
  • MaxResults (integer) -- Request a list of jobs up to a specified limit.
  • NextToken (string) -- If the previous response was truncated, you receive this token. Use it in your next request to receive the next set of results.
Return type

dict

Returns

Response Syntax

{
    'AutoMLJobSummaries': [
        {
            'AutoMLJobName': 'string',
            'AutoMLJobArn': 'string',
            'AutoMLJobStatus': 'Completed'|'InProgress'|'Failed'|'Stopped'|'Stopping',
            'AutoMLJobSecondaryStatus': 'Starting'|'AnalyzingData'|'FeatureEngineering'|'ModelTuning'|'MaxCandidatesReached'|'Failed'|'Stopped'|'MaxAutoMLJobRuntimeReached'|'Stopping'|'CandidateDefinitionsGenerated'|'GeneratingExplainabilityReport'|'Completed'|'ExplainabilityError'|'DeployingModel'|'ModelDeploymentError'|'GeneratingModelInsightsReport'|'ModelInsightsError',
            'CreationTime': datetime(2015, 1, 1),
            'EndTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'FailureReason': 'string',
            'PartialFailureReasons': [
                {
                    'PartialFailureMessage': 'string'
                },
            ]
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • AutoMLJobSummaries (list) --

      Returns a summary list of jobs.

      • (dict) --

        Provides a summary about an AutoML job.

        • AutoMLJobName (string) --

          The name of the AutoML job you are requesting.

        • AutoMLJobArn (string) --

          The ARN of the AutoML job.

        • AutoMLJobStatus (string) --

          The status of the AutoML job.

        • AutoMLJobSecondaryStatus (string) --

          The secondary status of the AutoML job.

        • CreationTime (datetime) --

          When the AutoML job was created.

        • EndTime (datetime) --

          The end time of an AutoML job.

        • LastModifiedTime (datetime) --

          When the AutoML job was last modified.

        • FailureReason (string) --

          The failure reason of an AutoML job.

        • PartialFailureReasons (list) --

          The list of reasons for partial failures within an AutoML job.

          • (dict) --

            The reason for a partial failure of an AutoML job.

            • PartialFailureMessage (string) --

              The message containing the reason for a partial failure of an AutoML job.

    • NextToken (string) --

      If the previous response was truncated, you receive this token. Use it in your next request to receive the next set of results.

list_candidates_for_auto_ml_job(**kwargs)

List the candidates created for the job.

See also: AWS API Documentation

Request Syntax

response = client.list_candidates_for_auto_ml_job(
    AutoMLJobName='string',
    StatusEquals='Completed'|'InProgress'|'Failed'|'Stopped'|'Stopping',
    CandidateNameEquals='string',
    SortOrder='Ascending'|'Descending',
    SortBy='CreationTime'|'Status'|'FinalObjectiveMetricValue',
    MaxResults=123,
    NextToken='string'
)
Parameters
  • AutoMLJobName (string) --

    [REQUIRED]

    List the candidates created for the job by providing the job's name.

  • StatusEquals (string) -- List the candidates for the job and filter by status.
  • CandidateNameEquals (string) -- List the candidates for the job and filter by candidate name.
  • SortOrder (string) -- The sort order for the results. The default is Ascending .
  • SortBy (string) -- The parameter by which to sort the results. The default is Descending .
  • MaxResults (integer) -- List the job's candidates up to a specified limit.
  • NextToken (string) -- If the previous response was truncated, you receive this token. Use it in your next request to receive the next set of results.
Return type

dict

Returns

Response Syntax

{
    'Candidates': [
        {
            'CandidateName': 'string',
            'FinalAutoMLJobObjectiveMetric': {
                'Type': 'Maximize'|'Minimize',
                'MetricName': 'Accuracy'|'MSE'|'F1'|'F1macro'|'AUC'|'RMSE'|'MAE'|'R2'|'BalancedAccuracy'|'Precision'|'PrecisionMacro'|'Recall'|'RecallMacro',
                'Value': ...,
                'StandardMetricName': 'Accuracy'|'MSE'|'F1'|'F1macro'|'AUC'|'RMSE'|'MAE'|'R2'|'BalancedAccuracy'|'Precision'|'PrecisionMacro'|'Recall'|'RecallMacro'
            },
            'ObjectiveStatus': 'Succeeded'|'Pending'|'Failed',
            'CandidateSteps': [
                {
                    'CandidateStepType': 'AWS::SageMaker::TrainingJob'|'AWS::SageMaker::TransformJob'|'AWS::SageMaker::ProcessingJob',
                    'CandidateStepArn': 'string',
                    'CandidateStepName': 'string'
                },
            ],
            'CandidateStatus': 'Completed'|'InProgress'|'Failed'|'Stopped'|'Stopping',
            'InferenceContainers': [
                {
                    'Image': 'string',
                    'ModelDataUrl': 'string',
                    'Environment': {
                        'string': 'string'
                    }
                },
            ],
            'CreationTime': datetime(2015, 1, 1),
            'EndTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'FailureReason': 'string',
            'CandidateProperties': {
                'CandidateArtifactLocations': {
                    'Explainability': 'string',
                    'ModelInsights': 'string'
                },
                'CandidateMetrics': [
                    {
                        'MetricName': 'Accuracy'|'MSE'|'F1'|'F1macro'|'AUC'|'RMSE'|'MAE'|'R2'|'BalancedAccuracy'|'Precision'|'PrecisionMacro'|'Recall'|'RecallMacro',
                        'Value': ...,
                        'Set': 'Train'|'Validation'|'Test',
                        'StandardMetricName': 'Accuracy'|'MSE'|'F1'|'F1macro'|'AUC'|'RMSE'|'MAE'|'R2'|'BalancedAccuracy'|'Precision'|'PrecisionMacro'|'Recall'|'RecallMacro'|'LogLoss'|'InferenceLatency'
                    },
                ]
            }
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • Candidates (list) --

      Summaries about the AutoMLCandidates .

      • (dict) --

        Information about a candidate produced by an AutoML training job, including its status, steps, and other properties.

        • CandidateName (string) --

          The name of the candidate.

        • FinalAutoMLJobObjectiveMetric (dict) --

          The best candidate result from an AutoML training job.

          • Type (string) --

            The type of metric with the best result.

          • MetricName (string) --

            The name of the metric with the best result. For a description of the possible objective metrics, see AutoMLJobObjective$MetricName.

          • Value (float) --

            The value of the metric with the best result.

          • StandardMetricName (string) --

            The name of the standard metric. For a description of the standard metrics, see Autopilot candidate metrics.

        • ObjectiveStatus (string) --

          The objective's status.

        • CandidateSteps (list) --

          Information about the candidate's steps.

          • (dict) --

            Information about the steps for a candidate and what step it is working on.

            • CandidateStepType (string) --

              Whether the candidate is at the transform, training, or processing step.

            • CandidateStepArn (string) --

              The ARN for the candidate's step.

            • CandidateStepName (string) --

              The name for the candidate's step.

        • CandidateStatus (string) --

          The candidate's status.

        • InferenceContainers (list) --

          Information about the inference container definitions.

          • (dict) --

            A list of container definitions that describe the different containers that make up an AutoML candidate. For more information, see .

            • Image (string) --

              The Amazon Elastic Container Registry (Amazon ECR) path of the container. For more information, see .

            • ModelDataUrl (string) --

              The location of the model artifacts. For more information, see .

            • Environment (dict) --

              The environment variables to set in the container. For more information, see .

              • (string) --
                • (string) --
        • CreationTime (datetime) --

          The creation time.

        • EndTime (datetime) --

          The end time.

        • LastModifiedTime (datetime) --

          The last modified time.

        • FailureReason (string) --

          The failure reason.

        • CandidateProperties (dict) --

          The properties of an AutoML candidate job.

          • CandidateArtifactLocations (dict) --

            The Amazon S3 prefix to the artifacts generated for an AutoML candidate.

            • Explainability (string) --

              The Amazon S3 prefix to the explainability artifacts generated for the AutoML candidate.

            • ModelInsights (string) --

              The Amazon S3 prefix to the model insight artifacts generated for the AutoML candidate.

          • CandidateMetrics (list) --

            Information about the candidate metrics for an AutoML job.

            • (dict) --

              Information about the metric for a candidate produced by an AutoML job.

              • MetricName (string) --

                The name of the metric.

              • Value (float) --

                The value of the metric.

              • Set (string) --

                The dataset split from which the AutoML job produced the metric.

              • StandardMetricName (string) --

                The name of the standard metric.

                Note

                For definitions of the standard metrics, see Autopilot candidate metrics.

    • NextToken (string) --

      If the previous response was truncated, you receive this token. Use it in your next request to receive the next set of results.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
list_code_repositories(**kwargs)

Gets a list of the Git repositories in your account.

See also: AWS API Documentation

Request Syntax

response = client.list_code_repositories(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    MaxResults=123,
    NameContains='string',
    NextToken='string',
    SortBy='Name'|'CreationTime'|'LastModifiedTime',
    SortOrder='Ascending'|'Descending'
)
Parameters
  • CreationTimeAfter (datetime) -- A filter that returns only Git repositories that were created after the specified time.
  • CreationTimeBefore (datetime) -- A filter that returns only Git repositories that were created before the specified time.
  • LastModifiedTimeAfter (datetime) -- A filter that returns only Git repositories that were last modified after the specified time.
  • LastModifiedTimeBefore (datetime) -- A filter that returns only Git repositories that were last modified before the specified time.
  • MaxResults (integer) -- The maximum number of Git repositories to return in the response.
  • NameContains (string) -- A string in the Git repositories name. This filter returns only repositories whose name contains the specified string.
  • NextToken (string) -- If the result of a ListCodeRepositoriesOutput request was truncated, the response includes a NextToken . To get the next set of Git repositories, use the token in the next request.
  • SortBy (string) -- The field to sort results by. The default is Name .
  • SortOrder (string) -- The sort order for results. The default is Ascending .
Return type

dict

Returns

Response Syntax

{
    'CodeRepositorySummaryList': [
        {
            'CodeRepositoryName': 'string',
            'CodeRepositoryArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'GitConfig': {
                'RepositoryUrl': 'string',
                'Branch': 'string',
                'SecretArn': 'string'
            }
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • CodeRepositorySummaryList (list) --

      Gets a list of summaries of the Git repositories. Each summary specifies the following values for the repository:

      • Name
      • Amazon Resource Name (ARN)
      • Creation time
      • Last modified time
      • Configuration information, including the URL location of the repository and the ARN of the Amazon Web Services Secrets Manager secret that contains the credentials used to access the repository.
      • (dict) --

        Specifies summary information about a Git repository.

        • CodeRepositoryName (string) --

          The name of the Git repository.

        • CodeRepositoryArn (string) --

          The Amazon Resource Name (ARN) of the Git repository.

        • CreationTime (datetime) --

          The date and time that the Git repository was created.

        • LastModifiedTime (datetime) --

          The date and time that the Git repository was last modified.

        • GitConfig (dict) --

          Configuration details for the Git repository, including the URL where it is located and the ARN of the Amazon Web Services Secrets Manager secret that contains the credentials used to access the repository.

          • RepositoryUrl (string) --

            The URL where the Git repository is located.

          • Branch (string) --

            The default branch for the Git repository.

          • SecretArn (string) --

            The Amazon Resource Name (ARN) of the Amazon Web Services Secrets Manager secret that contains the credentials used to access the git repository. The secret must have a staging label of AWSCURRENT and must be in the following format:

            {"username": UserName, "password": Password}

    • NextToken (string) --

      If the result of a ListCodeRepositoriesOutput request was truncated, the response includes a NextToken . To get the next set of Git repositories, use the token in the next request.

list_compilation_jobs(**kwargs)

Lists model compilation jobs that satisfy various filters.

To create a model compilation job, use CreateCompilationJob. To get information about a particular model compilation job you have created, use DescribeCompilationJob.

See also: AWS API Documentation

Request Syntax

response = client.list_compilation_jobs(
    NextToken='string',
    MaxResults=123,
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    NameContains='string',
    StatusEquals='INPROGRESS'|'COMPLETED'|'FAILED'|'STARTING'|'STOPPING'|'STOPPED',
    SortBy='Name'|'CreationTime'|'Status',
    SortOrder='Ascending'|'Descending'
)
Parameters
  • NextToken (string) -- If the result of the previous ListCompilationJobs request was truncated, the response includes a NextToken . To retrieve the next set of model compilation jobs, use the token in the next request.
  • MaxResults (integer) -- The maximum number of model compilation jobs to return in the response.
  • CreationTimeAfter (datetime) -- A filter that returns the model compilation jobs that were created after a specified time.
  • CreationTimeBefore (datetime) -- A filter that returns the model compilation jobs that were created before a specified time.
  • LastModifiedTimeAfter (datetime) -- A filter that returns the model compilation jobs that were modified after a specified time.
  • LastModifiedTimeBefore (datetime) -- A filter that returns the model compilation jobs that were modified before a specified time.
  • NameContains (string) -- A filter that returns the model compilation jobs whose name contains a specified string.
  • StatusEquals (string) -- A filter that retrieves model compilation jobs with a specific DescribeCompilationJobResponse$CompilationJobStatus status.
  • SortBy (string) -- The field by which to sort results. The default is CreationTime .
  • SortOrder (string) -- The sort order for results. The default is Ascending .
Return type

dict

Returns

Response Syntax

{
    'CompilationJobSummaries': [
        {
            'CompilationJobName': 'string',
            'CompilationJobArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'CompilationStartTime': datetime(2015, 1, 1),
            'CompilationEndTime': datetime(2015, 1, 1),
            'CompilationTargetDevice': 'lambda'|'ml_m4'|'ml_m5'|'ml_c4'|'ml_c5'|'ml_p2'|'ml_p3'|'ml_g4dn'|'ml_inf1'|'ml_eia2'|'jetson_tx1'|'jetson_tx2'|'jetson_nano'|'jetson_xavier'|'rasp3b'|'imx8qm'|'deeplens'|'rk3399'|'rk3288'|'aisage'|'sbe_c'|'qcs605'|'qcs603'|'sitara_am57x'|'amba_cv2'|'amba_cv22'|'amba_cv25'|'x86_win32'|'x86_win64'|'coreml'|'jacinto_tda4vm'|'imx8mplus',
            'CompilationTargetPlatformOs': 'ANDROID'|'LINUX',
            'CompilationTargetPlatformArch': 'X86_64'|'X86'|'ARM64'|'ARM_EABI'|'ARM_EABIHF',
            'CompilationTargetPlatformAccelerator': 'INTEL_GRAPHICS'|'MALI'|'NVIDIA'|'NNA',
            'LastModifiedTime': datetime(2015, 1, 1),
            'CompilationJobStatus': 'INPROGRESS'|'COMPLETED'|'FAILED'|'STARTING'|'STOPPING'|'STOPPED'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • CompilationJobSummaries (list) --

      An array of CompilationJobSummary objects, each describing a model compilation job.

      • (dict) --

        A summary of a model compilation job.

        • CompilationJobName (string) --

          The name of the model compilation job that you want a summary for.

        • CompilationJobArn (string) --

          The Amazon Resource Name (ARN) of the model compilation job.

        • CreationTime (datetime) --

          The time when the model compilation job was created.

        • CompilationStartTime (datetime) --

          The time when the model compilation job started.

        • CompilationEndTime (datetime) --

          The time when the model compilation job completed.

        • CompilationTargetDevice (string) --

          The type of device that the model will run on after the compilation job has completed.

        • CompilationTargetPlatformOs (string) --

          The type of OS that the model will run on after the compilation job has completed.

        • CompilationTargetPlatformArch (string) --

          The type of architecture that the model will run on after the compilation job has completed.

        • CompilationTargetPlatformAccelerator (string) --

          The type of accelerator that the model will run on after the compilation job has completed.

        • LastModifiedTime (datetime) --

          The time when the model compilation job was last modified.

        • CompilationJobStatus (string) --

          The status of the model compilation job.

    • NextToken (string) --

      If the response is truncated, Amazon SageMaker returns this NextToken . To retrieve the next set of model compilation jobs, use this token in the next request.

list_contexts(**kwargs)

Lists the contexts in your account and their properties.

See also: AWS API Documentation

Request Syntax

response = client.list_contexts(
    SourceUri='string',
    ContextType='string',
    CreatedAfter=datetime(2015, 1, 1),
    CreatedBefore=datetime(2015, 1, 1),
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123
)
Parameters
  • SourceUri (string) -- A filter that returns only contexts with the specified source URI.
  • ContextType (string) -- A filter that returns only contexts of the specified type.
  • CreatedAfter (datetime) -- A filter that returns only contexts created on or after the specified time.
  • CreatedBefore (datetime) -- A filter that returns only contexts created on or before the specified time.
  • SortBy (string) -- The property used to sort results. The default value is CreationTime .
  • SortOrder (string) -- The sort order. The default value is Descending .
  • NextToken (string) -- If the previous call to ListContexts didn't return the full set of contexts, the call returns a token for getting the next set of contexts.
  • MaxResults (integer) -- The maximum number of contexts to return in the response. The default value is 10.
Return type

dict

Returns

Response Syntax

{
    'ContextSummaries': [
        {
            'ContextArn': 'string',
            'ContextName': 'string',
            'Source': {
                'SourceUri': 'string',
                'SourceType': 'string',
                'SourceId': 'string'
            },
            'ContextType': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • ContextSummaries (list) --

      A list of contexts and their properties.

      • (dict) --

        Lists a summary of the properties of a context. A context provides a logical grouping of other entities.

        • ContextArn (string) --

          The Amazon Resource Name (ARN) of the context.

        • ContextName (string) --

          The name of the context.

        • Source (dict) --

          The source of the context.

          • SourceUri (string) --

            The URI of the source.

          • SourceType (string) --

            The type of the source.

          • SourceId (string) --

            The ID of the source.

        • ContextType (string) --

          The type of the context.

        • CreationTime (datetime) --

          When the context was created.

        • LastModifiedTime (datetime) --

          When the context was last modified.

    • NextToken (string) --

      A token for getting the next set of contexts, if there are any.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
list_data_quality_job_definitions(**kwargs)

Lists the data quality job definitions in your account.

See also: AWS API Documentation

Request Syntax

response = client.list_data_quality_job_definitions(
    EndpointName='string',
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123,
    NameContains='string',
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1)
)
Parameters
  • EndpointName (string) -- A filter that lists the data quality job definitions associated with the specified endpoint.
  • SortBy (string) -- The field to sort results by. The default is CreationTime .
  • SortOrder (string) -- The sort order for results. The default is Descending .
  • NextToken (string) -- If the result of the previous ListDataQualityJobDefinitions request was truncated, the response includes a NextToken . To retrieve the next set of transform jobs, use the token in the next request.>
  • MaxResults (integer) -- The maximum number of data quality monitoring job definitions to return in the response.
  • NameContains (string) -- A string in the data quality monitoring job definition name. This filter returns only data quality monitoring job definitions whose name contains the specified string.
  • CreationTimeBefore (datetime) -- A filter that returns only data quality monitoring job definitions created before the specified time.
  • CreationTimeAfter (datetime) -- A filter that returns only data quality monitoring job definitions created after the specified time.
Return type

dict

Returns

Response Syntax

{
    'JobDefinitionSummaries': [
        {
            'MonitoringJobDefinitionName': 'string',
            'MonitoringJobDefinitionArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'EndpointName': 'string'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • JobDefinitionSummaries (list) --

      A list of data quality monitoring job definitions.

      • (dict) --

        Summary information about a monitoring job.

        • MonitoringJobDefinitionName (string) --

          The name of the monitoring job.

        • MonitoringJobDefinitionArn (string) --

          The Amazon Resource Name (ARN) of the monitoring job.

        • CreationTime (datetime) --

          The time that the monitoring job was created.

        • EndpointName (string) --

          The name of the endpoint that the job monitors.

    • NextToken (string) --

      If the result of the previous ListDataQualityJobDefinitions request was truncated, the response includes a NextToken . To retrieve the next set of data quality monitoring job definitions, use the token in the next request.

list_device_fleets(**kwargs)

Returns a list of devices in the fleet.

See also: AWS API Documentation

Request Syntax

response = client.list_device_fleets(
    NextToken='string',
    MaxResults=123,
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    NameContains='string',
    SortBy='NAME'|'CREATION_TIME'|'LAST_MODIFIED_TIME',
    SortOrder='Ascending'|'Descending'
)
Parameters
  • NextToken (string) -- The response from the last list when returning a list large enough to need tokening.
  • MaxResults (integer) -- The maximum number of results to select.
  • CreationTimeAfter (datetime) -- Filter fleets where packaging job was created after specified time.
  • CreationTimeBefore (datetime) -- Filter fleets where the edge packaging job was created before specified time.
  • LastModifiedTimeAfter (datetime) -- Select fleets where the job was updated after X
  • LastModifiedTimeBefore (datetime) -- Select fleets where the job was updated before X
  • NameContains (string) -- Filter for fleets containing this name in their fleet device name.
  • SortBy (string) -- The column to sort by.
  • SortOrder (string) -- What direction to sort in.
Return type

dict

Returns

Response Syntax

{
    'DeviceFleetSummaries': [
        {
            'DeviceFleetArn': 'string',
            'DeviceFleetName': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • DeviceFleetSummaries (list) --

      Summary of the device fleet.

      • (dict) --

        Summary of the device fleet.

        • DeviceFleetArn (string) --

          Amazon Resource Name (ARN) of the device fleet.

        • DeviceFleetName (string) --

          Name of the device fleet.

        • CreationTime (datetime) --

          Timestamp of when the device fleet was created.

        • LastModifiedTime (datetime) --

          Timestamp of when the device fleet was last updated.

    • NextToken (string) --

      The response from the last list when returning a list large enough to need tokening.

list_devices(**kwargs)

A list of devices.

See also: AWS API Documentation

Request Syntax

response = client.list_devices(
    NextToken='string',
    MaxResults=123,
    LatestHeartbeatAfter=datetime(2015, 1, 1),
    ModelName='string',
    DeviceFleetName='string'
)
Parameters
  • NextToken (string) -- The response from the last list when returning a list large enough to need tokening.
  • MaxResults (integer) -- Maximum number of results to select.
  • LatestHeartbeatAfter (datetime) -- Select fleets where the job was updated after X
  • ModelName (string) -- A filter that searches devices that contains this name in any of their models.
  • DeviceFleetName (string) -- Filter for fleets containing this name in their device fleet name.
Return type

dict

Returns

Response Syntax

{
    'DeviceSummaries': [
        {
            'DeviceName': 'string',
            'DeviceArn': 'string',
            'Description': 'string',
            'DeviceFleetName': 'string',
            'IotThingName': 'string',
            'RegistrationTime': datetime(2015, 1, 1),
            'LatestHeartbeat': datetime(2015, 1, 1),
            'Models': [
                {
                    'ModelName': 'string',
                    'ModelVersion': 'string'
                },
            ],
            'AgentVersion': 'string'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • DeviceSummaries (list) --

      Summary of devices.

      • (dict) --

        Summary of the device.

        • DeviceName (string) --

          The unique identifier of the device.

        • DeviceArn (string) --

          Amazon Resource Name (ARN) of the device.

        • Description (string) --

          A description of the device.

        • DeviceFleetName (string) --

          The name of the fleet the device belongs to.

        • IotThingName (string) --

          The Amazon Web Services Internet of Things (IoT) object thing name associated with the device..

        • RegistrationTime (datetime) --

          The timestamp of the last registration or de-reregistration.

        • LatestHeartbeat (datetime) --

          The last heartbeat received from the device.

        • Models (list) --

          Models on the device.

          • (dict) --

            Summary of model on edge device.

            • ModelName (string) --

              The name of the model.

            • ModelVersion (string) --

              The version model.

        • AgentVersion (string) --

          Edge Manager agent version.

    • NextToken (string) --

      The response from the last list when returning a list large enough to need tokening.

list_domains(**kwargs)

Lists the domains.

See also: AWS API Documentation

Request Syntax

response = client.list_domains(
    NextToken='string',
    MaxResults=123
)
Parameters
  • NextToken (string) -- If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
  • MaxResults (integer) -- Returns a list up to a specified limit.
Return type

dict

Returns

Response Syntax

{
    'Domains': [
        {
            'DomainArn': 'string',
            'DomainId': 'string',
            'DomainName': 'string',
            'Status': 'Deleting'|'Failed'|'InService'|'Pending'|'Updating'|'Update_Failed'|'Delete_Failed',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'Url': 'string'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • Domains (list) --

      The list of domains.

      • (dict) --

        The domain's details.

        • DomainArn (string) --

          The domain's Amazon Resource Name (ARN).

        • DomainId (string) --

          The domain ID.

        • DomainName (string) --

          The domain name.

        • Status (string) --

          The status.

        • CreationTime (datetime) --

          The creation time.

        • LastModifiedTime (datetime) --

          The last modified time.

        • Url (string) --

          The domain's URL.

    • NextToken (string) --

      If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

list_edge_deployment_plans(**kwargs)

Lists all edge deployment plans.

See also: AWS API Documentation

Request Syntax

response = client.list_edge_deployment_plans(
    NextToken='string',
    MaxResults=123,
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    NameContains='string',
    DeviceFleetNameContains='string',
    SortBy='NAME'|'DEVICE_FLEET_NAME'|'CREATION_TIME'|'LAST_MODIFIED_TIME',
    SortOrder='Ascending'|'Descending'
)
Parameters
  • NextToken (string) -- The response from the last list when returning a list large enough to need tokening.
  • MaxResults (integer) -- The maximum number of results to select (50 by default).
  • CreationTimeAfter (datetime) -- Selects edge deployment plans created after this time.
  • CreationTimeBefore (datetime) -- Selects edge deployment plans created before this time.
  • LastModifiedTimeAfter (datetime) -- Selects edge deployment plans that were last updated after this time.
  • LastModifiedTimeBefore (datetime) -- Selects edge deployment plans that were last updated before this time.
  • NameContains (string) -- Selects edge deployment plans with names containing this name.
  • DeviceFleetNameContains (string) -- Selects edge deployment plans with a device fleet name containing this name.
  • SortBy (string) -- The column by which to sort the edge deployment plans. Can be one of NAME , DEVICEFLEETNAME , CREATIONTIME , LASTMODIFIEDTIME .
  • SortOrder (string) -- The direction of the sorting (ascending or descending).
Return type

dict

Returns

Response Syntax

{
    'EdgeDeploymentPlanSummaries': [
        {
            'EdgeDeploymentPlanArn': 'string',
            'EdgeDeploymentPlanName': 'string',
            'DeviceFleetName': 'string',
            'EdgeDeploymentSuccess': 123,
            'EdgeDeploymentPending': 123,
            'EdgeDeploymentFailed': 123,
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • EdgeDeploymentPlanSummaries (list) --

      List of summaries of edge deployment plans.

      • (dict) --

        Contains information summarizing an edge deployment plan.

        • EdgeDeploymentPlanArn (string) --

          The ARN of the edge deployment plan.

        • EdgeDeploymentPlanName (string) --

          The name of the edge deployment plan.

        • DeviceFleetName (string) --

          The name of the device fleet used for the deployment.

        • EdgeDeploymentSuccess (integer) --

          The number of edge devices with the successful deployment.

        • EdgeDeploymentPending (integer) --

          The number of edge devices yet to pick up the deployment, or in progress.

        • EdgeDeploymentFailed (integer) --

          The number of edge devices that failed the deployment.

        • CreationTime (datetime) --

          The time when the edge deployment plan was created.

        • LastModifiedTime (datetime) --

          The time when the edge deployment plan was last updated.

    • NextToken (string) --

      The token to use when calling the next page of results.

list_edge_packaging_jobs(**kwargs)

Returns a list of edge packaging jobs.

See also: AWS API Documentation

Request Syntax

response = client.list_edge_packaging_jobs(
    NextToken='string',
    MaxResults=123,
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    NameContains='string',
    ModelNameContains='string',
    StatusEquals='STARTING'|'INPROGRESS'|'COMPLETED'|'FAILED'|'STOPPING'|'STOPPED',
    SortBy='NAME'|'MODEL_NAME'|'CREATION_TIME'|'LAST_MODIFIED_TIME'|'STATUS',
    SortOrder='Ascending'|'Descending'
)
Parameters
  • NextToken (string) -- The response from the last list when returning a list large enough to need tokening.
  • MaxResults (integer) -- Maximum number of results to select.
  • CreationTimeAfter (datetime) -- Select jobs where the job was created after specified time.
  • CreationTimeBefore (datetime) -- Select jobs where the job was created before specified time.
  • LastModifiedTimeAfter (datetime) -- Select jobs where the job was updated after specified time.
  • LastModifiedTimeBefore (datetime) -- Select jobs where the job was updated before specified time.
  • NameContains (string) -- Filter for jobs containing this name in their packaging job name.
  • ModelNameContains (string) -- Filter for jobs where the model name contains this string.
  • StatusEquals (string) -- The job status to filter for.
  • SortBy (string) -- Use to specify what column to sort by.
  • SortOrder (string) -- What direction to sort by.
Return type

dict

Returns

Response Syntax

{
    'EdgePackagingJobSummaries': [
        {
            'EdgePackagingJobArn': 'string',
            'EdgePackagingJobName': 'string',
            'EdgePackagingJobStatus': 'STARTING'|'INPROGRESS'|'COMPLETED'|'FAILED'|'STOPPING'|'STOPPED',
            'CompilationJobName': 'string',
            'ModelName': 'string',
            'ModelVersion': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • EdgePackagingJobSummaries (list) --

      Summaries of edge packaging jobs.

      • (dict) --

        Summary of edge packaging job.

        • EdgePackagingJobArn (string) --

          The Amazon Resource Name (ARN) of the edge packaging job.

        • EdgePackagingJobName (string) --

          The name of the edge packaging job.

        • EdgePackagingJobStatus (string) --

          The status of the edge packaging job.

        • CompilationJobName (string) --

          The name of the SageMaker Neo compilation job.

        • ModelName (string) --

          The name of the model.

        • ModelVersion (string) --

          The version of the model.

        • CreationTime (datetime) --

          The timestamp of when the job was created.

        • LastModifiedTime (datetime) --

          The timestamp of when the edge packaging job was last updated.

    • NextToken (string) --

      Token to use when calling the next page of results.

list_endpoint_configs(**kwargs)

Lists endpoint configurations.

See also: AWS API Documentation

Request Syntax

response = client.list_endpoint_configs(
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123,
    NameContains='string',
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1)
)
Parameters
  • SortBy (string) -- The field to sort results by. The default is CreationTime .
  • SortOrder (string) -- The sort order for results. The default is Descending .
  • NextToken (string) -- If the result of the previous ListEndpointConfig request was truncated, the response includes a NextToken . To retrieve the next set of endpoint configurations, use the token in the next request.
  • MaxResults (integer) -- The maximum number of training jobs to return in the response.
  • NameContains (string) -- A string in the endpoint configuration name. This filter returns only endpoint configurations whose name contains the specified string.
  • CreationTimeBefore (datetime) -- A filter that returns only endpoint configurations created before the specified time (timestamp).
  • CreationTimeAfter (datetime) -- A filter that returns only endpoint configurations with a creation time greater than or equal to the specified time (timestamp).
Return type

dict

Returns

Response Syntax

{
    'EndpointConfigs': [
        {
            'EndpointConfigName': 'string',
            'EndpointConfigArn': 'string',
            'CreationTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • EndpointConfigs (list) --

      An array of endpoint configurations.

      • (dict) --

        Provides summary information for an endpoint configuration.

        • EndpointConfigName (string) --

          The name of the endpoint configuration.

        • EndpointConfigArn (string) --

          The Amazon Resource Name (ARN) of the endpoint configuration.

        • CreationTime (datetime) --

          A timestamp that shows when the endpoint configuration was created.

    • NextToken (string) --

      If the response is truncated, SageMaker returns this token. To retrieve the next set of endpoint configurations, use it in the subsequent request

list_endpoints(**kwargs)

Lists endpoints.

See also: AWS API Documentation

Request Syntax

response = client.list_endpoints(
    SortBy='Name'|'CreationTime'|'Status',
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123,
    NameContains='string',
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    StatusEquals='OutOfService'|'Creating'|'Updating'|'SystemUpdating'|'RollingBack'|'InService'|'Deleting'|'Failed'
)
Parameters
  • SortBy (string) -- Sorts the list of results. The default is CreationTime .
  • SortOrder (string) -- The sort order for results. The default is Descending .
  • NextToken (string) -- If the result of a ListEndpoints request was truncated, the response includes a NextToken . To retrieve the next set of endpoints, use the token in the next request.
  • MaxResults (integer) -- The maximum number of endpoints to return in the response. This value defaults to 10.
  • NameContains (string) -- A string in endpoint names. This filter returns only endpoints whose name contains the specified string.
  • CreationTimeBefore (datetime) -- A filter that returns only endpoints that were created before the specified time (timestamp).
  • CreationTimeAfter (datetime) -- A filter that returns only endpoints with a creation time greater than or equal to the specified time (timestamp).
  • LastModifiedTimeBefore (datetime) -- A filter that returns only endpoints that were modified before the specified timestamp.
  • LastModifiedTimeAfter (datetime) -- A filter that returns only endpoints that were modified after the specified timestamp.
  • StatusEquals (string) -- A filter that returns only endpoints with the specified status.
Return type

dict

Returns

Response Syntax

{
    'Endpoints': [
        {
            'EndpointName': 'string',
            'EndpointArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'EndpointStatus': 'OutOfService'|'Creating'|'Updating'|'SystemUpdating'|'RollingBack'|'InService'|'Deleting'|'Failed'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • Endpoints (list) --

      An array or endpoint objects.

      • (dict) --

        Provides summary information for an endpoint.

        • EndpointName (string) --

          The name of the endpoint.

        • EndpointArn (string) --

          The Amazon Resource Name (ARN) of the endpoint.

        • CreationTime (datetime) --

          A timestamp that shows when the endpoint was created.

        • LastModifiedTime (datetime) --

          A timestamp that shows when the endpoint was last modified.

        • EndpointStatus (string) --

          The status of the endpoint.

          • OutOfService : Endpoint is not available to take incoming requests.
          • Creating : CreateEndpoint is executing.
          • Updating : UpdateEndpoint or UpdateEndpointWeightsAndCapacities is executing.
          • SystemUpdating : Endpoint is undergoing maintenance and cannot be updated or deleted or re-scaled until it has completed. This maintenance operation does not change any customer-specified values such as VPC config, KMS encryption, model, instance type, or instance count.
          • RollingBack : Endpoint fails to scale up or down or change its variant weight and is in the process of rolling back to its previous configuration. Once the rollback completes, endpoint returns to an InService status. This transitional status only applies to an endpoint that has autoscaling enabled and is undergoing variant weight or capacity changes as part of an UpdateEndpointWeightsAndCapacities call or when the UpdateEndpointWeightsAndCapacities operation is called explicitly.
          • InService : Endpoint is available to process incoming requests.
          • Deleting : DeleteEndpoint is executing.
          • Failed : Endpoint could not be created, updated, or re-scaled. Use DescribeEndpointOutput$FailureReason for information about the failure. DeleteEndpoint is the only operation that can be performed on a failed endpoint.

          To get a list of endpoints with a specified status, use the ListEndpointsInput$StatusEquals filter.

    • NextToken (string) --

      If the response is truncated, SageMaker returns this token. To retrieve the next set of training jobs, use it in the subsequent request.

list_experiments(**kwargs)

Lists all the experiments in your account. The list can be filtered to show only experiments that were created in a specific time range. The list can be sorted by experiment name or creation time.

See also: AWS API Documentation

Request Syntax

response = client.list_experiments(
    CreatedAfter=datetime(2015, 1, 1),
    CreatedBefore=datetime(2015, 1, 1),
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123
)
Parameters
  • CreatedAfter (datetime) -- A filter that returns only experiments created after the specified time.
  • CreatedBefore (datetime) -- A filter that returns only experiments created before the specified time.
  • SortBy (string) -- The property used to sort results. The default value is CreationTime .
  • SortOrder (string) -- The sort order. The default value is Descending .
  • NextToken (string) -- If the previous call to ListExperiments didn't return the full set of experiments, the call returns a token for getting the next set of experiments.
  • MaxResults (integer) -- The maximum number of experiments to return in the response. The default value is 10.
Return type

dict

Returns

Response Syntax

{
    'ExperimentSummaries': [
        {
            'ExperimentArn': 'string',
            'ExperimentName': 'string',
            'DisplayName': 'string',
            'ExperimentSource': {
                'SourceArn': 'string',
                'SourceType': 'string'
            },
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • ExperimentSummaries (list) --

      A list of the summaries of your experiments.

      • (dict) --

        A summary of the properties of an experiment. To get the complete set of properties, call the DescribeExperiment API and provide the ExperimentName .

        • ExperimentArn (string) --

          The Amazon Resource Name (ARN) of the experiment.

        • ExperimentName (string) --

          The name of the experiment.

        • DisplayName (string) --

          The name of the experiment as displayed. If DisplayName isn't specified, ExperimentName is displayed.

        • ExperimentSource (dict) --

          The source of the experiment.

          • SourceArn (string) --

            The Amazon Resource Name (ARN) of the source.

          • SourceType (string) --

            The source type.

        • CreationTime (datetime) --

          When the experiment was created.

        • LastModifiedTime (datetime) --

          When the experiment was last modified.

    • NextToken (string) --

      A token for getting the next set of experiments, if there are any.

list_feature_groups(**kwargs)

List FeatureGroup s based on given filter and order.

See also: AWS API Documentation

Request Syntax

response = client.list_feature_groups(
    NameContains='string',
    FeatureGroupStatusEquals='Creating'|'Created'|'CreateFailed'|'Deleting'|'DeleteFailed',
    OfflineStoreStatusEquals='Active'|'Blocked'|'Disabled',
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    SortOrder='Ascending'|'Descending',
    SortBy='Name'|'FeatureGroupStatus'|'OfflineStoreStatus'|'CreationTime',
    MaxResults=123,
    NextToken='string'
)
Parameters
  • NameContains (string) -- A string that partially matches one or more FeatureGroup s names. Filters FeatureGroup s by name.
  • FeatureGroupStatusEquals (string) -- A FeatureGroup status. Filters by FeatureGroup status.
  • OfflineStoreStatusEquals (string) -- An OfflineStore status. Filters by OfflineStore status.
  • CreationTimeAfter (datetime) -- Use this parameter to search for FeatureGroups s created after a specific date and time.
  • CreationTimeBefore (datetime) -- Use this parameter to search for FeatureGroups s created before a specific date and time.
  • SortOrder (string) -- The order in which feature groups are listed.
  • SortBy (string) -- The value on which the feature group list is sorted.
  • MaxResults (integer) -- The maximum number of results returned by ListFeatureGroups .
  • NextToken (string) -- A token to resume pagination of ListFeatureGroups results.
Return type

dict

Returns

Response Syntax

{
    'FeatureGroupSummaries': [
        {
            'FeatureGroupName': 'string',
            'FeatureGroupArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'FeatureGroupStatus': 'Creating'|'Created'|'CreateFailed'|'Deleting'|'DeleteFailed',
            'OfflineStoreStatus': {
                'Status': 'Active'|'Blocked'|'Disabled',
                'BlockedReason': 'string'
            }
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • FeatureGroupSummaries (list) --

      A summary of feature groups.

      • (dict) --

        The name, Arn, CreationTime , FeatureGroup values, LastUpdatedTime and EnableOnlineStorage status of a FeatureGroup .

        • FeatureGroupName (string) --

          The name of FeatureGroup .

        • FeatureGroupArn (string) --

          Unique identifier for the FeatureGroup .

        • CreationTime (datetime) --

          A timestamp indicating the time of creation time of the FeatureGroup .

        • FeatureGroupStatus (string) --

          The status of a FeatureGroup. The status can be any of the following: Creating , Created , CreateFail , Deleting or DetailFail .

        • OfflineStoreStatus (dict) --

          Notifies you if replicating data into the OfflineStore has failed. Returns either: Active or Blocked .

          • Status (string) --

            An OfflineStore status.

          • BlockedReason (string) --

            The justification for why the OfflineStoreStatus is Blocked (if applicable).

    • NextToken (string) --

      A token to resume pagination of ListFeatureGroups results.

list_flow_definitions(**kwargs)

Returns information about the flow definitions in your account.

See also: AWS API Documentation

Request Syntax

response = client.list_flow_definitions(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123
)
Parameters
  • CreationTimeAfter (datetime) -- A filter that returns only flow definitions with a creation time greater than or equal to the specified timestamp.
  • CreationTimeBefore (datetime) -- A filter that returns only flow definitions that were created before the specified timestamp.
  • SortOrder (string) -- An optional value that specifies whether you want the results sorted in Ascending or Descending order.
  • NextToken (string) -- A token to resume pagination.
  • MaxResults (integer) -- The total number of items to return. If the total number of available items is more than the value specified in MaxResults , then a NextToken will be provided in the output that you can use to resume pagination.
Return type

dict

Returns

Response Syntax

{
    'FlowDefinitionSummaries': [
        {
            'FlowDefinitionName': 'string',
            'FlowDefinitionArn': 'string',
            'FlowDefinitionStatus': 'Initializing'|'Active'|'Failed'|'Deleting',
            'CreationTime': datetime(2015, 1, 1),
            'FailureReason': 'string'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • FlowDefinitionSummaries (list) --

      An array of objects describing the flow definitions.

      • (dict) --

        Contains summary information about the flow definition.

        • FlowDefinitionName (string) --

          The name of the flow definition.

        • FlowDefinitionArn (string) --

          The Amazon Resource Name (ARN) of the flow definition.

        • FlowDefinitionStatus (string) --

          The status of the flow definition. Valid values:

        • CreationTime (datetime) --

          The timestamp when SageMaker created the flow definition.

        • FailureReason (string) --

          The reason why the flow definition creation failed. A failure reason is returned only when the flow definition status is Failed .

    • NextToken (string) --

      A token to resume pagination.

list_hub_content_versions(**kwargs)

List hub content versions.

Note

Hub APIs are only callable through SageMaker Studio.

See also: AWS API Documentation

Request Syntax

response = client.list_hub_content_versions(
    HubName='string',
    HubContentType='Model'|'Notebook',
    HubContentName='string',
    MinVersion='string',
    MaxSchemaVersion='string',
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1),
    SortBy='HubContentName'|'CreationTime'|'HubContentStatus',
    SortOrder='Ascending'|'Descending',
    MaxResults=123,
    NextToken='string'
)
Parameters
  • HubName (string) --

    [REQUIRED]

    The name of the hub to list the content versions of.

  • HubContentType (string) --

    [REQUIRED]

    The type of hub content to list versions of.

  • HubContentName (string) --

    [REQUIRED]

    The name of the hub content.

  • MinVersion (string) -- The lower bound of the hub content versions to list.
  • MaxSchemaVersion (string) -- The upper bound of the hub content schema version.
  • CreationTimeBefore (datetime) -- Only list hub content versions that were created before the time specified.
  • CreationTimeAfter (datetime) -- Only list hub content versions that were created after the time specified.
  • SortBy (string) -- Sort hub content versions by either name or creation time.
  • SortOrder (string) -- Sort hub content versions by ascending or descending order.
  • MaxResults (integer) -- The maximum number of hub content versions to list.
  • NextToken (string) -- If the response to a previous ListHubContentVersions request was truncated, the response includes a NextToken . To retrieve the next set of hub content versions, use the token in the next request.
Return type

dict

Returns

Response Syntax

{
    'HubContentSummaries': [
        {
            'HubContentName': 'string',
            'HubContentArn': 'string',
            'HubContentVersion': 'string',
            'HubContentType': 'Model'|'Notebook',
            'DocumentSchemaVersion': 'string',
            'HubContentDisplayName': 'string',
            'HubContentDescription': 'string',
            'HubContentSearchKeywords': [
                'string',
            ],
            'HubContentStatus': 'Available'|'Importing'|'Deleting'|'ImportFailed'|'DeleteFailed',
            'CreationTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • HubContentSummaries (list) --

      The summaries of the listed hub content versions.

      • (dict) --

        Information about hub content.

        • HubContentName (string) --

          The name of the hub content.

        • HubContentArn (string) --

          The Amazon Resource Name (ARN) of the hub content.

        • HubContentVersion (string) --

          The version of the hub content.

        • HubContentType (string) --

          The type of hub content.

        • DocumentSchemaVersion (string) --

          The version of the hub content document schema.

        • HubContentDisplayName (string) --

          The display name of the hub content.

        • HubContentDescription (string) --

          A description of the hub content.

        • HubContentSearchKeywords (list) --

          The searchable keywords for the hub content.

          • (string) --
        • HubContentStatus (string) --

          The status of the hub content.

        • CreationTime (datetime) --

          The date and time that the hub content was created.

    • NextToken (string) --

      If the response is truncated, SageMaker returns this token. To retrieve the next set of hub content versions, use it in the subsequent request.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
list_hub_contents(**kwargs)

List the contents of a hub.

Note

Hub APIs are only callable through SageMaker Studio.

See also: AWS API Documentation

Request Syntax

response = client.list_hub_contents(
    HubName='string',
    HubContentType='Model'|'Notebook',
    NameContains='string',
    MaxSchemaVersion='string',
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1),
    SortBy='HubContentName'|'CreationTime'|'HubContentStatus',
    SortOrder='Ascending'|'Descending',
    MaxResults=123,
    NextToken='string'
)
Parameters
  • HubName (string) --

    [REQUIRED]

    The name of the hub to list the contents of.

  • HubContentType (string) --

    [REQUIRED]

    The type of hub content to list.

  • NameContains (string) -- Only list hub content if the name contains the specified string.
  • MaxSchemaVersion (string) -- The upper bound of the hub content schema verion.
  • CreationTimeBefore (datetime) -- Only list hub content that was created before the time specified.
  • CreationTimeAfter (datetime) -- Only list hub content that was created after the time specified.
  • SortBy (string) -- Sort hub content versions by either name or creation time.
  • SortOrder (string) -- Sort hubs by ascending or descending order.
  • MaxResults (integer) -- The maximum amount of hub content to list.
  • NextToken (string) -- If the response to a previous ListHubContents request was truncated, the response includes a NextToken . To retrieve the next set of hub content, use the token in the next request.
Return type

dict

Returns

Response Syntax

{
    'HubContentSummaries': [
        {
            'HubContentName': 'string',
            'HubContentArn': 'string',
            'HubContentVersion': 'string',
            'HubContentType': 'Model'|'Notebook',
            'DocumentSchemaVersion': 'string',
            'HubContentDisplayName': 'string',
            'HubContentDescription': 'string',
            'HubContentSearchKeywords': [
                'string',
            ],
            'HubContentStatus': 'Available'|'Importing'|'Deleting'|'ImportFailed'|'DeleteFailed',
            'CreationTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • HubContentSummaries (list) --

      The summaries of the listed hub content.

      • (dict) --

        Information about hub content.

        • HubContentName (string) --

          The name of the hub content.

        • HubContentArn (string) --

          The Amazon Resource Name (ARN) of the hub content.

        • HubContentVersion (string) --

          The version of the hub content.

        • HubContentType (string) --

          The type of hub content.

        • DocumentSchemaVersion (string) --

          The version of the hub content document schema.

        • HubContentDisplayName (string) --

          The display name of the hub content.

        • HubContentDescription (string) --

          A description of the hub content.

        • HubContentSearchKeywords (list) --

          The searchable keywords for the hub content.

          • (string) --
        • HubContentStatus (string) --

          The status of the hub content.

        • CreationTime (datetime) --

          The date and time that the hub content was created.

    • NextToken (string) --

      If the response is truncated, SageMaker returns this token. To retrieve the next set of hub content, use it in the subsequent request.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
list_hubs(**kwargs)

List all existing hubs.

Note

Hub APIs are only callable through SageMaker Studio.

See also: AWS API Documentation

Request Syntax

response = client.list_hubs(
    NameContains='string',
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    SortBy='HubName'|'CreationTime'|'HubStatus'|'AccountIdOwner',
    SortOrder='Ascending'|'Descending',
    MaxResults=123,
    NextToken='string'
)
Parameters
  • NameContains (string) -- Only list hubs with names that contain the specified string.
  • CreationTimeBefore (datetime) -- Only list hubs that were created before the time specified.
  • CreationTimeAfter (datetime) -- Only list hubs that were created after the time specified.
  • LastModifiedTimeBefore (datetime) -- Only list hubs that were last modified before the time specified.
  • LastModifiedTimeAfter (datetime) -- Only list hubs that were last modified after the time specified.
  • SortBy (string) -- Sort hubs by either name or creation time.
  • SortOrder (string) -- Sort hubs by ascending or descending order.
  • MaxResults (integer) -- The maximum number of hubs to list.
  • NextToken (string) -- If the response to a previous ListHubs request was truncated, the response includes a NextToken . To retrieve the next set of hubs, use the token in the next request.
Return type

dict

Returns

Response Syntax

{
    'HubSummaries': [
        {
            'HubName': 'string',
            'HubArn': 'string',
            'HubDisplayName': 'string',
            'HubDescription': 'string',
            'HubSearchKeywords': [
                'string',
            ],
            'HubStatus': 'InService'|'Creating'|'Updating'|'Deleting'|'CreateFailed'|'UpdateFailed'|'DeleteFailed',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • HubSummaries (list) --

      The summaries of the listed hubs.

      • (dict) --

        Information about a hub.

        • HubName (string) --

          The name of the hub.

        • HubArn (string) --

          The Amazon Resource Name (ARN) of the hub.

        • HubDisplayName (string) --

          The display name of the hub.

        • HubDescription (string) --

          A description of the hub.

        • HubSearchKeywords (list) --

          The searchable keywords for the hub.

          • (string) --
        • HubStatus (string) --

          The status of the hub.

        • CreationTime (datetime) --

          The date and time that the hub was created.

        • LastModifiedTime (datetime) --

          The date and time that the hub was last modified.

    • NextToken (string) --

      If the response is truncated, SageMaker returns this token. To retrieve the next set of hubs, use it in the subsequent request.

list_human_task_uis(**kwargs)

Returns information about the human task user interfaces in your account.

See also: AWS API Documentation

Request Syntax

response = client.list_human_task_uis(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123
)
Parameters
  • CreationTimeAfter (datetime) -- A filter that returns only human task user interfaces with a creation time greater than or equal to the specified timestamp.
  • CreationTimeBefore (datetime) -- A filter that returns only human task user interfaces that were created before the specified timestamp.
  • SortOrder (string) -- An optional value that specifies whether you want the results sorted in Ascending or Descending order.
  • NextToken (string) -- A token to resume pagination.
  • MaxResults (integer) -- The total number of items to return. If the total number of available items is more than the value specified in MaxResults , then a NextToken will be provided in the output that you can use to resume pagination.
Return type

dict

Returns

Response Syntax

{
    'HumanTaskUiSummaries': [
        {
            'HumanTaskUiName': 'string',
            'HumanTaskUiArn': 'string',
            'CreationTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • HumanTaskUiSummaries (list) --

      An array of objects describing the human task user interfaces.

      • (dict) --

        Container for human task user interface information.

        • HumanTaskUiName (string) --

          The name of the human task user interface.

        • HumanTaskUiArn (string) --

          The Amazon Resource Name (ARN) of the human task user interface.

        • CreationTime (datetime) --

          A timestamp when SageMaker created the human task user interface.

    • NextToken (string) --

      A token to resume pagination.

list_hyper_parameter_tuning_jobs(**kwargs)

Gets a list of HyperParameterTuningJobSummary objects that describe the hyperparameter tuning jobs launched in your account.

See also: AWS API Documentation

Request Syntax

response = client.list_hyper_parameter_tuning_jobs(
    NextToken='string',
    MaxResults=123,
    SortBy='Name'|'Status'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    NameContains='string',
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    StatusEquals='Completed'|'InProgress'|'Failed'|'Stopped'|'Stopping'
)
Parameters
  • NextToken (string) -- If the result of the previous ListHyperParameterTuningJobs request was truncated, the response includes a NextToken . To retrieve the next set of tuning jobs, use the token in the next request.
  • MaxResults (integer) -- The maximum number of tuning jobs to return. The default value is 10.
  • SortBy (string) -- The field to sort results by. The default is Name .
  • SortOrder (string) -- The sort order for results. The default is Ascending .
  • NameContains (string) -- A string in the tuning job name. This filter returns only tuning jobs whose name contains the specified string.
  • CreationTimeAfter (datetime) -- A filter that returns only tuning jobs that were created after the specified time.
  • CreationTimeBefore (datetime) -- A filter that returns only tuning jobs that were created before the specified time.
  • LastModifiedTimeAfter (datetime) -- A filter that returns only tuning jobs that were modified after the specified time.
  • LastModifiedTimeBefore (datetime) -- A filter that returns only tuning jobs that were modified before the specified time.
  • StatusEquals (string) -- A filter that returns only tuning jobs with the specified status.
Return type

dict

Returns

Response Syntax

{
    'HyperParameterTuningJobSummaries': [
        {
            'HyperParameterTuningJobName': 'string',
            'HyperParameterTuningJobArn': 'string',
            'HyperParameterTuningJobStatus': 'Completed'|'InProgress'|'Failed'|'Stopped'|'Stopping',
            'Strategy': 'Bayesian'|'Random'|'Hyperband'|'Grid',
            'CreationTime': datetime(2015, 1, 1),
            'HyperParameterTuningEndTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'TrainingJobStatusCounters': {
                'Completed': 123,
                'InProgress': 123,
                'RetryableError': 123,
                'NonRetryableError': 123,
                'Stopped': 123
            },
            'ObjectiveStatusCounters': {
                'Succeeded': 123,
                'Pending': 123,
                'Failed': 123
            },
            'ResourceLimits': {
                'MaxNumberOfTrainingJobs': 123,
                'MaxParallelTrainingJobs': 123,
                'MaxRuntimeInSeconds': 123
            }
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • HyperParameterTuningJobSummaries (list) --

      A list of HyperParameterTuningJobSummary objects that describe the tuning jobs that the ListHyperParameterTuningJobs request returned.

      • (dict) --

        Provides summary information about a hyperparameter tuning job.

        • HyperParameterTuningJobName (string) --

          The name of the tuning job.

        • HyperParameterTuningJobArn (string) --

          The Amazon Resource Name (ARN) of the tuning job.

        • HyperParameterTuningJobStatus (string) --

          The status of the tuning job.

        • Strategy (string) --

          Specifies the search strategy hyperparameter tuning uses to choose which hyperparameters to evaluate at each iteration.

        • CreationTime (datetime) --

          The date and time that the tuning job was created.

        • HyperParameterTuningEndTime (datetime) --

          The date and time that the tuning job ended.

        • LastModifiedTime (datetime) --

          The date and time that the tuning job was modified.

        • TrainingJobStatusCounters (dict) --

          The TrainingJobStatusCounters object that specifies the numbers of training jobs, categorized by status, that this tuning job launched.

          • Completed (integer) --

            The number of completed training jobs launched by the hyperparameter tuning job.

          • InProgress (integer) --

            The number of in-progress training jobs launched by a hyperparameter tuning job.

          • RetryableError (integer) --

            The number of training jobs that failed, but can be retried. A failed training job can be retried only if it failed because an internal service error occurred.

          • NonRetryableError (integer) --

            The number of training jobs that failed and can't be retried. A failed training job can't be retried if it failed because a client error occurred.

          • Stopped (integer) --

            The number of training jobs launched by a hyperparameter tuning job that were manually stopped.

        • ObjectiveStatusCounters (dict) --

          The ObjectiveStatusCounters object that specifies the numbers of training jobs, categorized by objective metric status, that this tuning job launched.

          • Succeeded (integer) --

            The number of training jobs whose final objective metric was evaluated by the hyperparameter tuning job and used in the hyperparameter tuning process.

          • Pending (integer) --

            The number of training jobs that are in progress and pending evaluation of their final objective metric.

          • Failed (integer) --

            The number of training jobs whose final objective metric was not evaluated and used in the hyperparameter tuning process. This typically occurs when the training job failed or did not emit an objective metric.

        • ResourceLimits (dict) --

          The ResourceLimits object that specifies the maximum number of training jobs and parallel training jobs allowed for this tuning job.

          • MaxNumberOfTrainingJobs (integer) --

            The maximum number of training jobs that a hyperparameter tuning job can launch.

          • MaxParallelTrainingJobs (integer) --

            The maximum number of concurrent training jobs that a hyperparameter tuning job can launch.

          • MaxRuntimeInSeconds (integer) --

            The maximum time in seconds that a training job launched by a hyperparameter tuning job can run.

    • NextToken (string) --

      If the result of this ListHyperParameterTuningJobs request was truncated, the response includes a NextToken . To retrieve the next set of tuning jobs, use the token in the next request.

list_image_versions(**kwargs)

Lists the versions of a specified image and their properties. The list can be filtered by creation time or modified time.

See also: AWS API Documentation

Request Syntax

response = client.list_image_versions(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    ImageName='string',
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    MaxResults=123,
    NextToken='string',
    SortBy='CREATION_TIME'|'LAST_MODIFIED_TIME'|'VERSION',
    SortOrder='ASCENDING'|'DESCENDING'
)
Parameters
  • CreationTimeAfter (datetime) -- A filter that returns only versions created on or after the specified time.
  • CreationTimeBefore (datetime) -- A filter that returns only versions created on or before the specified time.
  • ImageName (string) --

    [REQUIRED]

    The name of the image to list the versions of.

  • LastModifiedTimeAfter (datetime) -- A filter that returns only versions modified on or after the specified time.
  • LastModifiedTimeBefore (datetime) -- A filter that returns only versions modified on or before the specified time.
  • MaxResults (integer) -- The maximum number of versions to return in the response. The default value is 10.
  • NextToken (string) -- If the previous call to ListImageVersions didn't return the full set of versions, the call returns a token for getting the next set of versions.
  • SortBy (string) -- The property used to sort results. The default value is CREATION_TIME .
  • SortOrder (string) -- The sort order. The default value is DESCENDING .
Return type

dict

Returns

Response Syntax

{
    'ImageVersions': [
        {
            'CreationTime': datetime(2015, 1, 1),
            'FailureReason': 'string',
            'ImageArn': 'string',
            'ImageVersionArn': 'string',
            'ImageVersionStatus': 'CREATING'|'CREATED'|'CREATE_FAILED'|'DELETING'|'DELETE_FAILED',
            'LastModifiedTime': datetime(2015, 1, 1),
            'Version': 123
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • ImageVersions (list) --

      A list of versions and their properties.

      • (dict) --

        A version of a SageMaker Image . A version represents an existing container image.

        • CreationTime (datetime) --

          When the version was created.

        • FailureReason (string) --

          When a create or delete operation fails, the reason for the failure.

        • ImageArn (string) --

          The ARN of the image the version is based on.

        • ImageVersionArn (string) --

          The ARN of the version.

        • ImageVersionStatus (string) --

          The status of the version.

        • LastModifiedTime (datetime) --

          When the version was last modified.

        • Version (integer) --

          The version number.

    • NextToken (string) --

      A token for getting the next set of versions, if there are any.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
list_images(**kwargs)

Lists the images in your account and their properties. The list can be filtered by creation time or modified time, and whether the image name contains a specified string.

See also: AWS API Documentation

Request Syntax

response = client.list_images(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    MaxResults=123,
    NameContains='string',
    NextToken='string',
    SortBy='CREATION_TIME'|'LAST_MODIFIED_TIME'|'IMAGE_NAME',
    SortOrder='ASCENDING'|'DESCENDING'
)
Parameters
  • CreationTimeAfter (datetime) -- A filter that returns only images created on or after the specified time.
  • CreationTimeBefore (datetime) -- A filter that returns only images created on or before the specified time.
  • LastModifiedTimeAfter (datetime) -- A filter that returns only images modified on or after the specified time.
  • LastModifiedTimeBefore (datetime) -- A filter that returns only images modified on or before the specified time.
  • MaxResults (integer) -- The maximum number of images to return in the response. The default value is 10.
  • NameContains (string) -- A filter that returns only images whose name contains the specified string.
  • NextToken (string) -- If the previous call to ListImages didn't return the full set of images, the call returns a token for getting the next set of images.
  • SortBy (string) -- The property used to sort results. The default value is CREATION_TIME .
  • SortOrder (string) -- The sort order. The default value is DESCENDING .
Return type

dict

Returns

Response Syntax

{
    'Images': [
        {
            'CreationTime': datetime(2015, 1, 1),
            'Description': 'string',
            'DisplayName': 'string',
            'FailureReason': 'string',
            'ImageArn': 'string',
            'ImageName': 'string',
            'ImageStatus': 'CREATING'|'CREATED'|'CREATE_FAILED'|'UPDATING'|'UPDATE_FAILED'|'DELETING'|'DELETE_FAILED',
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • Images (list) --

      A list of images and their properties.

      • (dict) --

        A SageMaker image. A SageMaker image represents a set of container images that are derived from a common base container image. Each of these container images is represented by a SageMaker ImageVersion .

        • CreationTime (datetime) --

          When the image was created.

        • Description (string) --

          The description of the image.

        • DisplayName (string) --

          The name of the image as displayed.

        • FailureReason (string) --

          When a create, update, or delete operation fails, the reason for the failure.

        • ImageArn (string) --

          The ARN of the image.

        • ImageName (string) --

          The name of the image.

        • ImageStatus (string) --

          The status of the image.

        • LastModifiedTime (datetime) --

          When the image was last modified.

    • NextToken (string) --

      A token for getting the next set of images, if there are any.

list_inference_experiments(**kwargs)

Returns the list of all inference experiments.

See also: AWS API Documentation

Request Syntax

response = client.list_inference_experiments(
    NameContains='string',
    Type='ShadowMode',
    StatusEquals='Creating'|'Created'|'Updating'|'Running'|'Starting'|'Stopping'|'Completed'|'Cancelled',
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    SortBy='Name'|'CreationTime'|'Status',
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123
)
Parameters
  • NameContains (string) -- Selects inference experiments whose names contain this name.
  • Type (string) -- Selects inference experiments of this type. For the possible types of inference experiments, see CreateInferenceExperimentRequest$Type.
  • StatusEquals (string) -- Selects inference experiments which are in this status. For the possible statuses, see DescribeInferenceExperimentResponse$Status.
  • CreationTimeAfter (datetime) -- Selects inference experiments which were created after this timestamp.
  • CreationTimeBefore (datetime) -- Selects inference experiments which were created before this timestamp.
  • LastModifiedTimeAfter (datetime) -- Selects inference experiments which were last modified after this timestamp.
  • LastModifiedTimeBefore (datetime) -- Selects inference experiments which were last modified before this timestamp.
  • SortBy (string) -- The column by which to sort the listed inference experiments.
  • SortOrder (string) -- The direction of sorting (ascending or descending).
  • NextToken (string) -- The response from the last list when returning a list large enough to need tokening.
  • MaxResults (integer) -- The maximum number of results to select.
Return type

dict

Returns

Response Syntax

{
    'InferenceExperiments': [
        {
            'Name': 'string',
            'Type': 'ShadowMode',
            'Schedule': {
                'StartTime': datetime(2015, 1, 1),
                'EndTime': datetime(2015, 1, 1)
            },
            'Status': 'Creating'|'Created'|'Updating'|'Running'|'Starting'|'Stopping'|'Completed'|'Cancelled',
            'StatusReason': 'string',
            'Description': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'CompletionTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'RoleArn': 'string'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • InferenceExperiments (list) --

      List of inference experiments.

      • (dict) --

        Lists a summary of properties of an inference experiment.

        • Name (string) --

          The name of the inference experiment.

        • Type (string) --

          The type of the inference experiment.

        • Schedule (dict) --

          The duration for which the inference experiment ran or will run.

          The maximum duration that you can set for an inference experiment is 30 days.

          • StartTime (datetime) --

            The timestamp at which the inference experiment started or will start.

          • EndTime (datetime) --

            The timestamp at which the inference experiment ended or will end.

        • Status (string) --

          The status of the inference experiment.

        • StatusReason (string) --

          The error message for the inference experiment status result.

        • Description (string) --

          The description of the inference experiment.

        • CreationTime (datetime) --

          The timestamp at which the inference experiment was created.

        • CompletionTime (datetime) --

          The timestamp at which the inference experiment was completed.

        • LastModifiedTime (datetime) --

          The timestamp when you last modified the inference experiment.

        • RoleArn (string) --

          The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images, and manage Amazon SageMaker Inference endpoints for model deployment.

    • NextToken (string) --

      The token to use when calling the next page of results.

list_inference_recommendations_job_steps(**kwargs)

Returns a list of the subtasks for an Inference Recommender job.

The supported subtasks are benchmarks, which evaluate the performance of your model on different instance types.

See also: AWS API Documentation

Request Syntax

response = client.list_inference_recommendations_job_steps(
    JobName='string',
    Status='PENDING'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOPPING'|'STOPPED',
    StepType='BENCHMARK',
    MaxResults=123,
    NextToken='string'
)
Parameters
  • JobName (string) --

    [REQUIRED]

    The name for the Inference Recommender job.

  • Status (string) -- A filter to return benchmarks of a specified status. If this field is left empty, then all benchmarks are returned.
  • StepType (string) --

    A filter to return details about the specified type of subtask.

    BENCHMARK : Evaluate the performance of your model on different instance types.
  • MaxResults (integer) -- The maximum number of results to return.
  • NextToken (string) -- A token that you can specify to return more results from the list. Specify this field if you have a token that was returned from a previous request.
Return type

dict

Returns

Response Syntax

{
    'Steps': [
        {
            'StepType': 'BENCHMARK',
            'JobName': 'string',
            'Status': 'PENDING'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOPPING'|'STOPPED',
            'InferenceBenchmark': {
                'Metrics': {
                    'CostPerHour': ...,
                    'CostPerInference': ...,
                    'MaxInvocations': 123,
                    'ModelLatency': 123,
                    'CpuUtilization': ...,
                    'MemoryUtilization': ...
                },
                'EndpointConfiguration': {
                    'EndpointName': 'string',
                    'VariantName': 'string',
                    'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge',
                    'InitialInstanceCount': 123
                },
                'ModelConfiguration': {
                    'InferenceSpecificationName': 'string',
                    'EnvironmentParameters': [
                        {
                            'Key': 'string',
                            'ValueType': 'string',
                            'Value': 'string'
                        },
                    ],
                    'CompilationJobName': 'string'
                },
                'FailureReason': 'string'
            }
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • Steps (list) --

      A list of all subtask details in Inference Recommender.

      • (dict) --

        A returned array object for the Steps response field in the ListInferenceRecommendationsJobSteps API command.

        • StepType (string) --

          The type of the subtask.

          BENCHMARK : Evaluate the performance of your model on different instance types.

        • JobName (string) --

          The name of the Inference Recommender job.

        • Status (string) --

          The current status of the benchmark.

        • InferenceBenchmark (dict) --

          The details for a specific benchmark.

          • Metrics (dict) --

            The metrics of recommendations.

            • CostPerHour (float) --

              Defines the cost per hour for the instance.

            • CostPerInference (float) --

              Defines the cost per inference for the instance .

            • MaxInvocations (integer) --

              The expected maximum number of requests per minute for the instance.

            • ModelLatency (integer) --

              The expected model latency at maximum invocation per minute for the instance.

            • CpuUtilization (float) --

              The expected CPU utilization at maximum invocations per minute for the instance.

              NaN indicates that the value is not available.

            • MemoryUtilization (float) --

              The expected memory utilization at maximum invocations per minute for the instance.

              NaN indicates that the value is not available.

          • EndpointConfiguration (dict) --

            The endpoint configuration made by Inference Recommender during a recommendation job.

            • EndpointName (string) --

              The name of the endpoint made during a recommendation job.

            • VariantName (string) --

              The name of the production variant (deployed model) made during a recommendation job.

            • InstanceType (string) --

              The instance type recommended by Amazon SageMaker Inference Recommender.

            • InitialInstanceCount (integer) --

              The number of instances recommended to launch initially.

          • ModelConfiguration (dict) --

            Defines the model configuration. Includes the specification name and environment parameters.

            • InferenceSpecificationName (string) --

              The inference specification name in the model package version.

            • EnvironmentParameters (list) --

              Defines the environment parameters that includes key, value types, and values.

              • (dict) --

                A list of environment parameters suggested by the Amazon SageMaker Inference Recommender.

                • Key (string) --

                  The environment key suggested by the Amazon SageMaker Inference Recommender.

                • ValueType (string) --

                  The value type suggested by the Amazon SageMaker Inference Recommender.

                • Value (string) --

                  The value suggested by the Amazon SageMaker Inference Recommender.

            • CompilationJobName (string) --

              The name of the compilation job used to create the recommended model artifacts.

          • FailureReason (string) --

            The reason why a benchmark failed.

    • NextToken (string) --

      A token that you can specify in your next request to return more results from the list.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
list_inference_recommendations_jobs(**kwargs)

Lists recommendation jobs that satisfy various filters.

See also: AWS API Documentation

Request Syntax

response = client.list_inference_recommendations_jobs(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    NameContains='string',
    StatusEquals='PENDING'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOPPING'|'STOPPED',
    SortBy='Name'|'CreationTime'|'Status',
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123
)
Parameters
  • CreationTimeAfter (datetime) -- A filter that returns only jobs created after the specified time (timestamp).
  • CreationTimeBefore (datetime) -- A filter that returns only jobs created before the specified time (timestamp).
  • LastModifiedTimeAfter (datetime) -- A filter that returns only jobs that were last modified after the specified time (timestamp).
  • LastModifiedTimeBefore (datetime) -- A filter that returns only jobs that were last modified before the specified time (timestamp).
  • NameContains (string) -- A string in the job name. This filter returns only recommendations whose name contains the specified string.
  • StatusEquals (string) -- A filter that retrieves only inference recommendations jobs with a specific status.
  • SortBy (string) -- The parameter by which to sort the results.
  • SortOrder (string) -- The sort order for the results.
  • NextToken (string) -- If the response to a previous ListInferenceRecommendationsJobsRequest request was truncated, the response includes a NextToken . To retrieve the next set of recommendations, use the token in the next request.
  • MaxResults (integer) -- The maximum number of recommendations to return in the response.
Return type

dict

Returns

Response Syntax

{
    'InferenceRecommendationsJobs': [
        {
            'JobName': 'string',
            'JobDescription': 'string',
            'JobType': 'Default'|'Advanced',
            'JobArn': 'string',
            'Status': 'PENDING'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOPPING'|'STOPPED',
            'CreationTime': datetime(2015, 1, 1),
            'CompletionTime': datetime(2015, 1, 1),
            'RoleArn': 'string',
            'LastModifiedTime': datetime(2015, 1, 1),
            'FailureReason': 'string'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • InferenceRecommendationsJobs (list) --

      The recommendations created from the Amazon SageMaker Inference Recommender job.

      • (dict) --

        A structure that contains a list of recommendation jobs.

        • JobName (string) --

          The name of the job.

        • JobDescription (string) --

          The job description.

        • JobType (string) --

          The recommendation job type.

        • JobArn (string) --

          The Amazon Resource Name (ARN) of the recommendation job.

        • Status (string) --

          The status of the job.

        • CreationTime (datetime) --

          A timestamp that shows when the job was created.

        • CompletionTime (datetime) --

          A timestamp that shows when the job completed.

        • RoleArn (string) --

          The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks on your behalf.

        • LastModifiedTime (datetime) --

          A timestamp that shows when the job was last modified.

        • FailureReason (string) --

          If the job fails, provides information why the job failed.

    • NextToken (string) --

      A token for getting the next set of recommendations, if there are any.

list_labeling_jobs(**kwargs)

Gets a list of labeling jobs.

See also: AWS API Documentation

Request Syntax

response = client.list_labeling_jobs(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    MaxResults=123,
    NextToken='string',
    NameContains='string',
    SortBy='Name'|'CreationTime'|'Status',
    SortOrder='Ascending'|'Descending',
    StatusEquals='Initializing'|'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped'
)
Parameters
  • CreationTimeAfter (datetime) -- A filter that returns only labeling jobs created after the specified time (timestamp).
  • CreationTimeBefore (datetime) -- A filter that returns only labeling jobs created before the specified time (timestamp).
  • LastModifiedTimeAfter (datetime) -- A filter that returns only labeling jobs modified after the specified time (timestamp).
  • LastModifiedTimeBefore (datetime) -- A filter that returns only labeling jobs modified before the specified time (timestamp).
  • MaxResults (integer) -- The maximum number of labeling jobs to return in each page of the response.
  • NextToken (string) -- If the result of the previous ListLabelingJobs request was truncated, the response includes a NextToken . To retrieve the next set of labeling jobs, use the token in the next request.
  • NameContains (string) -- A string in the labeling job name. This filter returns only labeling jobs whose name contains the specified string.
  • SortBy (string) -- The field to sort results by. The default is CreationTime .
  • SortOrder (string) -- The sort order for results. The default is Ascending .
  • StatusEquals (string) -- A filter that retrieves only labeling jobs with a specific status.
Return type

dict

Returns

Response Syntax

{
    'LabelingJobSummaryList': [
        {
            'LabelingJobName': 'string',
            'LabelingJobArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'LabelingJobStatus': 'Initializing'|'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
            'LabelCounters': {
                'TotalLabeled': 123,
                'HumanLabeled': 123,
                'MachineLabeled': 123,
                'FailedNonRetryableError': 123,
                'Unlabeled': 123
            },
            'WorkteamArn': 'string',
            'PreHumanTaskLambdaArn': 'string',
            'AnnotationConsolidationLambdaArn': 'string',
            'FailureReason': 'string',
            'LabelingJobOutput': {
                'OutputDatasetS3Uri': 'string',
                'FinalActiveLearningModelArn': 'string'
            },
            'InputConfig': {
                'DataSource': {
                    'S3DataSource': {
                        'ManifestS3Uri': 'string'
                    },
                    'SnsDataSource': {
                        'SnsTopicArn': 'string'
                    }
                },
                'DataAttributes': {
                    'ContentClassifiers': [
                        'FreeOfPersonallyIdentifiableInformation'|'FreeOfAdultContent',
                    ]
                }
            }
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • LabelingJobSummaryList (list) --

      An array of LabelingJobSummary objects, each describing a labeling job.

      • (dict) --

        Provides summary information about a labeling job.

        • LabelingJobName (string) --

          The name of the labeling job.

        • LabelingJobArn (string) --

          The Amazon Resource Name (ARN) assigned to the labeling job when it was created.

        • CreationTime (datetime) --

          The date and time that the job was created (timestamp).

        • LastModifiedTime (datetime) --

          The date and time that the job was last modified (timestamp).

        • LabelingJobStatus (string) --

          The current status of the labeling job.

        • LabelCounters (dict) --

          Counts showing the progress of the labeling job.

          • TotalLabeled (integer) --

            The total number of objects labeled.

          • HumanLabeled (integer) --

            The total number of objects labeled by a human worker.

          • MachineLabeled (integer) --

            The total number of objects labeled by automated data labeling.

          • FailedNonRetryableError (integer) --

            The total number of objects that could not be labeled due to an error.

          • Unlabeled (integer) --

            The total number of objects not yet labeled.

        • WorkteamArn (string) --

          The Amazon Resource Name (ARN) of the work team assigned to the job.

        • PreHumanTaskLambdaArn (string) --

          The Amazon Resource Name (ARN) of a Lambda function. The function is run before each data object is sent to a worker.

        • AnnotationConsolidationLambdaArn (string) --

          The Amazon Resource Name (ARN) of the Lambda function used to consolidate the annotations from individual workers into a label for a data object. For more information, see Annotation Consolidation.

        • FailureReason (string) --

          If the LabelingJobStatus field is Failed , this field contains a description of the error.

        • LabelingJobOutput (dict) --

          The location of the output produced by the labeling job.

          • OutputDatasetS3Uri (string) --

            The Amazon S3 bucket location of the manifest file for labeled data.

          • FinalActiveLearningModelArn (string) --

            The Amazon Resource Name (ARN) for the most recent SageMaker model trained as part of automated data labeling.

        • InputConfig (dict) --

          Input configuration for the labeling job.

          • DataSource (dict) --

            The location of the input data.

            • S3DataSource (dict) --

              The Amazon S3 location of the input data objects.

              • ManifestS3Uri (string) --

                The Amazon S3 location of the manifest file that describes the input data objects.

                The input manifest file referenced in ManifestS3Uri must contain one of the following keys: source-ref or source . The value of the keys are interpreted as follows:

                • source-ref : The source of the object is the Amazon S3 object specified in the value. Use this value when the object is a binary object, such as an image.
                • source : The source of the object is the value. Use this value when the object is a text value.

                If you are a new user of Ground Truth, it is recommended you review Use an Input Manifest File in the Amazon SageMaker Developer Guide to learn how to create an input manifest file.

            • SnsDataSource (dict) --

              An Amazon SNS data source used for streaming labeling jobs. To learn more, see Send Data to a Streaming Labeling Job.

              • SnsTopicArn (string) --

                The Amazon SNS input topic Amazon Resource Name (ARN). Specify the ARN of the input topic you will use to send new data objects to a streaming labeling job.

          • DataAttributes (dict) --

            Attributes of the data specified by the customer.

            • ContentClassifiers (list) --

              Declares that your content is free of personally identifiable information or adult content. SageMaker may restrict the Amazon Mechanical Turk workers that can view your task based on this information.

              • (string) --
    • NextToken (string) --

      If the response is truncated, SageMaker returns this token. To retrieve the next set of labeling jobs, use it in the subsequent request.

list_labeling_jobs_for_workteam(**kwargs)

Gets a list of labeling jobs assigned to a specified work team.

See also: AWS API Documentation

Request Syntax

response = client.list_labeling_jobs_for_workteam(
    WorkteamArn='string',
    MaxResults=123,
    NextToken='string',
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    JobReferenceCodeContains='string',
    SortBy='CreationTime',
    SortOrder='Ascending'|'Descending'
)
Parameters
  • WorkteamArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of the work team for which you want to see labeling jobs for.

  • MaxResults (integer) -- The maximum number of labeling jobs to return in each page of the response.
  • NextToken (string) -- If the result of the previous ListLabelingJobsForWorkteam request was truncated, the response includes a NextToken . To retrieve the next set of labeling jobs, use the token in the next request.
  • CreationTimeAfter (datetime) -- A filter that returns only labeling jobs created after the specified time (timestamp).
  • CreationTimeBefore (datetime) -- A filter that returns only labeling jobs created before the specified time (timestamp).
  • JobReferenceCodeContains (string) -- A filter the limits jobs to only the ones whose job reference code contains the specified string.
  • SortBy (string) -- The field to sort results by. The default is CreationTime .
  • SortOrder (string) -- The sort order for results. The default is Ascending .
Return type

dict

Returns

Response Syntax

{
    'LabelingJobSummaryList': [
        {
            'LabelingJobName': 'string',
            'JobReferenceCode': 'string',
            'WorkRequesterAccountId': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LabelCounters': {
                'HumanLabeled': 123,
                'PendingHuman': 123,
                'Total': 123
            },
            'NumberOfHumanWorkersPerDataObject': 123
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • LabelingJobSummaryList (list) --

      An array of LabelingJobSummary objects, each describing a labeling job.

      • (dict) --

        Provides summary information for a work team.

        • LabelingJobName (string) --

          The name of the labeling job that the work team is assigned to.

        • JobReferenceCode (string) --

          A unique identifier for a labeling job. You can use this to refer to a specific labeling job.

        • WorkRequesterAccountId (string) --

          The Amazon Web Services account ID of the account used to start the labeling job.

        • CreationTime (datetime) --

          The date and time that the labeling job was created.

        • LabelCounters (dict) --

          Provides information about the progress of a labeling job.

          • HumanLabeled (integer) --

            The total number of data objects labeled by a human worker.

          • PendingHuman (integer) --

            The total number of data objects that need to be labeled by a human worker.

          • Total (integer) --

            The total number of tasks in the labeling job.

        • NumberOfHumanWorkersPerDataObject (integer) --

          The configured number of workers per data object.

    • NextToken (string) --

      If the response is truncated, SageMaker returns this token. To retrieve the next set of labeling jobs, use it in the subsequent request.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
list_lineage_groups(**kwargs)

A list of lineage groups shared with your Amazon Web Services account. For more information, see Cross-Account Lineage Tracking in the Amazon SageMaker Developer Guide .

See also: AWS API Documentation

Request Syntax

response = client.list_lineage_groups(
    CreatedAfter=datetime(2015, 1, 1),
    CreatedBefore=datetime(2015, 1, 1),
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123
)
Parameters
  • CreatedAfter (datetime) -- A timestamp to filter against lineage groups created after a certain point in time.
  • CreatedBefore (datetime) -- A timestamp to filter against lineage groups created before a certain point in time.
  • SortBy (string) -- The parameter by which to sort the results. The default is CreationTime .
  • SortOrder (string) -- The sort order for the results. The default is Ascending .
  • NextToken (string) -- If the response is truncated, SageMaker returns this token. To retrieve the next set of algorithms, use it in the subsequent request.
  • MaxResults (integer) -- The maximum number of endpoints to return in the response. This value defaults to 10.
Return type

dict

Returns

Response Syntax

{
    'LineageGroupSummaries': [
        {
            'LineageGroupArn': 'string',
            'LineageGroupName': 'string',
            'DisplayName': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • LineageGroupSummaries (list) --

      A list of lineage groups and their properties.

      • (dict) --

        Lists a summary of the properties of a lineage group. A lineage group provides a group of shareable lineage entity resources.

        • LineageGroupArn (string) --

          The Amazon Resource Name (ARN) of the lineage group resource.

        • LineageGroupName (string) --

          The name or Amazon Resource Name (ARN) of the lineage group.

        • DisplayName (string) --

          The display name of the lineage group summary.

        • CreationTime (datetime) --

          The creation time of the lineage group summary.

        • LastModifiedTime (datetime) --

          The last modified time of the lineage group summary.

    • NextToken (string) --

      If the response is truncated, SageMaker returns this token. To retrieve the next set of algorithms, use it in the subsequent request.

list_model_bias_job_definitions(**kwargs)

Lists model bias jobs definitions that satisfy various filters.

See also: AWS API Documentation

Request Syntax

response = client.list_model_bias_job_definitions(
    EndpointName='string',
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123,
    NameContains='string',
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1)
)
Parameters
  • EndpointName (string) -- Name of the endpoint to monitor for model bias.
  • SortBy (string) -- Whether to sort results by the Name or CreationTime field. The default is CreationTime .
  • SortOrder (string) -- Whether to sort the results in Ascending or Descending order. The default is Descending .
  • NextToken (string) -- The token returned if the response is truncated. To retrieve the next set of job executions, use it in the next request.
  • MaxResults (integer) -- The maximum number of model bias jobs to return in the response. The default value is 10.
  • NameContains (string) -- Filter for model bias jobs whose name contains a specified string.
  • CreationTimeBefore (datetime) -- A filter that returns only model bias jobs created before a specified time.
  • CreationTimeAfter (datetime) -- A filter that returns only model bias jobs created after a specified time.
Return type

dict

Returns

Response Syntax

{
    'JobDefinitionSummaries': [
        {
            'MonitoringJobDefinitionName': 'string',
            'MonitoringJobDefinitionArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'EndpointName': 'string'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • JobDefinitionSummaries (list) --

      A JSON array in which each element is a summary for a model bias jobs.

      • (dict) --

        Summary information about a monitoring job.

        • MonitoringJobDefinitionName (string) --

          The name of the monitoring job.

        • MonitoringJobDefinitionArn (string) --

          The Amazon Resource Name (ARN) of the monitoring job.

        • CreationTime (datetime) --

          The time that the monitoring job was created.

        • EndpointName (string) --

          The name of the endpoint that the job monitors.

    • NextToken (string) --

      If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of jobs, use it in the subsequent request.

list_model_card_export_jobs(**kwargs)

List the export jobs for the Amazon SageMaker Model Card.

See also: AWS API Documentation

Request Syntax

response = client.list_model_card_export_jobs(
    ModelCardName='string',
    ModelCardVersion=123,
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    ModelCardExportJobNameContains='string',
    StatusEquals='InProgress'|'Completed'|'Failed',
    SortBy='Name'|'CreationTime'|'Status',
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123
)
Parameters
  • ModelCardName (string) --

    [REQUIRED]

    List export jobs for the model card with the specified name.

  • ModelCardVersion (integer) -- List export jobs for the model card with the specified version.
  • CreationTimeAfter (datetime) -- Only list model card export jobs that were created after the time specified.
  • CreationTimeBefore (datetime) -- Only list model card export jobs that were created before the time specified.
  • ModelCardExportJobNameContains (string) -- Only list model card export jobs with names that contain the specified string.
  • StatusEquals (string) -- Only list model card export jobs with the specified status.
  • SortBy (string) -- Sort model card export jobs by either name or creation time. Sorts by creation time by default.
  • SortOrder (string) -- Sort model card export jobs by ascending or descending order.
  • NextToken (string) -- If the response to a previous ListModelCardExportJobs request was truncated, the response includes a NextToken . To retrieve the next set of model card export jobs, use the token in the next request.
  • MaxResults (integer) -- The maximum number of model card export jobs to list.
Return type

dict

Returns

Response Syntax

{
    'ModelCardExportJobSummaries': [
        {
            'ModelCardExportJobName': 'string',
            'ModelCardExportJobArn': 'string',
            'Status': 'InProgress'|'Completed'|'Failed',
            'ModelCardName': 'string',
            'ModelCardVersion': 123,
            'CreatedAt': datetime(2015, 1, 1),
            'LastModifiedAt': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • ModelCardExportJobSummaries (list) --

      The summaries of the listed model card export jobs.

      • (dict) --

        The summary of the Amazon SageMaker Model Card export job.

        • ModelCardExportJobName (string) --

          The name of the model card export job.

        • ModelCardExportJobArn (string) --

          The Amazon Resource Name (ARN) of the model card export job.

        • Status (string) --

          The completion status of the model card export job.

        • ModelCardName (string) --

          The name of the model card that the export job exports.

        • ModelCardVersion (integer) --

          The version of the model card that the export job exports.

        • CreatedAt (datetime) --

          The date and time that the model card export job was created.

        • LastModifiedAt (datetime) --

          The date and time that the model card export job was last modified..

    • NextToken (string) --

      If the response is truncated, SageMaker returns this token. To retrieve the next set of model card export jobs, use it in the subsequent request.

list_model_card_versions(**kwargs)

List existing versions of an Amazon SageMaker Model Card.

See also: AWS API Documentation

Request Syntax

response = client.list_model_card_versions(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    MaxResults=123,
    ModelCardName='string',
    ModelCardStatus='Draft'|'PendingReview'|'Approved'|'Archived',
    NextToken='string',
    SortBy='Version',
    SortOrder='Ascending'|'Descending'
)
Parameters
  • CreationTimeAfter (datetime) -- Only list model card versions that were created after the time specified.
  • CreationTimeBefore (datetime) -- Only list model card versions that were created before the time specified.
  • MaxResults (integer) -- The maximum number of model card versions to list.
  • ModelCardName (string) --

    [REQUIRED]

    List model card versions for the model card with the specified name.

  • ModelCardStatus (string) -- Only list model card versions with the specified approval status.
  • NextToken (string) -- If the response to a previous ListModelCardVersions request was truncated, the response includes a NextToken . To retrieve the next set of model card versions, use the token in the next request.
  • SortBy (string) -- Sort listed model card versions by version. Sorts by version by default.
  • SortOrder (string) -- Sort model card versions by ascending or descending order.
Return type

dict

Returns

Response Syntax

{
    'ModelCardVersionSummaryList': [
        {
            'ModelCardName': 'string',
            'ModelCardArn': 'string',
            'ModelCardStatus': 'Draft'|'PendingReview'|'Approved'|'Archived',
            'ModelCardVersion': 123,
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • ModelCardVersionSummaryList (list) --

      The summaries of the listed versions of the model card.

      • (dict) --

        A summary of a specific version of the model card.

        • ModelCardName (string) --

          The name of the model card.

        • ModelCardArn (string) --

          The Amazon Resource Name (ARN) of the model card.

        • ModelCardStatus (string) --

          The approval status of the model card version within your organization. Different organizations might have different criteria for model card review and approval.

          • Draft : The model card is a work in progress.
          • PendingReview : The model card is pending review.
          • Approved : The model card is approved.
          • Archived : The model card is archived. No more updates should be made to the model card, but it can still be exported.
        • ModelCardVersion (integer) --

          A version of the model card.

        • CreationTime (datetime) --

          The date and time that the model card version was created.

        • LastModifiedTime (datetime) --

          The time date and time that the model card version was last modified.

    • NextToken (string) --

      If the response is truncated, SageMaker returns this token. To retrieve the next set of model card versions, use it in the subsequent request.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
list_model_cards(**kwargs)

List existing model cards.

See also: AWS API Documentation

Request Syntax

response = client.list_model_cards(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    MaxResults=123,
    NameContains='string',
    ModelCardStatus='Draft'|'PendingReview'|'Approved'|'Archived',
    NextToken='string',
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending'
)
Parameters
  • CreationTimeAfter (datetime) -- Only list model cards that were created after the time specified.
  • CreationTimeBefore (datetime) -- Only list model cards that were created before the time specified.
  • MaxResults (integer) -- The maximum number of model cards to list.
  • NameContains (string) -- Only list model cards with names that contain the specified string.
  • ModelCardStatus (string) -- Only list model cards with the specified approval status.
  • NextToken (string) -- If the response to a previous ListModelCards request was truncated, the response includes a NextToken . To retrieve the next set of model cards, use the token in the next request.
  • SortBy (string) -- Sort model cards by either name or creation time. Sorts by creation time by default.
  • SortOrder (string) -- Sort model cards by ascending or descending order.
Return type

dict

Returns

Response Syntax

{
    'ModelCardSummaries': [
        {
            'ModelCardName': 'string',
            'ModelCardArn': 'string',
            'ModelCardStatus': 'Draft'|'PendingReview'|'Approved'|'Archived',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • ModelCardSummaries (list) --

      The summaries of the listed model cards.

      • (dict) --

        A summary of the model card.

        • ModelCardName (string) --

          The name of the model card.

        • ModelCardArn (string) --

          The Amazon Resource Name (ARN) of the model card.

        • ModelCardStatus (string) --

          The approval status of the model card within your organization. Different organizations might have different criteria for model card review and approval.

          • Draft : The model card is a work in progress.
          • PendingReview : The model card is pending review.
          • Approved : The model card is approved.
          • Archived : The model card is archived. No more updates should be made to the model card, but it can still be exported.
        • CreationTime (datetime) --

          The date and time that the model card was created.

        • LastModifiedTime (datetime) --

          The date and time that the model card was last modified.

    • NextToken (string) --

      If the response is truncated, SageMaker returns this token. To retrieve the next set of model cards, use it in the subsequent request.

list_model_explainability_job_definitions(**kwargs)

Lists model explainability job definitions that satisfy various filters.

See also: AWS API Documentation

Request Syntax

response = client.list_model_explainability_job_definitions(
    EndpointName='string',
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123,
    NameContains='string',
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1)
)
Parameters
  • EndpointName (string) -- Name of the endpoint to monitor for model explainability.
  • SortBy (string) -- Whether to sort results by the Name or CreationTime field. The default is CreationTime .
  • SortOrder (string) -- Whether to sort the results in Ascending or Descending order. The default is Descending .
  • NextToken (string) -- The token returned if the response is truncated. To retrieve the next set of job executions, use it in the next request.
  • MaxResults (integer) -- The maximum number of jobs to return in the response. The default value is 10.
  • NameContains (string) -- Filter for model explainability jobs whose name contains a specified string.
  • CreationTimeBefore (datetime) -- A filter that returns only model explainability jobs created before a specified time.
  • CreationTimeAfter (datetime) -- A filter that returns only model explainability jobs created after a specified time.
Return type

dict

Returns

Response Syntax

{
    'JobDefinitionSummaries': [
        {
            'MonitoringJobDefinitionName': 'string',
            'MonitoringJobDefinitionArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'EndpointName': 'string'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • JobDefinitionSummaries (list) --

      A JSON array in which each element is a summary for a explainability bias jobs.

      • (dict) --

        Summary information about a monitoring job.

        • MonitoringJobDefinitionName (string) --

          The name of the monitoring job.

        • MonitoringJobDefinitionArn (string) --

          The Amazon Resource Name (ARN) of the monitoring job.

        • CreationTime (datetime) --

          The time that the monitoring job was created.

        • EndpointName (string) --

          The name of the endpoint that the job monitors.

    • NextToken (string) --

      If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of jobs, use it in the subsequent request.

list_model_metadata(**kwargs)

Lists the domain, framework, task, and model name of standard machine learning models found in common model zoos.

See also: AWS API Documentation

Request Syntax

response = client.list_model_metadata(
    SearchExpression={
        'Filters': [
            {
                'Name': 'Domain'|'Framework'|'Task'|'FrameworkVersion',
                'Value': 'string'
            },
        ]
    },
    NextToken='string',
    MaxResults=123
)
Parameters
  • SearchExpression (dict) --

    One or more filters that searches for the specified resource or resources in a search. All resource objects that satisfy the expression's condition are included in the search results. Specify the Framework, FrameworkVersion, Domain or Task to filter supported. Filter names and values are case-sensitive.

    • Filters (list) --

      A list of filter objects.

      • (dict) --

        Part of the search expression. You can specify the name and value (domain, task, framework, framework version, task, and model).

        • Name (string) -- [REQUIRED]

          The name of the of the model to filter by.

        • Value (string) -- [REQUIRED]

          The value to filter the model metadata.

  • NextToken (string) -- If the response to a previous ListModelMetadataResponse request was truncated, the response includes a NextToken. To retrieve the next set of model metadata, use the token in the next request.
  • MaxResults (integer) -- The maximum number of models to return in the response.
Return type

dict

Returns

Response Syntax

{
    'ModelMetadataSummaries': [
        {
            'Domain': 'string',
            'Framework': 'string',
            'Task': 'string',
            'Model': 'string',
            'FrameworkVersion': 'string'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • ModelMetadataSummaries (list) --

      A structure that holds model metadata.

      • (dict) --

        A summary of the model metadata.

        • Domain (string) --

          The machine learning domain of the model.

        • Framework (string) --

          The machine learning framework of the model.

        • Task (string) --

          The machine learning task of the model.

        • Model (string) --

          The name of the model.

        • FrameworkVersion (string) --

          The framework version of the model.

    • NextToken (string) --

      A token for getting the next set of recommendations, if there are any.

list_model_package_groups(**kwargs)

Gets a list of the model groups in your Amazon Web Services account.

See also: AWS API Documentation

Request Syntax

response = client.list_model_package_groups(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    MaxResults=123,
    NameContains='string',
    NextToken='string',
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending'
)
Parameters
  • CreationTimeAfter (datetime) -- A filter that returns only model groups created after the specified time.
  • CreationTimeBefore (datetime) -- A filter that returns only model groups created before the specified time.
  • MaxResults (integer) -- The maximum number of results to return in the response.
  • NameContains (string) -- A string in the model group name. This filter returns only model groups whose name contains the specified string.
  • NextToken (string) -- If the result of the previous ListModelPackageGroups request was truncated, the response includes a NextToken . To retrieve the next set of model groups, use the token in the next request.
  • SortBy (string) -- The field to sort results by. The default is CreationTime .
  • SortOrder (string) -- The sort order for results. The default is Ascending .
Return type

dict

Returns

Response Syntax

{
    'ModelPackageGroupSummaryList': [
        {
            'ModelPackageGroupName': 'string',
            'ModelPackageGroupArn': 'string',
            'ModelPackageGroupDescription': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'ModelPackageGroupStatus': 'Pending'|'InProgress'|'Completed'|'Failed'|'Deleting'|'DeleteFailed'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • ModelPackageGroupSummaryList (list) --

      A list of summaries of the model groups in your Amazon Web Services account.

      • (dict) --

        Summary information about a model group.

        • ModelPackageGroupName (string) --

          The name of the model group.

        • ModelPackageGroupArn (string) --

          The Amazon Resource Name (ARN) of the model group.

        • ModelPackageGroupDescription (string) --

          A description of the model group.

        • CreationTime (datetime) --

          The time that the model group was created.

        • ModelPackageGroupStatus (string) --

          The status of the model group.

    • NextToken (string) --

      If the response is truncated, SageMaker returns this token. To retrieve the next set of model groups, use it in the subsequent request.

list_model_packages(**kwargs)

Lists the model packages that have been created.

See also: AWS API Documentation

Request Syntax

response = client.list_model_packages(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    MaxResults=123,
    NameContains='string',
    ModelApprovalStatus='Approved'|'Rejected'|'PendingManualApproval',
    ModelPackageGroupName='string',
    ModelPackageType='Versioned'|'Unversioned'|'Both',
    NextToken='string',
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending'
)
Parameters
  • CreationTimeAfter (datetime) -- A filter that returns only model packages created after the specified time (timestamp).
  • CreationTimeBefore (datetime) -- A filter that returns only model packages created before the specified time (timestamp).
  • MaxResults (integer) -- The maximum number of model packages to return in the response.
  • NameContains (string) -- A string in the model package name. This filter returns only model packages whose name contains the specified string.
  • ModelApprovalStatus (string) -- A filter that returns only the model packages with the specified approval status.
  • ModelPackageGroupName (string) -- A filter that returns only model versions that belong to the specified model group.
  • ModelPackageType (string) --

    A filter that returns only the model packages of the specified type. This can be one of the following values.

    • UNVERSIONED - List only unversioined models. This is the default value if no ModelPackageType is specified.
    • VERSIONED - List only versioned models.
    • BOTH - List both versioned and unversioned models.
  • NextToken (string) -- If the response to a previous ListModelPackages request was truncated, the response includes a NextToken . To retrieve the next set of model packages, use the token in the next request.
  • SortBy (string) -- The parameter by which to sort the results. The default is CreationTime .
  • SortOrder (string) -- The sort order for the results. The default is Ascending .
Return type

dict

Returns

Response Syntax

{
    'ModelPackageSummaryList': [
        {
            'ModelPackageName': 'string',
            'ModelPackageGroupName': 'string',
            'ModelPackageVersion': 123,
            'ModelPackageArn': 'string',
            'ModelPackageDescription': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'ModelPackageStatus': 'Pending'|'InProgress'|'Completed'|'Failed'|'Deleting',
            'ModelApprovalStatus': 'Approved'|'Rejected'|'PendingManualApproval'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • ModelPackageSummaryList (list) --

      An array of ModelPackageSummary objects, each of which lists a model package.

      • (dict) --

        Provides summary information about a model package.

        • ModelPackageName (string) --

          The name of the model package.

        • ModelPackageGroupName (string) --

          If the model package is a versioned model, the model group that the versioned model belongs to.

        • ModelPackageVersion (integer) --

          If the model package is a versioned model, the version of the model.

        • ModelPackageArn (string) --

          The Amazon Resource Name (ARN) of the model package.

        • ModelPackageDescription (string) --

          A brief description of the model package.

        • CreationTime (datetime) --

          A timestamp that shows when the model package was created.

        • ModelPackageStatus (string) --

          The overall status of the model package.

        • ModelApprovalStatus (string) --

          The approval status of the model. This can be one of the following values.

          • APPROVED - The model is approved
          • REJECTED - The model is rejected.
          • PENDING_MANUAL_APPROVAL - The model is waiting for manual approval.
    • NextToken (string) --

      If the response is truncated, SageMaker returns this token. To retrieve the next set of model packages, use it in the subsequent request.

list_model_quality_job_definitions(**kwargs)

Gets a list of model quality monitoring job definitions in your account.

See also: AWS API Documentation

Request Syntax

response = client.list_model_quality_job_definitions(
    EndpointName='string',
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123,
    NameContains='string',
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1)
)
Parameters
  • EndpointName (string) -- A filter that returns only model quality monitoring job definitions that are associated with the specified endpoint.
  • SortBy (string) -- The field to sort results by. The default is CreationTime .
  • SortOrder (string) -- The sort order for results. The default is Descending .
  • NextToken (string) -- If the result of the previous ListModelQualityJobDefinitions request was truncated, the response includes a NextToken . To retrieve the next set of model quality monitoring job definitions, use the token in the next request.
  • MaxResults (integer) -- The maximum number of results to return in a call to ListModelQualityJobDefinitions .
  • NameContains (string) -- A string in the transform job name. This filter returns only model quality monitoring job definitions whose name contains the specified string.
  • CreationTimeBefore (datetime) -- A filter that returns only model quality monitoring job definitions created before the specified time.
  • CreationTimeAfter (datetime) -- A filter that returns only model quality monitoring job definitions created after the specified time.
Return type

dict

Returns

Response Syntax

{
    'JobDefinitionSummaries': [
        {
            'MonitoringJobDefinitionName': 'string',
            'MonitoringJobDefinitionArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'EndpointName': 'string'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • JobDefinitionSummaries (list) --

      A list of summaries of model quality monitoring job definitions.

      • (dict) --

        Summary information about a monitoring job.

        • MonitoringJobDefinitionName (string) --

          The name of the monitoring job.

        • MonitoringJobDefinitionArn (string) --

          The Amazon Resource Name (ARN) of the monitoring job.

        • CreationTime (datetime) --

          The time that the monitoring job was created.

        • EndpointName (string) --

          The name of the endpoint that the job monitors.

    • NextToken (string) --

      If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of model quality monitoring job definitions, use it in the next request.

list_models(**kwargs)

Lists models created with the CreateModel API.

See also: AWS API Documentation

Request Syntax

response = client.list_models(
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123,
    NameContains='string',
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1)
)
Parameters
  • SortBy (string) -- Sorts the list of results. The default is CreationTime .
  • SortOrder (string) -- The sort order for results. The default is Descending .
  • NextToken (string) -- If the response to a previous ListModels request was truncated, the response includes a NextToken . To retrieve the next set of models, use the token in the next request.
  • MaxResults (integer) -- The maximum number of models to return in the response.
  • NameContains (string) -- A string in the model name. This filter returns only models whose name contains the specified string.
  • CreationTimeBefore (datetime) -- A filter that returns only models created before the specified time (timestamp).
  • CreationTimeAfter (datetime) -- A filter that returns only models with a creation time greater than or equal to the specified time (timestamp).
Return type

dict

Returns

Response Syntax

{
    'Models': [
        {
            'ModelName': 'string',
            'ModelArn': 'string',
            'CreationTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • Models (list) --

      An array of ModelSummary objects, each of which lists a model.

      • (dict) --

        Provides summary information about a model.

        • ModelName (string) --

          The name of the model that you want a summary for.

        • ModelArn (string) --

          The Amazon Resource Name (ARN) of the model.

        • CreationTime (datetime) --

          A timestamp that indicates when the model was created.

    • NextToken (string) --

      If the response is truncated, SageMaker returns this token. To retrieve the next set of models, use it in the subsequent request.

list_monitoring_alert_history(**kwargs)

Gets a list of past alerts in a model monitoring schedule.

See also: AWS API Documentation

Request Syntax

response = client.list_monitoring_alert_history(
    MonitoringScheduleName='string',
    MonitoringAlertName='string',
    SortBy='CreationTime'|'Status',
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123,
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1),
    StatusEquals='InAlert'|'OK'
)
Parameters
  • MonitoringScheduleName (string) -- The name of a monitoring schedule.
  • MonitoringAlertName (string) -- The name of a monitoring alert.
  • SortBy (string) -- The field used to sort results. The default is CreationTime .
  • SortOrder (string) -- The sort order, whether Ascending or Descending , of the alert history. The default is Descending .
  • NextToken (string) -- If the result of the previous ListMonitoringAlertHistory request was truncated, the response includes a NextToken . To retrieve the next set of alerts in the history, use the token in the next request.
  • MaxResults (integer) -- The maximum number of results to display. The default is 100.
  • CreationTimeBefore (datetime) -- A filter that returns only alerts created on or before the specified time.
  • CreationTimeAfter (datetime) -- A filter that returns only alerts created on or after the specified time.
  • StatusEquals (string) -- A filter that retrieves only alerts with a specific status.
Return type

dict

Returns

Response Syntax

{
    'MonitoringAlertHistory': [
        {
            'MonitoringScheduleName': 'string',
            'MonitoringAlertName': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'AlertStatus': 'InAlert'|'OK'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • MonitoringAlertHistory (list) --

      An alert history for a model monitoring schedule.

      • (dict) --

        Provides summary information of an alert's history.

        • MonitoringScheduleName (string) --

          The name of a monitoring schedule.

        • MonitoringAlertName (string) --

          The name of a monitoring alert.

        • CreationTime (datetime) --

          A timestamp that indicates when the first alert transition occurred in an alert history. An alert transition can be from status InAlert to OK , or from OK to InAlert .

        • AlertStatus (string) --

          The current alert status of an alert.

    • NextToken (string) --

      If the response is truncated, SageMaker returns this token. To retrieve the next set of alerts, use it in the subsequent request.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
list_monitoring_alerts(**kwargs)

Gets the alerts for a single monitoring schedule.

See also: AWS API Documentation

Request Syntax

response = client.list_monitoring_alerts(
    MonitoringScheduleName='string',
    NextToken='string',
    MaxResults=123
)
Parameters
  • MonitoringScheduleName (string) --

    [REQUIRED]

    The name of a monitoring schedule.

  • NextToken (string) -- If the result of the previous ListMonitoringAlerts request was truncated, the response includes a NextToken . To retrieve the next set of alerts in the history, use the token in the next request.
  • MaxResults (integer) -- The maximum number of results to display. The default is 100.
Return type

dict

Returns

Response Syntax

{
    'MonitoringAlertSummaries': [
        {
            'MonitoringAlertName': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'AlertStatus': 'InAlert'|'OK',
            'DatapointsToAlert': 123,
            'EvaluationPeriod': 123,
            'Actions': {
                'ModelDashboardIndicator': {
                    'Enabled': True|False
                }
            }
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • MonitoringAlertSummaries (list) --

      A JSON array where each element is a summary for a monitoring alert.

      • (dict) --

        Provides summary information about a monitor alert.

        • MonitoringAlertName (string) --

          The name of a monitoring alert.

        • CreationTime (datetime) --

          A timestamp that indicates when a monitor alert was created.

        • LastModifiedTime (datetime) --

          A timestamp that indicates when a monitor alert was last updated.

        • AlertStatus (string) --

          The current status of an alert.

        • DatapointsToAlert (integer) --

          Within EvaluationPeriod , how many execution failures will raise an alert.

        • EvaluationPeriod (integer) --

          The number of most recent monitoring executions to consider when evaluating alert status.

        • Actions (dict) --

          A list of alert actions taken in response to an alert going into InAlert status.

          • ModelDashboardIndicator (dict) --

            An alert action taken to light up an icon on the Model Dashboard when an alert goes into InAlert status.

            • Enabled (boolean) --

              Indicates whether the alert action is turned on.

    • NextToken (string) --

      If the response is truncated, SageMaker returns this token. To retrieve the next set of alerts, use it in the subsequent request.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
list_monitoring_executions(**kwargs)

Returns list of all monitoring job executions.

See also: AWS API Documentation

Request Syntax

response = client.list_monitoring_executions(
    MonitoringScheduleName='string',
    EndpointName='string',
    SortBy='CreationTime'|'ScheduledTime'|'Status',
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123,
    ScheduledTimeBefore=datetime(2015, 1, 1),
    ScheduledTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    StatusEquals='Pending'|'Completed'|'CompletedWithViolations'|'InProgress'|'Failed'|'Stopping'|'Stopped',
    MonitoringJobDefinitionName='string',
    MonitoringTypeEquals='DataQuality'|'ModelQuality'|'ModelBias'|'ModelExplainability'
)
Parameters
  • MonitoringScheduleName (string) -- Name of a specific schedule to fetch jobs for.
  • EndpointName (string) -- Name of a specific endpoint to fetch jobs for.
  • SortBy (string) -- Whether to sort results by Status , CreationTime , ScheduledTime field. The default is CreationTime .
  • SortOrder (string) -- Whether to sort the results in Ascending or Descending order. The default is Descending .
  • NextToken (string) -- The token returned if the response is truncated. To retrieve the next set of job executions, use it in the next request.
  • MaxResults (integer) -- The maximum number of jobs to return in the response. The default value is 10.
  • ScheduledTimeBefore (datetime) -- Filter for jobs scheduled before a specified time.
  • ScheduledTimeAfter (datetime) -- Filter for jobs scheduled after a specified time.
  • CreationTimeBefore (datetime) -- A filter that returns only jobs created before a specified time.
  • CreationTimeAfter (datetime) -- A filter that returns only jobs created after a specified time.
  • LastModifiedTimeBefore (datetime) -- A filter that returns only jobs modified after a specified time.
  • LastModifiedTimeAfter (datetime) -- A filter that returns only jobs modified before a specified time.
  • StatusEquals (string) -- A filter that retrieves only jobs with a specific status.
  • MonitoringJobDefinitionName (string) -- Gets a list of the monitoring job runs of the specified monitoring job definitions.
  • MonitoringTypeEquals (string) -- A filter that returns only the monitoring job runs of the specified monitoring type.
Return type

dict

Returns

Response Syntax

{
    'MonitoringExecutionSummaries': [
        {
            'MonitoringScheduleName': 'string',
            'ScheduledTime': datetime(2015, 1, 1),
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'MonitoringExecutionStatus': 'Pending'|'Completed'|'CompletedWithViolations'|'InProgress'|'Failed'|'Stopping'|'Stopped',
            'ProcessingJobArn': 'string',
            'EndpointName': 'string',
            'FailureReason': 'string',
            'MonitoringJobDefinitionName': 'string',
            'MonitoringType': 'DataQuality'|'ModelQuality'|'ModelBias'|'ModelExplainability'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • MonitoringExecutionSummaries (list) --

      A JSON array in which each element is a summary for a monitoring execution.

      • (dict) --

        Summary of information about the last monitoring job to run.

        • MonitoringScheduleName (string) --

          The name of the monitoring schedule.

        • ScheduledTime (datetime) --

          The time the monitoring job was scheduled.

        • CreationTime (datetime) --

          The time at which the monitoring job was created.

        • LastModifiedTime (datetime) --

          A timestamp that indicates the last time the monitoring job was modified.

        • MonitoringExecutionStatus (string) --

          The status of the monitoring job.

        • ProcessingJobArn (string) --

          The Amazon Resource Name (ARN) of the monitoring job.

        • EndpointName (string) --

          The name of the endpoint used to run the monitoring job.

        • FailureReason (string) --

          Contains the reason a monitoring job failed, if it failed.

        • MonitoringJobDefinitionName (string) --

          The name of the monitoring job.

        • MonitoringType (string) --

          The type of the monitoring job.

    • NextToken (string) --

      If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of jobs, use it in the subsequent reques

list_monitoring_schedules(**kwargs)

Returns list of all monitoring schedules.

See also: AWS API Documentation

Request Syntax

response = client.list_monitoring_schedules(
    EndpointName='string',
    SortBy='Name'|'CreationTime'|'Status',
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123,
    NameContains='string',
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    StatusEquals='Pending'|'Failed'|'Scheduled'|'Stopped',
    MonitoringJobDefinitionName='string',
    MonitoringTypeEquals='DataQuality'|'ModelQuality'|'ModelBias'|'ModelExplainability'
)
Parameters
  • EndpointName (string) -- Name of a specific endpoint to fetch schedules for.
  • SortBy (string) -- Whether to sort results by Status , CreationTime , ScheduledTime field. The default is CreationTime .
  • SortOrder (string) -- Whether to sort the results in Ascending or Descending order. The default is Descending .
  • NextToken (string) -- The token returned if the response is truncated. To retrieve the next set of job executions, use it in the next request.
  • MaxResults (integer) -- The maximum number of jobs to return in the response. The default value is 10.
  • NameContains (string) -- Filter for monitoring schedules whose name contains a specified string.
  • CreationTimeBefore (datetime) -- A filter that returns only monitoring schedules created before a specified time.
  • CreationTimeAfter (datetime) -- A filter that returns only monitoring schedules created after a specified time.
  • LastModifiedTimeBefore (datetime) -- A filter that returns only monitoring schedules modified before a specified time.
  • LastModifiedTimeAfter (datetime) -- A filter that returns only monitoring schedules modified after a specified time.
  • StatusEquals (string) -- A filter that returns only monitoring schedules modified before a specified time.
  • MonitoringJobDefinitionName (string) -- Gets a list of the monitoring schedules for the specified monitoring job definition.
  • MonitoringTypeEquals (string) -- A filter that returns only the monitoring schedules for the specified monitoring type.
Return type

dict

Returns

Response Syntax

{
    'MonitoringScheduleSummaries': [
        {
            'MonitoringScheduleName': 'string',
            'MonitoringScheduleArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'MonitoringScheduleStatus': 'Pending'|'Failed'|'Scheduled'|'Stopped',
            'EndpointName': 'string',
            'MonitoringJobDefinitionName': 'string',
            'MonitoringType': 'DataQuality'|'ModelQuality'|'ModelBias'|'ModelExplainability'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • MonitoringScheduleSummaries (list) --

      A JSON array in which each element is a summary for a monitoring schedule.

      • (dict) --

        Summarizes the monitoring schedule.

        • MonitoringScheduleName (string) --

          The name of the monitoring schedule.

        • MonitoringScheduleArn (string) --

          The Amazon Resource Name (ARN) of the monitoring schedule.

        • CreationTime (datetime) --

          The creation time of the monitoring schedule.

        • LastModifiedTime (datetime) --

          The last time the monitoring schedule was modified.

        • MonitoringScheduleStatus (string) --

          The status of the monitoring schedule.

        • EndpointName (string) --

          The name of the endpoint using the monitoring schedule.

        • MonitoringJobDefinitionName (string) --

          The name of the monitoring job definition that the schedule is for.

        • MonitoringType (string) --

          The type of the monitoring job definition that the schedule is for.

    • NextToken (string) --

      If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of jobs, use it in the subsequent request.

list_notebook_instance_lifecycle_configs(**kwargs)

Lists notebook instance lifestyle configurations created with the CreateNotebookInstanceLifecycleConfig API.

See also: AWS API Documentation

Request Syntax

response = client.list_notebook_instance_lifecycle_configs(
    NextToken='string',
    MaxResults=123,
    SortBy='Name'|'CreationTime'|'LastModifiedTime',
    SortOrder='Ascending'|'Descending',
    NameContains='string',
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1)
)
Parameters
  • NextToken (string) -- If the result of a ListNotebookInstanceLifecycleConfigs request was truncated, the response includes a NextToken . To get the next set of lifecycle configurations, use the token in the next request.
  • MaxResults (integer) -- The maximum number of lifecycle configurations to return in the response.
  • SortBy (string) -- Sorts the list of results. The default is CreationTime .
  • SortOrder (string) -- The sort order for results.
  • NameContains (string) -- A string in the lifecycle configuration name. This filter returns only lifecycle configurations whose name contains the specified string.
  • CreationTimeBefore (datetime) -- A filter that returns only lifecycle configurations that were created before the specified time (timestamp).
  • CreationTimeAfter (datetime) -- A filter that returns only lifecycle configurations that were created after the specified time (timestamp).
  • LastModifiedTimeBefore (datetime) -- A filter that returns only lifecycle configurations that were modified before the specified time (timestamp).
  • LastModifiedTimeAfter (datetime) -- A filter that returns only lifecycle configurations that were modified after the specified time (timestamp).
Return type

dict

Returns

Response Syntax

{
    'NextToken': 'string',
    'NotebookInstanceLifecycleConfigs': [
        {
            'NotebookInstanceLifecycleConfigName': 'string',
            'NotebookInstanceLifecycleConfigArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ]
}

Response Structure

  • (dict) --

    • NextToken (string) --

      If the response is truncated, SageMaker returns this token. To get the next set of lifecycle configurations, use it in the next request.

    • NotebookInstanceLifecycleConfigs (list) --

      An array of NotebookInstanceLifecycleConfiguration objects, each listing a lifecycle configuration.

      • (dict) --

        Provides a summary of a notebook instance lifecycle configuration.

        • NotebookInstanceLifecycleConfigName (string) --

          The name of the lifecycle configuration.

        • NotebookInstanceLifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the lifecycle configuration.

        • CreationTime (datetime) --

          A timestamp that tells when the lifecycle configuration was created.

        • LastModifiedTime (datetime) --

          A timestamp that tells when the lifecycle configuration was last modified.

list_notebook_instances(**kwargs)

Returns a list of the SageMaker notebook instances in the requester's account in an Amazon Web Services Region.

See also: AWS API Documentation

Request Syntax

response = client.list_notebook_instances(
    NextToken='string',
    MaxResults=123,
    SortBy='Name'|'CreationTime'|'Status',
    SortOrder='Ascending'|'Descending',
    NameContains='string',
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    StatusEquals='Pending'|'InService'|'Stopping'|'Stopped'|'Failed'|'Deleting'|'Updating',
    NotebookInstanceLifecycleConfigNameContains='string',
    DefaultCodeRepositoryContains='string',
    AdditionalCodeRepositoryEquals='string'
)
Parameters
  • NextToken (string) --

    If the previous call to the ListNotebookInstances is truncated, the response includes a NextToken . You can use this token in your subsequent ListNotebookInstances request to fetch the next set of notebook instances.

    Note

    You might specify a filter or a sort order in your request. When response is truncated, you must use the same values for the filer and sort order in the next request.

  • MaxResults (integer) -- The maximum number of notebook instances to return.
  • SortBy (string) -- The field to sort results by. The default is Name .
  • SortOrder (string) -- The sort order for results.
  • NameContains (string) -- A string in the notebook instances' name. This filter returns only notebook instances whose name contains the specified string.
  • CreationTimeBefore (datetime) -- A filter that returns only notebook instances that were created before the specified time (timestamp).
  • CreationTimeAfter (datetime) -- A filter that returns only notebook instances that were created after the specified time (timestamp).
  • LastModifiedTimeBefore (datetime) -- A filter that returns only notebook instances that were modified before the specified time (timestamp).
  • LastModifiedTimeAfter (datetime) -- A filter that returns only notebook instances that were modified after the specified time (timestamp).
  • StatusEquals (string) -- A filter that returns only notebook instances with the specified status.
  • NotebookInstanceLifecycleConfigNameContains (string) -- A string in the name of a notebook instances lifecycle configuration associated with this notebook instance. This filter returns only notebook instances associated with a lifecycle configuration with a name that contains the specified string.
  • DefaultCodeRepositoryContains (string) -- A string in the name or URL of a Git repository associated with this notebook instance. This filter returns only notebook instances associated with a git repository with a name that contains the specified string.
  • AdditionalCodeRepositoryEquals (string) -- A filter that returns only notebook instances with associated with the specified git repository.
Return type

dict

Returns

Response Syntax

{
    'NextToken': 'string',
    'NotebookInstances': [
        {
            'NotebookInstanceName': 'string',
            'NotebookInstanceArn': 'string',
            'NotebookInstanceStatus': 'Pending'|'InService'|'Stopping'|'Stopped'|'Failed'|'Deleting'|'Updating',
            'Url': 'string',
            'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'NotebookInstanceLifecycleConfigName': 'string',
            'DefaultCodeRepository': 'string',
            'AdditionalCodeRepositories': [
                'string',
            ]
        },
    ]
}

Response Structure

  • (dict) --

    • NextToken (string) --

      If the response to the previous ListNotebookInstances request was truncated, SageMaker returns this token. To retrieve the next set of notebook instances, use the token in the next request.

    • NotebookInstances (list) --

      An array of NotebookInstanceSummary objects, one for each notebook instance.

      • (dict) --

        Provides summary information for an SageMaker notebook instance.

        • NotebookInstanceName (string) --

          The name of the notebook instance that you want a summary for.

        • NotebookInstanceArn (string) --

          The Amazon Resource Name (ARN) of the notebook instance.

        • NotebookInstanceStatus (string) --

          The status of the notebook instance.

        • Url (string) --

          The URL that you use to connect to the Jupyter notebook running in your notebook instance.

        • InstanceType (string) --

          The type of ML compute instance that the notebook instance is running on.

        • CreationTime (datetime) --

          A timestamp that shows when the notebook instance was created.

        • LastModifiedTime (datetime) --

          A timestamp that shows when the notebook instance was last modified.

        • NotebookInstanceLifecycleConfigName (string) --

          The name of a notebook instance lifecycle configuration associated with this notebook instance.

          For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.

        • DefaultCodeRepository (string) --

          The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker Notebook Instances.

        • AdditionalCodeRepositories (list) --

          An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker Notebook Instances.

          • (string) --

list_pipeline_execution_steps(**kwargs)

Gets a list of PipeLineExecutionStep objects.

See also: AWS API Documentation

Request Syntax

response = client.list_pipeline_execution_steps(
    PipelineExecutionArn='string',
    NextToken='string',
    MaxResults=123,
    SortOrder='Ascending'|'Descending'
)
Parameters
  • PipelineExecutionArn (string) -- The Amazon Resource Name (ARN) of the pipeline execution.
  • NextToken (string) -- If the result of the previous ListPipelineExecutionSteps request was truncated, the response includes a NextToken . To retrieve the next set of pipeline execution steps, use the token in the next request.
  • MaxResults (integer) -- The maximum number of pipeline execution steps to return in the response.
  • SortOrder (string) -- The field by which to sort results. The default is CreatedTime .
Return type

dict

Returns

Response Syntax

{
    'PipelineExecutionSteps': [
        {
            'StepName': 'string',
            'StepDisplayName': 'string',
            'StepDescription': 'string',
            'StartTime': datetime(2015, 1, 1),
            'EndTime': datetime(2015, 1, 1),
            'StepStatus': 'Starting'|'Executing'|'Stopping'|'Stopped'|'Failed'|'Succeeded',
            'CacheHitResult': {
                'SourcePipelineExecutionArn': 'string'
            },
            'AttemptCount': 123,
            'FailureReason': 'string',
            'Metadata': {
                'TrainingJob': {
                    'Arn': 'string'
                },
                'ProcessingJob': {
                    'Arn': 'string'
                },
                'TransformJob': {
                    'Arn': 'string'
                },
                'TuningJob': {
                    'Arn': 'string'
                },
                'Model': {
                    'Arn': 'string'
                },
                'RegisterModel': {
                    'Arn': 'string'
                },
                'Condition': {
                    'Outcome': 'True'|'False'
                },
                'Callback': {
                    'CallbackToken': 'string',
                    'SqsQueueUrl': 'string',
                    'OutputParameters': [
                        {
                            'Name': 'string',
                            'Value': 'string'
                        },
                    ]
                },
                'Lambda': {
                    'Arn': 'string',
                    'OutputParameters': [
                        {
                            'Name': 'string',
                            'Value': 'string'
                        },
                    ]
                },
                'QualityCheck': {
                    'CheckType': 'string',
                    'BaselineUsedForDriftCheckStatistics': 'string',
                    'BaselineUsedForDriftCheckConstraints': 'string',
                    'CalculatedBaselineStatistics': 'string',
                    'CalculatedBaselineConstraints': 'string',
                    'ModelPackageGroupName': 'string',
                    'ViolationReport': 'string',
                    'CheckJobArn': 'string',
                    'SkipCheck': True|False,
                    'RegisterNewBaseline': True|False
                },
                'ClarifyCheck': {
                    'CheckType': 'string',
                    'BaselineUsedForDriftCheckConstraints': 'string',
                    'CalculatedBaselineConstraints': 'string',
                    'ModelPackageGroupName': 'string',
                    'ViolationReport': 'string',
                    'CheckJobArn': 'string',
                    'SkipCheck': True|False,
                    'RegisterNewBaseline': True|False
                },
                'EMR': {
                    'ClusterId': 'string',
                    'StepId': 'string',
                    'StepName': 'string',
                    'LogFilePath': 'string'
                },
                'Fail': {
                    'ErrorMessage': 'string'
                },
                'AutoMLJob': {
                    'Arn': 'string'
                }
            }
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • PipelineExecutionSteps (list) --

      A list of PipeLineExecutionStep objects. Each PipeLineExecutionStep consists of StepName, StartTime, EndTime, StepStatus, and Metadata. Metadata is an object with properties for each job that contains relevant information about the job created by the step.

      • (dict) --

        An execution of a step in a pipeline.

        • StepName (string) --

          The name of the step that is executed.

        • StepDisplayName (string) --

          The display name of the step.

        • StepDescription (string) --

          The description of the step.

        • StartTime (datetime) --

          The time that the step started executing.

        • EndTime (datetime) --

          The time that the step stopped executing.

        • StepStatus (string) --

          The status of the step execution.

        • CacheHitResult (dict) --

          If this pipeline execution step was cached, details on the cache hit.

          • SourcePipelineExecutionArn (string) --

            The Amazon Resource Name (ARN) of the pipeline execution.

        • AttemptCount (integer) --

          The current attempt of the execution step. For more information, see Retry Policy for SageMaker Pipelines steps.

        • FailureReason (string) --

          The reason why the step failed execution. This is only returned if the step failed its execution.

        • Metadata (dict) --

          Metadata to run the pipeline step.

          • TrainingJob (dict) --

            The Amazon Resource Name (ARN) of the training job that was run by this step execution.

            • Arn (string) --

              The Amazon Resource Name (ARN) of the training job that was run by this step execution.

          • ProcessingJob (dict) --

            The Amazon Resource Name (ARN) of the processing job that was run by this step execution.

            • Arn (string) --

              The Amazon Resource Name (ARN) of the processing job.

          • TransformJob (dict) --

            The Amazon Resource Name (ARN) of the transform job that was run by this step execution.

            • Arn (string) --

              The Amazon Resource Name (ARN) of the transform job that was run by this step execution.

          • TuningJob (dict) --

            The Amazon Resource Name (ARN) of the tuning job that was run by this step execution.

            • Arn (string) --

              The Amazon Resource Name (ARN) of the tuning job that was run by this step execution.

          • Model (dict) --

            The Amazon Resource Name (ARN) of the model that was created by this step execution.

            • Arn (string) --

              The Amazon Resource Name (ARN) of the created model.

          • RegisterModel (dict) --

            The Amazon Resource Name (ARN) of the model package that the model was registered to by this step execution.

            • Arn (string) --

              The Amazon Resource Name (ARN) of the model package.

          • Condition (dict) --

            The outcome of the condition evaluation that was run by this step execution.

            • Outcome (string) --

              The outcome of the Condition step evaluation.

          • Callback (dict) --

            The URL of the Amazon SQS queue used by this step execution, the pipeline generated token, and a list of output parameters.

            • CallbackToken (string) --

              The pipeline generated token from the Amazon SQS queue.

            • SqsQueueUrl (string) --

              The URL of the Amazon Simple Queue Service (Amazon SQS) queue used by the callback step.

            • OutputParameters (list) --

              A list of the output parameters of the callback step.

              • (dict) --

                An output parameter of a pipeline step.

                • Name (string) --

                  The name of the output parameter.

                • Value (string) --

                  The value of the output parameter.

          • Lambda (dict) --

            The Amazon Resource Name (ARN) of the Lambda function that was run by this step execution and a list of output parameters.

            • Arn (string) --

              The Amazon Resource Name (ARN) of the Lambda function that was run by this step execution.

            • OutputParameters (list) --

              A list of the output parameters of the Lambda step.

              • (dict) --

                An output parameter of a pipeline step.

                • Name (string) --

                  The name of the output parameter.

                • Value (string) --

                  The value of the output parameter.

          • QualityCheck (dict) --

            The configurations and outcomes of the check step execution. This includes:

            • The type of the check conducted.
            • The Amazon S3 URIs of baseline constraints and statistics files to be used for the drift check.
            • The Amazon S3 URIs of newly calculated baseline constraints and statistics.
            • The model package group name provided.
            • The Amazon S3 URI of the violation report if violations detected.
            • The Amazon Resource Name (ARN) of check processing job initiated by the step execution.
            • The Boolean flags indicating if the drift check is skipped.
            • If step property BaselineUsedForDriftCheck is set the same as CalculatedBaseline .
            • CheckType (string) --

              The type of the Quality check step.

            • BaselineUsedForDriftCheckStatistics (string) --

              The Amazon S3 URI of the baseline statistics file used for the drift check.

            • BaselineUsedForDriftCheckConstraints (string) --

              The Amazon S3 URI of the baseline constraints file used for the drift check.

            • CalculatedBaselineStatistics (string) --

              The Amazon S3 URI of the newly calculated baseline statistics file.

            • CalculatedBaselineConstraints (string) --

              The Amazon S3 URI of the newly calculated baseline constraints file.

            • ModelPackageGroupName (string) --

              The model package group name.

            • ViolationReport (string) --

              The Amazon S3 URI of violation report if violations are detected.

            • CheckJobArn (string) --

              The Amazon Resource Name (ARN) of the Quality check processing job that was run by this step execution.

            • SkipCheck (boolean) --

              This flag indicates if the drift check against the previous baseline will be skipped or not. If it is set to False , the previous baseline of the configured check type must be available.

            • RegisterNewBaseline (boolean) --

              This flag indicates if a newly calculated baseline can be accessed through step properties BaselineUsedForDriftCheckConstraints and BaselineUsedForDriftCheckStatistics . If it is set to False , the previous baseline of the configured check type must also be available. These can be accessed through the BaselineUsedForDriftCheckConstraints and BaselineUsedForDriftCheckStatistics properties.

          • ClarifyCheck (dict) --

            Container for the metadata for a Clarify check step. The configurations and outcomes of the check step execution. This includes:

            • The type of the check conducted,
            • The Amazon S3 URIs of baseline constraints and statistics files to be used for the drift check.
            • The Amazon S3 URIs of newly calculated baseline constraints and statistics.
            • The model package group name provided.
            • The Amazon S3 URI of the violation report if violations detected.
            • The Amazon Resource Name (ARN) of check processing job initiated by the step execution.
            • The boolean flags indicating if the drift check is skipped.
            • If step property BaselineUsedForDriftCheck is set the same as CalculatedBaseline .
            • CheckType (string) --

              The type of the Clarify Check step

            • BaselineUsedForDriftCheckConstraints (string) --

              The Amazon S3 URI of baseline constraints file to be used for the drift check.

            • CalculatedBaselineConstraints (string) --

              The Amazon S3 URI of the newly calculated baseline constraints file.

            • ModelPackageGroupName (string) --

              The model package group name.

            • ViolationReport (string) --

              The Amazon S3 URI of the violation report if violations are detected.

            • CheckJobArn (string) --

              The Amazon Resource Name (ARN) of the check processing job that was run by this step's execution.

            • SkipCheck (boolean) --

              This flag indicates if the drift check against the previous baseline will be skipped or not. If it is set to False , the previous baseline of the configured check type must be available.

            • RegisterNewBaseline (boolean) --

              This flag indicates if a newly calculated baseline can be accessed through step properties BaselineUsedForDriftCheckConstraints and BaselineUsedForDriftCheckStatistics . If it is set to False , the previous baseline of the configured check type must also be available. These can be accessed through the BaselineUsedForDriftCheckConstraints property.

          • EMR (dict) --

            The configurations and outcomes of an Amazon EMR step execution.

            • ClusterId (string) --

              The identifier of the EMR cluster.

            • StepId (string) --

              The identifier of the EMR cluster step.

            • StepName (string) --

              The name of the EMR cluster step.

            • LogFilePath (string) --

              The path to the log file where the cluster step's failure root cause is recorded.

          • Fail (dict) --

            The configurations and outcomes of a Fail step execution.

            • ErrorMessage (string) --

              A message that you define and then is processed and rendered by the Fail step when the error occurs.

          • AutoMLJob (dict) --

            The Amazon Resource Name (ARN) of the AutoML job that was run by this step.

            • Arn (string) --

              The Amazon Resource Name (ARN) of the AutoML job.

    • NextToken (string) --

      If the result of the previous ListPipelineExecutionSteps request was truncated, the response includes a NextToken . To retrieve the next set of pipeline execution steps, use the token in the next request.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
list_pipeline_executions(**kwargs)

Gets a list of the pipeline executions.

See also: AWS API Documentation

Request Syntax

response = client.list_pipeline_executions(
    PipelineName='string',
    CreatedAfter=datetime(2015, 1, 1),
    CreatedBefore=datetime(2015, 1, 1),
    SortBy='CreationTime'|'PipelineExecutionArn',
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123
)
Parameters
  • PipelineName (string) --

    [REQUIRED]

    The name of the pipeline.

  • CreatedAfter (datetime) -- A filter that returns the pipeline executions that were created after a specified time.
  • CreatedBefore (datetime) -- A filter that returns the pipeline executions that were created before a specified time.
  • SortBy (string) -- The field by which to sort results. The default is CreatedTime .
  • SortOrder (string) -- The sort order for results.
  • NextToken (string) -- If the result of the previous ListPipelineExecutions request was truncated, the response includes a NextToken . To retrieve the next set of pipeline executions, use the token in the next request.
  • MaxResults (integer) -- The maximum number of pipeline executions to return in the response.
Return type

dict

Returns

Response Syntax

{
    'PipelineExecutionSummaries': [
        {
            'PipelineExecutionArn': 'string',
            'StartTime': datetime(2015, 1, 1),
            'PipelineExecutionStatus': 'Executing'|'Stopping'|'Stopped'|'Failed'|'Succeeded',
            'PipelineExecutionDescription': 'string',
            'PipelineExecutionDisplayName': 'string',
            'PipelineExecutionFailureReason': 'string'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • PipelineExecutionSummaries (list) --

      Contains a sorted list of pipeline execution summary objects matching the specified filters. Each run summary includes the Amazon Resource Name (ARN) of the pipeline execution, the run date, and the status. This list can be empty.

      • (dict) --

        A pipeline execution summary.

        • PipelineExecutionArn (string) --

          The Amazon Resource Name (ARN) of the pipeline execution.

        • StartTime (datetime) --

          The start time of the pipeline execution.

        • PipelineExecutionStatus (string) --

          The status of the pipeline execution.

        • PipelineExecutionDescription (string) --

          The description of the pipeline execution.

        • PipelineExecutionDisplayName (string) --

          The display name of the pipeline execution.

        • PipelineExecutionFailureReason (string) --

          A message generated by SageMaker Pipelines describing why the pipeline execution failed.

    • NextToken (string) --

      If the result of the previous ListPipelineExecutions request was truncated, the response includes a NextToken . To retrieve the next set of pipeline executions, use the token in the next request.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
list_pipeline_parameters_for_execution(**kwargs)

Gets a list of parameters for a pipeline execution.

See also: AWS API Documentation

Request Syntax

response = client.list_pipeline_parameters_for_execution(
    PipelineExecutionArn='string',
    NextToken='string',
    MaxResults=123
)
Parameters
  • PipelineExecutionArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of the pipeline execution.

  • NextToken (string) -- If the result of the previous ListPipelineParametersForExecution request was truncated, the response includes a NextToken . To retrieve the next set of parameters, use the token in the next request.
  • MaxResults (integer) -- The maximum number of parameters to return in the response.
Return type

dict

Returns

Response Syntax

{
    'PipelineParameters': [
        {
            'Name': 'string',
            'Value': 'string'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • PipelineParameters (list) --

      Contains a list of pipeline parameters. This list can be empty.

      • (dict) --

        Assigns a value to a named Pipeline parameter.

        • Name (string) --

          The name of the parameter to assign a value to. This parameter name must match a named parameter in the pipeline definition.

        • Value (string) --

          The literal value for the parameter.

    • NextToken (string) --

      If the result of the previous ListPipelineParametersForExecution request was truncated, the response includes a NextToken . To retrieve the next set of parameters, use the token in the next request.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
list_pipelines(**kwargs)

Gets a list of pipelines.

See also: AWS API Documentation

Request Syntax

response = client.list_pipelines(
    PipelineNamePrefix='string',
    CreatedAfter=datetime(2015, 1, 1),
    CreatedBefore=datetime(2015, 1, 1),
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123
)
Parameters
  • PipelineNamePrefix (string) -- The prefix of the pipeline name.
  • CreatedAfter (datetime) -- A filter that returns the pipelines that were created after a specified time.
  • CreatedBefore (datetime) -- A filter that returns the pipelines that were created before a specified time.
  • SortBy (string) -- The field by which to sort results. The default is CreatedTime .
  • SortOrder (string) -- The sort order for results.
  • NextToken (string) -- If the result of the previous ListPipelines request was truncated, the response includes a NextToken . To retrieve the next set of pipelines, use the token in the next request.
  • MaxResults (integer) -- The maximum number of pipelines to return in the response.
Return type

dict

Returns

Response Syntax

{
    'PipelineSummaries': [
        {
            'PipelineArn': 'string',
            'PipelineName': 'string',
            'PipelineDisplayName': 'string',
            'PipelineDescription': 'string',
            'RoleArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'LastExecutionTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • PipelineSummaries (list) --

      Contains a sorted list of PipelineSummary objects matching the specified filters. Each PipelineSummary consists of PipelineArn, PipelineName, ExperimentName, PipelineDescription, CreationTime, LastModifiedTime, LastRunTime, and RoleArn. This list can be empty.

      • (dict) --

        A summary of a pipeline.

        • PipelineArn (string) --

          The Amazon Resource Name (ARN) of the pipeline.

        • PipelineName (string) --

          The name of the pipeline.

        • PipelineDisplayName (string) --

          The display name of the pipeline.

        • PipelineDescription (string) --

          The description of the pipeline.

        • RoleArn (string) --

          The Amazon Resource Name (ARN) that the pipeline used to execute.

        • CreationTime (datetime) --

          The creation time of the pipeline.

        • LastModifiedTime (datetime) --

          The time that the pipeline was last modified.

        • LastExecutionTime (datetime) --

          The last time that a pipeline execution began.

    • NextToken (string) --

      If the result of the previous ListPipelines request was truncated, the response includes a NextToken . To retrieve the next set of pipelines, use the token in the next request.

list_processing_jobs(**kwargs)

Lists processing jobs that satisfy various filters.

See also: AWS API Documentation

Request Syntax

response = client.list_processing_jobs(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    NameContains='string',
    StatusEquals='InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
    SortBy='Name'|'CreationTime'|'Status',
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123
)
Parameters
  • CreationTimeAfter (datetime) -- A filter that returns only processing jobs created after the specified time.
  • CreationTimeBefore (datetime) -- A filter that returns only processing jobs created after the specified time.
  • LastModifiedTimeAfter (datetime) -- A filter that returns only processing jobs modified after the specified time.
  • LastModifiedTimeBefore (datetime) -- A filter that returns only processing jobs modified before the specified time.
  • NameContains (string) -- A string in the processing job name. This filter returns only processing jobs whose name contains the specified string.
  • StatusEquals (string) -- A filter that retrieves only processing jobs with a specific status.
  • SortBy (string) -- The field to sort results by. The default is CreationTime .
  • SortOrder (string) -- The sort order for results. The default is Ascending .
  • NextToken (string) -- If the result of the previous ListProcessingJobs request was truncated, the response includes a NextToken . To retrieve the next set of processing jobs, use the token in the next request.
  • MaxResults (integer) -- The maximum number of processing jobs to return in the response.
Return type

dict

Returns

Response Syntax

{
    'ProcessingJobSummaries': [
        {
            'ProcessingJobName': 'string',
            'ProcessingJobArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'ProcessingEndTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'ProcessingJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
            'FailureReason': 'string',
            'ExitMessage': 'string'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • ProcessingJobSummaries (list) --

      An array of ProcessingJobSummary objects, each listing a processing job.

      • (dict) --

        Summary of information about a processing job.

        • ProcessingJobName (string) --

          The name of the processing job.

        • ProcessingJobArn (string) --

          The Amazon Resource Name (ARN) of the processing job..

        • CreationTime (datetime) --

          The time at which the processing job was created.

        • ProcessingEndTime (datetime) --

          The time at which the processing job completed.

        • LastModifiedTime (datetime) --

          A timestamp that indicates the last time the processing job was modified.

        • ProcessingJobStatus (string) --

          The status of the processing job.

        • FailureReason (string) --

          A string, up to one KB in size, that contains the reason a processing job failed, if it failed.

        • ExitMessage (string) --

          An optional string, up to one KB in size, that contains metadata from the processing container when the processing job exits.

    • NextToken (string) --

      If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of processing jobs, use it in the subsequent request.

list_projects(**kwargs)

Gets a list of the projects in an Amazon Web Services account.

See also: AWS API Documentation

Request Syntax

response = client.list_projects(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    MaxResults=123,
    NameContains='string',
    NextToken='string',
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending'
)
Parameters
  • CreationTimeAfter (datetime) -- A filter that returns the projects that were created after a specified time.
  • CreationTimeBefore (datetime) -- A filter that returns the projects that were created before a specified time.
  • MaxResults (integer) -- The maximum number of projects to return in the response.
  • NameContains (string) -- A filter that returns the projects whose name contains a specified string.
  • NextToken (string) -- If the result of the previous ListProjects request was truncated, the response includes a NextToken . To retrieve the next set of projects, use the token in the next request.
  • SortBy (string) -- The field by which to sort results. The default is CreationTime .
  • SortOrder (string) -- The sort order for results. The default is Ascending .
Return type

dict

Returns

Response Syntax

{
    'ProjectSummaryList': [
        {
            'ProjectName': 'string',
            'ProjectDescription': 'string',
            'ProjectArn': 'string',
            'ProjectId': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'ProjectStatus': 'Pending'|'CreateInProgress'|'CreateCompleted'|'CreateFailed'|'DeleteInProgress'|'DeleteFailed'|'DeleteCompleted'|'UpdateInProgress'|'UpdateCompleted'|'UpdateFailed'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • ProjectSummaryList (list) --

      A list of summaries of projects.

      • (dict) --

        Information about a project.

        • ProjectName (string) --

          The name of the project.

        • ProjectDescription (string) --

          The description of the project.

        • ProjectArn (string) --

          The Amazon Resource Name (ARN) of the project.

        • ProjectId (string) --

          The ID of the project.

        • CreationTime (datetime) --

          The time that the project was created.

        • ProjectStatus (string) --

          The status of the project.

    • NextToken (string) --

      If the result of the previous ListCompilationJobs request was truncated, the response includes a NextToken . To retrieve the next set of model compilation jobs, use the token in the next request.

list_spaces(**kwargs)

Lists spaces.

See also: AWS API Documentation

Request Syntax

response = client.list_spaces(
    NextToken='string',
    MaxResults=123,
    SortOrder='Ascending'|'Descending',
    SortBy='CreationTime'|'LastModifiedTime',
    DomainIdEquals='string',
    SpaceNameContains='string'
)
Parameters
  • NextToken (string) -- If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
  • MaxResults (integer) -- Returns a list up to a specified limit.
  • SortOrder (string) -- The sort order for the results. The default is Ascending .
  • SortBy (string) -- The parameter by which to sort the results. The default is CreationTime .
  • DomainIdEquals (string) -- A parameter to search for the Domain ID.
  • SpaceNameContains (string) -- A parameter by which to filter the results.
Return type

dict

Returns

Response Syntax

{
    'Spaces': [
        {
            'DomainId': 'string',
            'SpaceName': 'string',
            'Status': 'Deleting'|'Failed'|'InService'|'Pending'|'Updating'|'Update_Failed'|'Delete_Failed',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • Spaces (list) --

      The list of spaces.

      • (dict) --

        The space's details.

        • DomainId (string) --

          The ID of the associated Domain.

        • SpaceName (string) --

          The name of the space.

        • Status (string) --

          The status.

        • CreationTime (datetime) --

          The creation time.

        • LastModifiedTime (datetime) --

          The last modified time.

    • NextToken (string) --

      If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

list_stage_devices(**kwargs)

Lists devices allocated to the stage, containing detailed device information and deployment status.

See also: AWS API Documentation

Request Syntax

response = client.list_stage_devices(
    NextToken='string',
    MaxResults=123,
    EdgeDeploymentPlanName='string',
    ExcludeDevicesDeployedInOtherStage=True|False,
    StageName='string'
)
Parameters
  • NextToken (string) -- The response from the last list when returning a list large enough to neeed tokening.
  • MaxResults (integer) -- The maximum number of requests to select.
  • EdgeDeploymentPlanName (string) --

    [REQUIRED]

    The name of the edge deployment plan.

  • ExcludeDevicesDeployedInOtherStage (boolean) -- Toggle for excluding devices deployed in other stages.
  • StageName (string) --

    [REQUIRED]

    The name of the stage in the deployment.

Return type

dict

Returns

Response Syntax

{
    'DeviceDeploymentSummaries': [
        {
            'EdgeDeploymentPlanArn': 'string',
            'EdgeDeploymentPlanName': 'string',
            'StageName': 'string',
            'DeployedStageName': 'string',
            'DeviceFleetName': 'string',
            'DeviceName': 'string',
            'DeviceArn': 'string',
            'DeviceDeploymentStatus': 'READYTODEPLOY'|'INPROGRESS'|'DEPLOYED'|'FAILED'|'STOPPING'|'STOPPED',
            'DeviceDeploymentStatusMessage': 'string',
            'Description': 'string',
            'DeploymentStartTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • DeviceDeploymentSummaries (list) --

      List of summaries of devices allocated to the stage.

      • (dict) --

        Contains information summarizing device details and deployment status.

        • EdgeDeploymentPlanArn (string) --

          The ARN of the edge deployment plan.

        • EdgeDeploymentPlanName (string) --

          The name of the edge deployment plan.

        • StageName (string) --

          The name of the stage in the edge deployment plan.

        • DeployedStageName (string) --

          The name of the deployed stage.

        • DeviceFleetName (string) --

          The name of the fleet to which the device belongs to.

        • DeviceName (string) --

          The name of the device.

        • DeviceArn (string) --

          The ARN of the device.

        • DeviceDeploymentStatus (string) --

          The deployment status of the device.

        • DeviceDeploymentStatusMessage (string) --

          The detailed error message for the deployoment status result.

        • Description (string) --

          The description of the device.

        • DeploymentStartTime (datetime) --

          The time when the deployment on the device started.

    • NextToken (string) --

      The token to use when calling the next page of results.

list_studio_lifecycle_configs(**kwargs)

Lists the Studio Lifecycle Configurations in your Amazon Web Services Account.

See also: AWS API Documentation

Request Syntax

response = client.list_studio_lifecycle_configs(
    MaxResults=123,
    NextToken='string',
    NameContains='string',
    AppTypeEquals='JupyterServer'|'KernelGateway',
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1),
    ModifiedTimeBefore=datetime(2015, 1, 1),
    ModifiedTimeAfter=datetime(2015, 1, 1),
    SortBy='CreationTime'|'LastModifiedTime'|'Name',
    SortOrder='Ascending'|'Descending'
)
Parameters
  • MaxResults (integer) -- The maximum number of Studio Lifecycle Configurations to return in the response. The default value is 10.
  • NextToken (string) -- If the previous call to ListStudioLifecycleConfigs didn't return the full set of Lifecycle Configurations, the call returns a token for getting the next set of Lifecycle Configurations.
  • NameContains (string) -- A string in the Lifecycle Configuration name. This filter returns only Lifecycle Configurations whose name contains the specified string.
  • AppTypeEquals (string) -- A parameter to search for the App Type to which the Lifecycle Configuration is attached.
  • CreationTimeBefore (datetime) -- A filter that returns only Lifecycle Configurations created on or before the specified time.
  • CreationTimeAfter (datetime) -- A filter that returns only Lifecycle Configurations created on or after the specified time.
  • ModifiedTimeBefore (datetime) -- A filter that returns only Lifecycle Configurations modified before the specified time.
  • ModifiedTimeAfter (datetime) -- A filter that returns only Lifecycle Configurations modified after the specified time.
  • SortBy (string) -- The property used to sort results. The default value is CreationTime.
  • SortOrder (string) -- The sort order. The default value is Descending.
Return type

dict

Returns

Response Syntax

{
    'NextToken': 'string',
    'StudioLifecycleConfigs': [
        {
            'StudioLifecycleConfigArn': 'string',
            'StudioLifecycleConfigName': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'StudioLifecycleConfigAppType': 'JupyterServer'|'KernelGateway'
        },
    ]
}

Response Structure

  • (dict) --

    • NextToken (string) --

      A token for getting the next set of actions, if there are any.

    • StudioLifecycleConfigs (list) --

      A list of Lifecycle Configurations and their properties.

      • (dict) --

        Details of the Studio Lifecycle Configuration.

        • StudioLifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the Lifecycle Configuration.

        • StudioLifecycleConfigName (string) --

          The name of the Studio Lifecycle Configuration.

        • CreationTime (datetime) --

          The creation time of the Studio Lifecycle Configuration.

        • LastModifiedTime (datetime) --

          This value is equivalent to CreationTime because Studio Lifecycle Configurations are immutable.

        • StudioLifecycleConfigAppType (string) --

          The App type to which the Lifecycle Configuration is attached.

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
list_subscribed_workteams(**kwargs)

Gets a list of the work teams that you are subscribed to in the Amazon Web Services Marketplace. The list may be empty if no work team satisfies the filter specified in the NameContains parameter.

See also: AWS API Documentation

Request Syntax

response = client.list_subscribed_workteams(
    NameContains='string',
    NextToken='string',
    MaxResults=123
)
Parameters
  • NameContains (string) -- A string in the work team name. This filter returns only work teams whose name contains the specified string.
  • NextToken (string) -- If the result of the previous ListSubscribedWorkteams request was truncated, the response includes a NextToken . To retrieve the next set of labeling jobs, use the token in the next request.
  • MaxResults (integer) -- The maximum number of work teams to return in each page of the response.
Return type

dict

Returns

Response Syntax

{
    'SubscribedWorkteams': [
        {
            'WorkteamArn': 'string',
            'MarketplaceTitle': 'string',
            'SellerName': 'string',
            'MarketplaceDescription': 'string',
            'ListingId': 'string'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • SubscribedWorkteams (list) --

      An array of Workteam objects, each describing a work team.

      • (dict) --

        Describes a work team of a vendor that does the a labelling job.

        • WorkteamArn (string) --

          The Amazon Resource Name (ARN) of the vendor that you have subscribed.

        • MarketplaceTitle (string) --

          The title of the service provided by the vendor in the Amazon Marketplace.

        • SellerName (string) --

          The name of the vendor in the Amazon Marketplace.

        • MarketplaceDescription (string) --

          The description of the vendor from the Amazon Marketplace.

        • ListingId (string) --

          Marketplace product listing ID.

    • NextToken (string) --

      If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of work teams, use it in the subsequent request.

list_tags(**kwargs)

Returns the tags for the specified SageMaker resource.

See also: AWS API Documentation

Request Syntax

response = client.list_tags(
    ResourceArn='string',
    NextToken='string',
    MaxResults=123
)
Parameters
  • ResourceArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of the resource whose tags you want to retrieve.

  • NextToken (string) -- If the response to the previous ListTags request is truncated, SageMaker returns this token. To retrieve the next set of tags, use it in the subsequent request.
  • MaxResults (integer) -- Maximum number of tags to return.
Return type

dict

Returns

Response Syntax

{
    'Tags': [
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • Tags (list) --

      An array of Tag objects, each with a tag key and a value.

      • (dict) --

        A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

        You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

        For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

        • Key (string) --

          The tag key. Tag keys must be unique per resource.

        • Value (string) --

          The tag value.

    • NextToken (string) --

      If response is truncated, SageMaker includes a token in the response. You can use this token in your subsequent request to fetch next set of tokens.

list_training_jobs(**kwargs)

Lists training jobs.

Note

When StatusEquals and MaxResults are set at the same time, the MaxResults number of training jobs are first retrieved ignoring the StatusEquals parameter and then they are filtered by the StatusEquals parameter, which is returned as a response.

For example, if ListTrainingJobs is invoked with the following parameters:

{ ... MaxResults: 100, StatusEquals: InProgress ... }

First, 100 trainings jobs with any status, including those other than InProgress , are selected (sorted according to the creation time, from the most current to the oldest). Next, those with a status of InProgress are returned.

You can quickly test the API using the following Amazon Web Services CLI code.

aws sagemaker list-training-jobs --max-results 100 --status-equals InProgress

See also: AWS API Documentation

Request Syntax

response = client.list_training_jobs(
    NextToken='string',
    MaxResults=123,
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    NameContains='string',
    StatusEquals='InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
    SortBy='Name'|'CreationTime'|'Status',
    SortOrder='Ascending'|'Descending',
    WarmPoolStatusEquals='Available'|'Terminated'|'Reused'|'InUse'
)
Parameters
  • NextToken (string) -- If the result of the previous ListTrainingJobs request was truncated, the response includes a NextToken . To retrieve the next set of training jobs, use the token in the next request.
  • MaxResults (integer) -- The maximum number of training jobs to return in the response.
  • CreationTimeAfter (datetime) -- A filter that returns only training jobs created after the specified time (timestamp).
  • CreationTimeBefore (datetime) -- A filter that returns only training jobs created before the specified time (timestamp).
  • LastModifiedTimeAfter (datetime) -- A filter that returns only training jobs modified after the specified time (timestamp).
  • LastModifiedTimeBefore (datetime) -- A filter that returns only training jobs modified before the specified time (timestamp).
  • NameContains (string) -- A string in the training job name. This filter returns only training jobs whose name contains the specified string.
  • StatusEquals (string) -- A filter that retrieves only training jobs with a specific status.
  • SortBy (string) -- The field to sort results by. The default is CreationTime .
  • SortOrder (string) -- The sort order for results. The default is Ascending .
  • WarmPoolStatusEquals (string) -- A filter that retrieves only training jobs with a specific warm pool status.
Return type

dict

Returns

Response Syntax

{
    'TrainingJobSummaries': [
        {
            'TrainingJobName': 'string',
            'TrainingJobArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'TrainingEndTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'TrainingJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
            'WarmPoolStatus': {
                'Status': 'Available'|'Terminated'|'Reused'|'InUse',
                'ResourceRetainedBillableTimeInSeconds': 123,
                'ReusedByJob': 'string'
            }
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • TrainingJobSummaries (list) --

      An array of TrainingJobSummary objects, each listing a training job.

      • (dict) --

        Provides summary information about a training job.

        • TrainingJobName (string) --

          The name of the training job that you want a summary for.

        • TrainingJobArn (string) --

          The Amazon Resource Name (ARN) of the training job.

        • CreationTime (datetime) --

          A timestamp that shows when the training job was created.

        • TrainingEndTime (datetime) --

          A timestamp that shows when the training job ended. This field is set only if the training job has one of the terminal statuses ( Completed , Failed , or Stopped ).

        • LastModifiedTime (datetime) --

          Timestamp when the training job was last modified.

        • TrainingJobStatus (string) --

          The status of the training job.

        • WarmPoolStatus (dict) --

          The status of the warm pool associated with the training job.

          • Status (string) --

            The status of the warm pool.

            • InUse : The warm pool is in use for the training job.
            • Available : The warm pool is available to reuse for a matching training job.
            • Reused : The warm pool moved to a matching training job for reuse.
            • Terminated : The warm pool is no longer available. Warm pools are unavailable if they are terminated by a user, terminated for a patch update, or terminated for exceeding the specified KeepAlivePeriodInSeconds .
          • ResourceRetainedBillableTimeInSeconds (integer) --

            The billable time in seconds used by the warm pool. Billable time refers to the absolute wall-clock time.

            Multiply ResourceRetainedBillableTimeInSeconds by the number of instances ( InstanceCount ) in your training cluster to get the total compute time SageMaker bills you if you run warm pool training. The formula is as follows: ResourceRetainedBillableTimeInSeconds * InstanceCount .

          • ReusedByJob (string) --

            The name of the matching training job that reused the warm pool.

    • NextToken (string) --

      If the response is truncated, SageMaker returns this token. To retrieve the next set of training jobs, use it in the subsequent request.

list_training_jobs_for_hyper_parameter_tuning_job(**kwargs)

Gets a list of TrainingJobSummary objects that describe the training jobs that a hyperparameter tuning job launched.

See also: AWS API Documentation

Request Syntax

response = client.list_training_jobs_for_hyper_parameter_tuning_job(
    HyperParameterTuningJobName='string',
    NextToken='string',
    MaxResults=123,
    StatusEquals='InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
    SortBy='Name'|'CreationTime'|'Status'|'FinalObjectiveMetricValue',
    SortOrder='Ascending'|'Descending'
)
Parameters
  • HyperParameterTuningJobName (string) --

    [REQUIRED]

    The name of the tuning job whose training jobs you want to list.

  • NextToken (string) -- If the result of the previous ListTrainingJobsForHyperParameterTuningJob request was truncated, the response includes a NextToken . To retrieve the next set of training jobs, use the token in the next request.
  • MaxResults (integer) -- The maximum number of training jobs to return. The default value is 10.
  • StatusEquals (string) -- A filter that returns only training jobs with the specified status.
  • SortBy (string) --

    The field to sort results by. The default is Name .

    If the value of this field is FinalObjectiveMetricValue , any training jobs that did not return an objective metric are not listed.

  • SortOrder (string) -- The sort order for results. The default is Ascending .
Return type

dict

Returns

Response Syntax

{
    'TrainingJobSummaries': [
        {
            'TrainingJobDefinitionName': 'string',
            'TrainingJobName': 'string',
            'TrainingJobArn': 'string',
            'TuningJobName': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'TrainingStartTime': datetime(2015, 1, 1),
            'TrainingEndTime': datetime(2015, 1, 1),
            'TrainingJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
            'TunedHyperParameters': {
                'string': 'string'
            },
            'FailureReason': 'string',
            'FinalHyperParameterTuningJobObjectiveMetric': {
                'Type': 'Maximize'|'Minimize',
                'MetricName': 'string',
                'Value': ...
            },
            'ObjectiveStatus': 'Succeeded'|'Pending'|'Failed'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • TrainingJobSummaries (list) --

      A list of TrainingJobSummary objects that describe the training jobs that the ListTrainingJobsForHyperParameterTuningJob request returned.

      • (dict) --

        The container for the summary information about a training job.

        • TrainingJobDefinitionName (string) --

          The training job definition name.

        • TrainingJobName (string) --

          The name of the training job.

        • TrainingJobArn (string) --

          The Amazon Resource Name (ARN) of the training job.

        • TuningJobName (string) --

          The HyperParameter tuning job that launched the training job.

        • CreationTime (datetime) --

          The date and time that the training job was created.

        • TrainingStartTime (datetime) --

          The date and time that the training job started.

        • TrainingEndTime (datetime) --

          Specifies the time when the training job ends on training instances. You are billed for the time interval between the value of TrainingStartTime and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when SageMaker detects a job failure.

        • TrainingJobStatus (string) --

          The status of the training job.

        • TunedHyperParameters (dict) --

          A list of the hyperparameters for which you specified ranges to search.

          • (string) --
            • (string) --
        • FailureReason (string) --

          The reason that the training job failed.

        • FinalHyperParameterTuningJobObjectiveMetric (dict) --

          The FinalHyperParameterTuningJobObjectiveMetric object that specifies the value of the objective metric of the tuning job that launched this training job.

          • Type (string) --

            Whether to minimize or maximize the objective metric. Valid values are Minimize and Maximize.

          • MetricName (string) --

            The name of the objective metric.

          • Value (float) --

            The value of the objective metric.

        • ObjectiveStatus (string) --

          The status of the objective metric for the training job:

          • Succeeded: The final objective metric for the training job was evaluated by the hyperparameter tuning job and used in the hyperparameter tuning process.
          • Pending: The training job is in progress and evaluation of its final objective metric is pending.
          • Failed: The final objective metric for the training job was not evaluated, and was not used in the hyperparameter tuning process. This typically occurs when the training job failed or did not emit an objective metric.
    • NextToken (string) --

      If the result of this ListTrainingJobsForHyperParameterTuningJob request was truncated, the response includes a NextToken . To retrieve the next set of training jobs, use the token in the next request.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
list_transform_jobs(**kwargs)

Lists transform jobs.

See also: AWS API Documentation

Request Syntax

response = client.list_transform_jobs(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    NameContains='string',
    StatusEquals='InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
    SortBy='Name'|'CreationTime'|'Status',
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123
)
Parameters
  • CreationTimeAfter (datetime) -- A filter that returns only transform jobs created after the specified time.
  • CreationTimeBefore (datetime) -- A filter that returns only transform jobs created before the specified time.
  • LastModifiedTimeAfter (datetime) -- A filter that returns only transform jobs modified after the specified time.
  • LastModifiedTimeBefore (datetime) -- A filter that returns only transform jobs modified before the specified time.
  • NameContains (string) -- A string in the transform job name. This filter returns only transform jobs whose name contains the specified string.
  • StatusEquals (string) -- A filter that retrieves only transform jobs with a specific status.
  • SortBy (string) -- The field to sort results by. The default is CreationTime .
  • SortOrder (string) -- The sort order for results. The default is Descending .
  • NextToken (string) -- If the result of the previous ListTransformJobs request was truncated, the response includes a NextToken . To retrieve the next set of transform jobs, use the token in the next request.
  • MaxResults (integer) -- The maximum number of transform jobs to return in the response. The default value is 10 .
Return type

dict

Returns

Response Syntax

{
    'TransformJobSummaries': [
        {
            'TransformJobName': 'string',
            'TransformJobArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'TransformEndTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'TransformJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
            'FailureReason': 'string'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • TransformJobSummaries (list) --

      An array of TransformJobSummary objects.

      • (dict) --

        Provides a summary of a transform job. Multiple TransformJobSummary objects are returned as a list after in response to a ListTransformJobs call.

        • TransformJobName (string) --

          The name of the transform job.

        • TransformJobArn (string) --

          The Amazon Resource Name (ARN) of the transform job.

        • CreationTime (datetime) --

          A timestamp that shows when the transform Job was created.

        • TransformEndTime (datetime) --

          Indicates when the transform job ends on compute instances. For successful jobs and stopped jobs, this is the exact time recorded after the results are uploaded. For failed jobs, this is when Amazon SageMaker detected that the job failed.

        • LastModifiedTime (datetime) --

          Indicates when the transform job was last modified.

        • TransformJobStatus (string) --

          The status of the transform job.

        • FailureReason (string) --

          If the transform job failed, the reason it failed.

    • NextToken (string) --

      If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of transform jobs, use it in the next request.

list_trial_components(**kwargs)

Lists the trial components in your account. You can sort the list by trial component name or creation time. You can filter the list to show only components that were created in a specific time range. You can also filter on one of the following:

  • ExperimentName
  • SourceArn
  • TrialName

See also: AWS API Documentation

Request Syntax

response = client.list_trial_components(
    ExperimentName='string',
    TrialName='string',
    SourceArn='string',
    CreatedAfter=datetime(2015, 1, 1),
    CreatedBefore=datetime(2015, 1, 1),
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    MaxResults=123,
    NextToken='string'
)
Parameters
  • ExperimentName (string) -- A filter that returns only components that are part of the specified experiment. If you specify ExperimentName , you can't filter by SourceArn or TrialName .
  • TrialName (string) -- A filter that returns only components that are part of the specified trial. If you specify TrialName , you can't filter by ExperimentName or SourceArn .
  • SourceArn (string) -- A filter that returns only components that have the specified source Amazon Resource Name (ARN). If you specify SourceArn , you can't filter by ExperimentName or TrialName .
  • CreatedAfter (datetime) -- A filter that returns only components created after the specified time.
  • CreatedBefore (datetime) -- A filter that returns only components created before the specified time.
  • SortBy (string) -- The property used to sort results. The default value is CreationTime .
  • SortOrder (string) -- The sort order. The default value is Descending .
  • MaxResults (integer) -- The maximum number of components to return in the response. The default value is 10.
  • NextToken (string) -- If the previous call to ListTrialComponents didn't return the full set of components, the call returns a token for getting the next set of components.
Return type

dict

Returns

Response Syntax

{
    'TrialComponentSummaries': [
        {
            'TrialComponentName': 'string',
            'TrialComponentArn': 'string',
            'DisplayName': 'string',
            'TrialComponentSource': {
                'SourceArn': 'string',
                'SourceType': 'string'
            },
            'Status': {
                'PrimaryStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
                'Message': 'string'
            },
            'StartTime': datetime(2015, 1, 1),
            'EndTime': datetime(2015, 1, 1),
            'CreationTime': datetime(2015, 1, 1),
            'CreatedBy': {
                'UserProfileArn': 'string',
                'UserProfileName': 'string',
                'DomainId': 'string'
            },
            'LastModifiedTime': datetime(2015, 1, 1),
            'LastModifiedBy': {
                'UserProfileArn': 'string',
                'UserProfileName': 'string',
                'DomainId': 'string'
            }
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • TrialComponentSummaries (list) --

      A list of the summaries of your trial components.

      • (dict) --

        A summary of the properties of a trial component. To get all the properties, call the DescribeTrialComponent API and provide the TrialComponentName .

        • TrialComponentName (string) --

          The name of the trial component.

        • TrialComponentArn (string) --

          The Amazon Resource Name (ARN) of the trial component.

        • DisplayName (string) --

          The name of the component as displayed. If DisplayName isn't specified, TrialComponentName is displayed.

        • TrialComponentSource (dict) --

          The Amazon Resource Name (ARN) and job type of the source of a trial component.

          • SourceArn (string) --

            The source Amazon Resource Name (ARN).

          • SourceType (string) --

            The source job type.

        • Status (dict) --

          The status of the component. States include:

          • InProgress
          • Completed
          • Failed
          • PrimaryStatus (string) --

            The status of the trial component.

          • Message (string) --

            If the component failed, a message describing why.

        • StartTime (datetime) --

          When the component started.

        • EndTime (datetime) --

          When the component ended.

        • CreationTime (datetime) --

          When the component was created.

        • CreatedBy (dict) --

          Who created the trial component.

          • UserProfileArn (string) --

            The Amazon Resource Name (ARN) of the user's profile.

          • UserProfileName (string) --

            The name of the user's profile.

          • DomainId (string) --

            The domain associated with the user.

        • LastModifiedTime (datetime) --

          When the component was last modified.

        • LastModifiedBy (dict) --

          Who last modified the component.

          • UserProfileArn (string) --

            The Amazon Resource Name (ARN) of the user's profile.

          • UserProfileName (string) --

            The name of the user's profile.

          • DomainId (string) --

            The domain associated with the user.

    • NextToken (string) --

      A token for getting the next set of components, if there are any.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
list_trials(**kwargs)

Lists the trials in your account. Specify an experiment name to limit the list to the trials that are part of that experiment. Specify a trial component name to limit the list to the trials that associated with that trial component. The list can be filtered to show only trials that were created in a specific time range. The list can be sorted by trial name or creation time.

See also: AWS API Documentation

Request Syntax

response = client.list_trials(
    ExperimentName='string',
    TrialComponentName='string',
    CreatedAfter=datetime(2015, 1, 1),
    CreatedBefore=datetime(2015, 1, 1),
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    MaxResults=123,
    NextToken='string'
)
Parameters
  • ExperimentName (string) -- A filter that returns only trials that are part of the specified experiment.
  • TrialComponentName (string) -- A filter that returns only trials that are associated with the specified trial component.
  • CreatedAfter (datetime) -- A filter that returns only trials created after the specified time.
  • CreatedBefore (datetime) -- A filter that returns only trials created before the specified time.
  • SortBy (string) -- The property used to sort results. The default value is CreationTime .
  • SortOrder (string) -- The sort order. The default value is Descending .
  • MaxResults (integer) -- The maximum number of trials to return in the response. The default value is 10.
  • NextToken (string) -- If the previous call to ListTrials didn't return the full set of trials, the call returns a token for getting the next set of trials.
Return type

dict

Returns

Response Syntax

{
    'TrialSummaries': [
        {
            'TrialArn': 'string',
            'TrialName': 'string',
            'DisplayName': 'string',
            'TrialSource': {
                'SourceArn': 'string',
                'SourceType': 'string'
            },
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • TrialSummaries (list) --

      A list of the summaries of your trials.

      • (dict) --

        A summary of the properties of a trial. To get the complete set of properties, call the DescribeTrial API and provide the TrialName .

        • TrialArn (string) --

          The Amazon Resource Name (ARN) of the trial.

        • TrialName (string) --

          The name of the trial.

        • DisplayName (string) --

          The name of the trial as displayed. If DisplayName isn't specified, TrialName is displayed.

        • TrialSource (dict) --

          The source of the trial.

          • SourceArn (string) --

            The Amazon Resource Name (ARN) of the source.

          • SourceType (string) --

            The source job type.

        • CreationTime (datetime) --

          When the trial was created.

        • LastModifiedTime (datetime) --

          When the trial was last modified.

    • NextToken (string) --

      A token for getting the next set of trials, if there are any.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
list_user_profiles(**kwargs)

Lists user profiles.

See also: AWS API Documentation

Request Syntax

response = client.list_user_profiles(
    NextToken='string',
    MaxResults=123,
    SortOrder='Ascending'|'Descending',
    SortBy='CreationTime'|'LastModifiedTime',
    DomainIdEquals='string',
    UserProfileNameContains='string'
)
Parameters
  • NextToken (string) -- If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
  • MaxResults (integer) -- Returns a list up to a specified limit.
  • SortOrder (string) -- The sort order for the results. The default is Ascending.
  • SortBy (string) -- The parameter by which to sort the results. The default is CreationTime.
  • DomainIdEquals (string) -- A parameter by which to filter the results.
  • UserProfileNameContains (string) -- A parameter by which to filter the results.
Return type

dict

Returns

Response Syntax

{
    'UserProfiles': [
        {
            'DomainId': 'string',
            'UserProfileName': 'string',
            'Status': 'Deleting'|'Failed'|'InService'|'Pending'|'Updating'|'Update_Failed'|'Delete_Failed',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • UserProfiles (list) --

      The list of user profiles.

      • (dict) --

        The user profile details.

        • DomainId (string) --

          The domain ID.

        • UserProfileName (string) --

          The user profile name.

        • Status (string) --

          The status.

        • CreationTime (datetime) --

          The creation time.

        • LastModifiedTime (datetime) --

          The last modified time.

    • NextToken (string) --

      If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

list_workforces(**kwargs)

Use this operation to list all private and vendor workforces in an Amazon Web Services Region. Note that you can only have one private workforce per Amazon Web Services Region.

See also: AWS API Documentation

Request Syntax

response = client.list_workforces(
    SortBy='Name'|'CreateDate',
    SortOrder='Ascending'|'Descending',
    NameContains='string',
    NextToken='string',
    MaxResults=123
)
Parameters
  • SortBy (string) -- Sort workforces using the workforce name or creation date.
  • SortOrder (string) -- Sort workforces in ascending or descending order.
  • NameContains (string) -- A filter you can use to search for workforces using part of the workforce name.
  • NextToken (string) -- A token to resume pagination.
  • MaxResults (integer) -- The maximum number of workforces returned in the response.
Return type

dict

Returns

Response Syntax

{
    'Workforces': [
        {
            'WorkforceName': 'string',
            'WorkforceArn': 'string',
            'LastUpdatedDate': datetime(2015, 1, 1),
            'SourceIpConfig': {
                'Cidrs': [
                    'string',
                ]
            },
            'SubDomain': 'string',
            'CognitoConfig': {
                'UserPool': 'string',
                'ClientId': 'string'
            },
            'OidcConfig': {
                'ClientId': 'string',
                'Issuer': 'string',
                'AuthorizationEndpoint': 'string',
                'TokenEndpoint': 'string',
                'UserInfoEndpoint': 'string',
                'LogoutEndpoint': 'string',
                'JwksUri': 'string'
            },
            'CreateDate': datetime(2015, 1, 1),
            'WorkforceVpcConfig': {
                'VpcId': 'string',
                'SecurityGroupIds': [
                    'string',
                ],
                'Subnets': [
                    'string',
                ],
                'VpcEndpointId': 'string'
            },
            'Status': 'Initializing'|'Updating'|'Deleting'|'Failed'|'Active',
            'FailureReason': 'string'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • Workforces (list) --

      A list containing information about your workforce.

      • (dict) --

        A single private workforce, which is automatically created when you create your first private work team. You can create one private work force in each Amazon Web Services Region. By default, any workforce-related API operation used in a specific region will apply to the workforce created in that region. To learn how to create a private workforce, see Create a Private Workforce.

        • WorkforceName (string) --

          The name of the private workforce.

        • WorkforceArn (string) --

          The Amazon Resource Name (ARN) of the private workforce.

        • LastUpdatedDate (datetime) --

          The most recent date that was used to successfully add one or more IP address ranges ( CIDRs ) to a private workforce's allow list.

        • SourceIpConfig (dict) --

          A list of one to ten IP address ranges ( CIDRs ) to be added to the workforce allow list. By default, a workforce isn't restricted to specific IP addresses.

          • Cidrs (list) --

            A list of one to ten Classless Inter-Domain Routing (CIDR) values.

            Maximum: Ten CIDR values

            Note

            The following Length Constraints apply to individual CIDR values in the CIDR value list.

            • (string) --
        • SubDomain (string) --

          The subdomain for your OIDC Identity Provider.

        • CognitoConfig (dict) --

          The configuration of an Amazon Cognito workforce. A single Cognito workforce is created using and corresponds to a single Amazon Cognito user pool.

          • UserPool (string) --

            A user pool is a user directory in Amazon Cognito. With a user pool, your users can sign in to your web or mobile app through Amazon Cognito. Your users can also sign in through social identity providers like Google, Facebook, Amazon, or Apple, and through SAML identity providers.

          • ClientId (string) --

            The client ID for your Amazon Cognito user pool.

        • OidcConfig (dict) --

          The configuration of an OIDC Identity Provider (IdP) private workforce.

          • ClientId (string) --

            The OIDC IdP client ID used to configure your private workforce.

          • Issuer (string) --

            The OIDC IdP issuer used to configure your private workforce.

          • AuthorizationEndpoint (string) --

            The OIDC IdP authorization endpoint used to configure your private workforce.

          • TokenEndpoint (string) --

            The OIDC IdP token endpoint used to configure your private workforce.

          • UserInfoEndpoint (string) --

            The OIDC IdP user information endpoint used to configure your private workforce.

          • LogoutEndpoint (string) --

            The OIDC IdP logout endpoint used to configure your private workforce.

          • JwksUri (string) --

            The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your private workforce.

        • CreateDate (datetime) --

          The date that the workforce is created.

        • WorkforceVpcConfig (dict) --

          The configuration of a VPC workforce.

          • VpcId (string) --

            The ID of the VPC that the workforce uses for communication.

          • SecurityGroupIds (list) --

            The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet.

            • (string) --
          • Subnets (list) --

            The ID of the subnets in the VPC that you want to connect.

            • (string) --
          • VpcEndpointId (string) --

            The IDs for the VPC service endpoints of your VPC workforce when it is created and updated.

        • Status (string) --

          The status of your workforce.

        • FailureReason (string) --

          The reason your workforce failed.

    • NextToken (string) --

      A token to resume pagination.

list_workteams(**kwargs)

Gets a list of private work teams that you have defined in a region. The list may be empty if no work team satisfies the filter specified in the NameContains parameter.

See also: AWS API Documentation

Request Syntax

response = client.list_workteams(
    SortBy='Name'|'CreateDate',
    SortOrder='Ascending'|'Descending',
    NameContains='string',
    NextToken='string',
    MaxResults=123
)
Parameters
  • SortBy (string) -- The field to sort results by. The default is CreationTime .
  • SortOrder (string) -- The sort order for results. The default is Ascending .
  • NameContains (string) -- A string in the work team's name. This filter returns only work teams whose name contains the specified string.
  • NextToken (string) -- If the result of the previous ListWorkteams request was truncated, the response includes a NextToken . To retrieve the next set of labeling jobs, use the token in the next request.
  • MaxResults (integer) -- The maximum number of work teams to return in each page of the response.
Return type

dict

Returns

Response Syntax

{
    'Workteams': [
        {
            'WorkteamName': 'string',
            'MemberDefinitions': [
                {
                    'CognitoMemberDefinition': {
                        'UserPool': 'string',
                        'UserGroup': 'string',
                        'ClientId': 'string'
                    },
                    'OidcMemberDefinition': {
                        'Groups': [
                            'string',
                        ]
                    }
                },
            ],
            'WorkteamArn': 'string',
            'WorkforceArn': 'string',
            'ProductListingIds': [
                'string',
            ],
            'Description': 'string',
            'SubDomain': 'string',
            'CreateDate': datetime(2015, 1, 1),
            'LastUpdatedDate': datetime(2015, 1, 1),
            'NotificationConfiguration': {
                'NotificationTopicArn': 'string'
            }
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • Workteams (list) --

      An array of Workteam objects, each describing a work team.

      • (dict) --

        Provides details about a labeling work team.

        • WorkteamName (string) --

          The name of the work team.

        • MemberDefinitions (list) --

          A list of MemberDefinition objects that contains objects that identify the workers that make up the work team.

          Workforces can be created using Amazon Cognito or your own OIDC Identity Provider (IdP). For private workforces created using Amazon Cognito use CognitoMemberDefinition . For workforces created using your own OIDC identity provider (IdP) use OidcMemberDefinition .

          • (dict) --

            Defines an Amazon Cognito or your own OIDC IdP user group that is part of a work team.

            • CognitoMemberDefinition (dict) --

              The Amazon Cognito user group that is part of the work team.

              • UserPool (string) --

                An identifier for a user pool. The user pool must be in the same region as the service that you are calling.

              • UserGroup (string) --

                An identifier for a user group.

              • ClientId (string) --

                An identifier for an application client. You must create the app client ID using Amazon Cognito.

            • OidcMemberDefinition (dict) --

              A list user groups that exist in your OIDC Identity Provider (IdP). One to ten groups can be used to create a single private work team. When you add a user group to the list of Groups , you can add that user group to one or more private work teams. If you add a user group to a private work team, all workers in that user group are added to the work team.

              • Groups (list) --

                A list of comma seperated strings that identifies user groups in your OIDC IdP. Each user group is made up of a group of private workers.

                • (string) --
        • WorkteamArn (string) --

          The Amazon Resource Name (ARN) that identifies the work team.

        • WorkforceArn (string) --

          The Amazon Resource Name (ARN) of the workforce.

        • ProductListingIds (list) --

          The Amazon Marketplace identifier for a vendor's work team.

          • (string) --
        • Description (string) --

          A description of the work team.

        • SubDomain (string) --

          The URI of the labeling job's user interface. Workers open this URI to start labeling your data objects.

        • CreateDate (datetime) --

          The date and time that the work team was created (timestamp).

        • LastUpdatedDate (datetime) --

          The date and time that the work team was last updated (timestamp).

        • NotificationConfiguration (dict) --

          Configures SNS notifications of available or expiring work items for work teams.

          • NotificationTopicArn (string) --

            The ARN for the Amazon SNS topic to which notifications should be published.

    • NextToken (string) --

      If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of work teams, use it in the subsequent request.

put_model_package_group_policy(**kwargs)

Adds a resouce policy to control access to a model group. For information about resoure policies, see Identity-based policies and resource-based policies in the Amazon Web Services Identity and Access Management User Guide. .

See also: AWS API Documentation

Request Syntax

response = client.put_model_package_group_policy(
    ModelPackageGroupName='string',
    ResourcePolicy='string'
)
Parameters
  • ModelPackageGroupName (string) --

    [REQUIRED]

    The name of the model group to add a resource policy to.

  • ResourcePolicy (string) --

    [REQUIRED]

    The resource policy for the model group.

Return type

dict

Returns

Response Syntax

{
    'ModelPackageGroupArn': 'string'
}

Response Structure

  • (dict) --

    • ModelPackageGroupArn (string) --

      The Amazon Resource Name (ARN) of the model package group.

query_lineage(**kwargs)

Use this action to inspect your lineage and discover relationships between entities. For more information, see Querying Lineage Entities in the Amazon SageMaker Developer Guide .

See also: AWS API Documentation

Request Syntax

response = client.query_lineage(
    StartArns=[
        'string',
    ],
    Direction='Both'|'Ascendants'|'Descendants',
    IncludeEdges=True|False,
    Filters={
        'Types': [
            'string',
        ],
        'LineageTypes': [
            'TrialComponent'|'Artifact'|'Context'|'Action',
        ],
        'CreatedBefore': datetime(2015, 1, 1),
        'CreatedAfter': datetime(2015, 1, 1),
        'ModifiedBefore': datetime(2015, 1, 1),
        'ModifiedAfter': datetime(2015, 1, 1),
        'Properties': {
            'string': 'string'
        }
    },
    MaxDepth=123,
    MaxResults=123,
    NextToken='string'
)
Parameters
  • StartArns (list) --

    A list of resource Amazon Resource Name (ARN) that represent the starting point for your lineage query.

    • (string) --
  • Direction (string) -- Associations between lineage entities have a direction. This parameter determines the direction from the StartArn(s) that the query traverses.
  • IncludeEdges (boolean) -- Setting this value to True retrieves not only the entities of interest but also the Associations and lineage entities on the path. Set to False to only return lineage entities that match your query.
  • Filters (dict) --

    A set of filtering parameters that allow you to specify which entities should be returned.

    • Properties - Key-value pairs to match on the lineage entities' properties.
    • LineageTypes - A set of lineage entity types to match on. For example: TrialComponent , Artifact , or Context .
    • CreatedBefore - Filter entities created before this date.
    • ModifiedBefore - Filter entities modified before this date.
    • ModifiedAfter - Filter entities modified after this date.
    • Types (list) --

      Filter the lineage entities connected to the StartArn by type. For example: DataSet , Model , Endpoint , or ModelDeployment .

      • (string) --
    • LineageTypes (list) --

      Filter the lineage entities connected to the StartArn (s) by the type of the lineage entity.

      • (string) --
    • CreatedBefore (datetime) --

      Filter the lineage entities connected to the StartArn (s) by created date.

    • CreatedAfter (datetime) --

      Filter the lineage entities connected to the StartArn (s) after the create date.

    • ModifiedBefore (datetime) --

      Filter the lineage entities connected to the StartArn (s) before the last modified date.

    • ModifiedAfter (datetime) --

      Filter the lineage entities connected to the StartArn (s) after the last modified date.

    • Properties (dict) --

      Filter the lineage entities connected to the StartArn (s) by a set if property key value pairs. If multiple pairs are provided, an entity is included in the results if it matches any of the provided pairs.

      • (string) --
        • (string) --
  • MaxDepth (integer) -- The maximum depth in lineage relationships from the StartArns that are traversed. Depth is a measure of the number of Associations from the StartArn entity to the matched results.
  • MaxResults (integer) -- Limits the number of vertices in the results. Use the NextToken in a response to to retrieve the next page of results.
  • NextToken (string) -- Limits the number of vertices in the request. Use the NextToken in a response to to retrieve the next page of results.
Return type

dict

Returns

Response Syntax

{
    'Vertices': [
        {
            'Arn': 'string',
            'Type': 'string',
            'LineageType': 'TrialComponent'|'Artifact'|'Context'|'Action'
        },
    ],
    'Edges': [
        {
            'SourceArn': 'string',
            'DestinationArn': 'string',
            'AssociationType': 'ContributedTo'|'AssociatedWith'|'DerivedFrom'|'Produced'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • Vertices (list) --

      A list of vertices connected to the start entity(ies) in the lineage graph.

      • (dict) --

        A lineage entity connected to the starting entity(ies).

        • Arn (string) --

          The Amazon Resource Name (ARN) of the lineage entity resource.

        • Type (string) --

          The type of the lineage entity resource. For example: DataSet , Model , Endpoint , etc...

        • LineageType (string) --

          The type of resource of the lineage entity.

    • Edges (list) --

      A list of edges that connect vertices in the response.

      • (dict) --

        A directed edge connecting two lineage entities.

        • SourceArn (string) --

          The Amazon Resource Name (ARN) of the source lineage entity of the directed edge.

        • DestinationArn (string) --

          The Amazon Resource Name (ARN) of the destination lineage entity of the directed edge.

        • AssociationType (string) --

          The type of the Association(Edge) between the source and destination. For example ContributedTo , Produced , or DerivedFrom .

    • NextToken (string) --

      Limits the number of vertices in the response. Use the NextToken in a response to to retrieve the next page of results.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
register_devices(**kwargs)

Register devices.

See also: AWS API Documentation

Request Syntax

response = client.register_devices(
    DeviceFleetName='string',
    Devices=[
        {
            'DeviceName': 'string',
            'Description': 'string',
            'IotThingName': 'string'
        },
    ],
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • DeviceFleetName (string) --

    [REQUIRED]

    The name of the fleet.

  • Devices (list) --

    [REQUIRED]

    A list of devices to register with SageMaker Edge Manager.

    • (dict) --

      Information of a particular device.

      • DeviceName (string) -- [REQUIRED]

        The name of the device.

      • Description (string) --

        Description of the device.

      • IotThingName (string) --

        Amazon Web Services Internet of Things (IoT) object name.

  • Tags (list) --

    The tags associated with devices.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Returns

None

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
render_ui_template(**kwargs)

Renders the UI template so that you can preview the worker's experience.

See also: AWS API Documentation

Request Syntax

response = client.render_ui_template(
    UiTemplate={
        'Content': 'string'
    },
    Task={
        'Input': 'string'
    },
    RoleArn='string',
    HumanTaskUiArn='string'
)
Parameters
  • UiTemplate (dict) --

    A Template object containing the worker UI template to render.

    • Content (string) -- [REQUIRED]

      The content of the Liquid template for the worker user interface.

  • Task (dict) --

    [REQUIRED]

    A RenderableTask object containing a representative task to render.

    • Input (string) -- [REQUIRED]

      A JSON object that contains values for the variables defined in the template. It is made available to the template under the substitution variable task.input . For example, if you define a variable task.input.text in your template, you can supply the variable in the JSON object as "text": "sample text" .

  • RoleArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) that has access to the S3 objects that are used by the template.

  • HumanTaskUiArn (string) --

    The HumanTaskUiArn of the worker UI that you want to render. Do not provide a HumanTaskUiArn if you use the UiTemplate parameter.

    See a list of available Human Ui Amazon Resource Names (ARNs) in UiConfig.

Return type

dict

Returns

Response Syntax

{
    'RenderedContent': 'string',
    'Errors': [
        {
            'Code': 'string',
            'Message': 'string'
        },
    ]
}

Response Structure

  • (dict) --

    • RenderedContent (string) --

      A Liquid template that renders the HTML for the worker UI.

    • Errors (list) --

      A list of one or more RenderingError objects if any were encountered while rendering the template. If there were no errors, the list is empty.

      • (dict) --

        A description of an error that occurred while rendering the template.

        • Code (string) --

          A unique identifier for a specific class of errors.

        • Message (string) --

          A human-readable message describing the error.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
retry_pipeline_execution(**kwargs)

Retry the execution of the pipeline.

See also: AWS API Documentation

Request Syntax

response = client.retry_pipeline_execution(
    PipelineExecutionArn='string',
    ClientRequestToken='string',
    ParallelismConfiguration={
        'MaxParallelExecutionSteps': 123
    }
)
Parameters
  • PipelineExecutionArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of the pipeline execution.

  • ClientRequestToken (string) --

    [REQUIRED]

    A unique, case-sensitive identifier that you provide to ensure the idempotency of the operation. An idempotent operation completes no more than once.

    This field is autopopulated if not provided.

  • ParallelismConfiguration (dict) --

    This configuration, if specified, overrides the parallelism configuration of the parent pipeline.

    • MaxParallelExecutionSteps (integer) -- [REQUIRED]

      The max number of steps that can be executed in parallel.

Return type

dict

Returns

Response Syntax

{
    'PipelineExecutionArn': 'string'
}

Response Structure

  • (dict) --

    • PipelineExecutionArn (string) --

      The Amazon Resource Name (ARN) of the pipeline execution.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
  • SageMaker.Client.exceptions.ResourceLimitExceeded
  • SageMaker.Client.exceptions.ConflictException
search(**kwargs)

Finds Amazon SageMaker resources that match a search query. Matching resources are returned as a list of SearchRecord objects in the response. You can sort the search results by any resource property in a ascending or descending order.

You can query against the following value types: numeric, text, Boolean, and timestamp.

See also: AWS API Documentation

Request Syntax

response = client.search(
    Resource='TrainingJob'|'Experiment'|'ExperimentTrial'|'ExperimentTrialComponent'|'Endpoint'|'ModelPackage'|'ModelPackageGroup'|'Pipeline'|'PipelineExecution'|'FeatureGroup'|'Project'|'FeatureMetadata'|'HyperParameterTuningJob'|'ModelCard'|'Model',
    SearchExpression={
        'Filters': [
            {
                'Name': 'string',
                'Operator': 'Equals'|'NotEquals'|'GreaterThan'|'GreaterThanOrEqualTo'|'LessThan'|'LessThanOrEqualTo'|'Contains'|'Exists'|'NotExists'|'In',
                'Value': 'string'
            },
        ],
        'NestedFilters': [
            {
                'NestedPropertyName': 'string',
                'Filters': [
                    {
                        'Name': 'string',
                        'Operator': 'Equals'|'NotEquals'|'GreaterThan'|'GreaterThanOrEqualTo'|'LessThan'|'LessThanOrEqualTo'|'Contains'|'Exists'|'NotExists'|'In',
                        'Value': 'string'
                    },
                ]
            },
        ],
        'SubExpressions': [
            {'... recursive ...'},
        ],
        'Operator': 'And'|'Or'
    },
    SortBy='string',
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123
)
Parameters
  • Resource (string) --

    [REQUIRED]

    The name of the Amazon SageMaker resource to search for.

  • SearchExpression (dict) --

    A Boolean conditional statement. Resources must satisfy this condition to be included in search results. You must provide at least one subexpression, filter, or nested filter. The maximum number of recursive SubExpressions , NestedFilters , and Filters that can be included in a SearchExpression object is 50.

    • Filters (list) --

      A list of filter objects.

      • (dict) --

        A conditional statement for a search expression that includes a resource property, a Boolean operator, and a value. Resources that match the statement are returned in the results from the Search API.

        If you specify a Value , but not an Operator , Amazon SageMaker uses the equals operator.

        In search, there are several property types:

        Metrics

        To define a metric filter, enter a value using the form "Metrics.<name>" , where <name> is a metric name. For example, the following filter searches for training jobs with an "accuracy" metric greater than "0.9" :

        {

        "Name": "Metrics.accuracy",

        "Operator": "GreaterThan",

        "Value": "0.9"

        }

        HyperParameters

        To define a hyperparameter filter, enter a value with the form "HyperParameters.<name>" . Decimal hyperparameter values are treated as a decimal in a comparison if the specified Value is also a decimal value. If the specified Value is an integer, the decimal hyperparameter values are treated as integers. For example, the following filter is satisfied by training jobs with a "learning_rate" hyperparameter that is less than "0.5" :

        {

        "Name": "HyperParameters.learning_rate",

        "Operator": "LessThan",

        "Value": "0.5"

        }

        Tags

        To define a tag filter, enter a value with the form Tags.<key> .

        • Name (string) -- [REQUIRED]

          A resource property name. For example, TrainingJobName . For valid property names, see SearchRecord. You must specify a valid property for the resource.

        • Operator (string) --

          A Boolean binary operator that is used to evaluate the filter. The operator field contains one of the following values:

          Equals

          The value of Name equals Value .

          NotEquals

          The value of Name doesn't equal Value .

          Exists

          The Name property exists.

          NotExists

          The Name property does not exist.

          GreaterThan

          The value of Name is greater than Value . Not supported for text properties.

          GreaterThanOrEqualTo

          The value of Name is greater than or equal to Value . Not supported for text properties.

          LessThan

          The value of Name is less than Value . Not supported for text properties.

          LessThanOrEqualTo

          The value of Name is less than or equal to Value . Not supported for text properties.

          In

          The value of Name is one of the comma delimited strings in Value . Only supported for text properties.

          Contains

          The value of Name contains the string Value . Only supported for text properties.

          A SearchExpression can include the Contains operator multiple times when the value of Name is one of the following:

          • Experiment.DisplayName
          • Experiment.ExperimentName
          • Experiment.Tags
          • Trial.DisplayName
          • Trial.TrialName
          • Trial.Tags
          • TrialComponent.DisplayName
          • TrialComponent.TrialComponentName
          • TrialComponent.Tags
          • TrialComponent.InputArtifacts
          • TrialComponent.OutputArtifacts

          A SearchExpression can include only one Contains operator for all other values of Name . In these cases, if you include multiple Contains operators in the SearchExpression , the result is the following error message: " 'CONTAINS' operator usage limit of 1 exceeded. "

        • Value (string) --

          A value used with Name and Operator to determine which resources satisfy the filter's condition. For numerical properties, Value must be an integer or floating-point decimal. For timestamp properties, Value must be an ISO 8601 date-time string of the following format: YYYY-mm-dd'T'HH:MM:SS .

    • NestedFilters (list) --

      A list of nested filter objects.

      • (dict) --

        A list of nested Filter objects. A resource must satisfy the conditions of all filters to be included in the results returned from the Search API.

        For example, to filter on a training job's InputDataConfig property with a specific channel name and S3Uri prefix, define the following filters:

        • '{Name:"InputDataConfig.ChannelName", "Operator":"Equals", "Value":"train"}',
        • '{Name:"InputDataConfig.DataSource.S3DataSource.S3Uri", "Operator":"Contains", "Value":"mybucket/catdata"}'
        • NestedPropertyName (string) -- [REQUIRED]

          The name of the property to use in the nested filters. The value must match a listed property name, such as InputDataConfig .

        • Filters (list) -- [REQUIRED]

          A list of filters. Each filter acts on a property. Filters must contain at least one Filters value. For example, a NestedFilters call might include a filter on the PropertyName parameter of the InputDataConfig property: InputDataConfig.DataSource.S3DataSource.S3Uri .

          • (dict) --

            A conditional statement for a search expression that includes a resource property, a Boolean operator, and a value. Resources that match the statement are returned in the results from the Search API.

            If you specify a Value , but not an Operator , Amazon SageMaker uses the equals operator.

            In search, there are several property types:

            Metrics

            To define a metric filter, enter a value using the form "Metrics.<name>" , where <name> is a metric name. For example, the following filter searches for training jobs with an "accuracy" metric greater than "0.9" :

            {

            "Name": "Metrics.accuracy",

            "Operator": "GreaterThan",

            "Value": "0.9"

            }

            HyperParameters

            To define a hyperparameter filter, enter a value with the form "HyperParameters.<name>" . Decimal hyperparameter values are treated as a decimal in a comparison if the specified Value is also a decimal value. If the specified Value is an integer, the decimal hyperparameter values are treated as integers. For example, the following filter is satisfied by training jobs with a "learning_rate" hyperparameter that is less than "0.5" :

            {

            "Name": "HyperParameters.learning_rate",

            "Operator": "LessThan",

            "Value": "0.5"

            }

            Tags

            To define a tag filter, enter a value with the form Tags.<key> .

            • Name (string) -- [REQUIRED]

              A resource property name. For example, TrainingJobName . For valid property names, see SearchRecord. You must specify a valid property for the resource.

            • Operator (string) --

              A Boolean binary operator that is used to evaluate the filter. The operator field contains one of the following values:

              Equals

              The value of Name equals Value .

              NotEquals

              The value of Name doesn't equal Value .

              Exists

              The Name property exists.

              NotExists

              The Name property does not exist.

              GreaterThan

              The value of Name is greater than Value . Not supported for text properties.

              GreaterThanOrEqualTo

              The value of Name is greater than or equal to Value . Not supported for text properties.

              LessThan

              The value of Name is less than Value . Not supported for text properties.

              LessThanOrEqualTo

              The value of Name is less than or equal to Value . Not supported for text properties.

              In

              The value of Name is one of the comma delimited strings in Value . Only supported for text properties.

              Contains

              The value of Name contains the string Value . Only supported for text properties.

              A SearchExpression can include the Contains operator multiple times when the value of Name is one of the following:

              • Experiment.DisplayName
              • Experiment.ExperimentName
              • Experiment.Tags
              • Trial.DisplayName
              • Trial.TrialName
              • Trial.Tags
              • TrialComponent.DisplayName
              • TrialComponent.TrialComponentName
              • TrialComponent.Tags
              • TrialComponent.InputArtifacts
              • TrialComponent.OutputArtifacts

              A SearchExpression can include only one Contains operator for all other values of Name . In these cases, if you include multiple Contains operators in the SearchExpression , the result is the following error message: " 'CONTAINS' operator usage limit of 1 exceeded. "

            • Value (string) --

              A value used with Name and Operator to determine which resources satisfy the filter's condition. For numerical properties, Value must be an integer or floating-point decimal. For timestamp properties, Value must be an ISO 8601 date-time string of the following format: YYYY-mm-dd'T'HH:MM:SS .

    • SubExpressions (list) --

      A list of search expression objects.

      • (dict) --

        A multi-expression that searches for the specified resource or resources in a search. All resource objects that satisfy the expression's condition are included in the search results. You must specify at least one subexpression, filter, or nested filter. A SearchExpression can contain up to twenty elements.

        A SearchExpression contains the following components:

        • A list of Filter objects. Each filter defines a simple Boolean expression comprised of a resource property name, Boolean operator, and value.
        • A list of NestedFilter objects. Each nested filter defines a list of Boolean expressions using a list of resource properties. A nested filter is satisfied if a single object in the list satisfies all Boolean expressions.
        • A list of SearchExpression objects. A search expression object can be nested in a list of search expression objects.
        • A Boolean operator: And or Or .
    • Operator (string) --

      A Boolean operator used to evaluate the search expression. If you want every conditional statement in all lists to be satisfied for the entire search expression to be true, specify And . If only a single conditional statement needs to be true for the entire search expression to be true, specify Or . The default value is And .

  • SortBy (string) -- The name of the resource property used to sort the SearchResults . The default is LastModifiedTime .
  • SortOrder (string) -- How SearchResults are ordered. Valid values are Ascending or Descending . The default is Descending .
  • NextToken (string) -- If more than MaxResults resources match the specified SearchExpression , the response includes a NextToken . The NextToken can be passed to the next SearchRequest to continue retrieving results.
  • MaxResults (integer) -- The maximum number of results to return.
Return type

dict

Returns

Response Syntax

# This section is too large to render.
# Please see the AWS API Documentation linked below.

AWS API Documentation

Response Structure

# This section is too large to render.
# Please see the AWS API Documentation linked below.

AWS API Documentation

send_pipeline_execution_step_failure(**kwargs)

Notifies the pipeline that the execution of a callback step failed, along with a message describing why. When a callback step is run, the pipeline generates a callback token and includes the token in a message sent to Amazon Simple Queue Service (Amazon SQS).

See also: AWS API Documentation

Request Syntax

response = client.send_pipeline_execution_step_failure(
    CallbackToken='string',
    FailureReason='string',
    ClientRequestToken='string'
)
Parameters
  • CallbackToken (string) --

    [REQUIRED]

    The pipeline generated token from the Amazon SQS queue.

  • FailureReason (string) -- A message describing why the step failed.
  • ClientRequestToken (string) --

    A unique, case-sensitive identifier that you provide to ensure the idempotency of the operation. An idempotent operation completes no more than one time.

    This field is autopopulated if not provided.

Return type

dict

Returns

Response Syntax

{
    'PipelineExecutionArn': 'string'
}

Response Structure

  • (dict) --

    • PipelineExecutionArn (string) --

      The Amazon Resource Name (ARN) of the pipeline execution.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
  • SageMaker.Client.exceptions.ResourceLimitExceeded
send_pipeline_execution_step_success(**kwargs)

Notifies the pipeline that the execution of a callback step succeeded and provides a list of the step's output parameters. When a callback step is run, the pipeline generates a callback token and includes the token in a message sent to Amazon Simple Queue Service (Amazon SQS).

See also: AWS API Documentation

Request Syntax

response = client.send_pipeline_execution_step_success(
    CallbackToken='string',
    OutputParameters=[
        {
            'Name': 'string',
            'Value': 'string'
        },
    ],
    ClientRequestToken='string'
)
Parameters
  • CallbackToken (string) --

    [REQUIRED]

    The pipeline generated token from the Amazon SQS queue.

  • OutputParameters (list) --

    A list of the output parameters of the callback step.

    • (dict) --

      An output parameter of a pipeline step.

      • Name (string) -- [REQUIRED]

        The name of the output parameter.

      • Value (string) -- [REQUIRED]

        The value of the output parameter.

  • ClientRequestToken (string) --

    A unique, case-sensitive identifier that you provide to ensure the idempotency of the operation. An idempotent operation completes no more than one time.

    This field is autopopulated if not provided.

Return type

dict

Returns

Response Syntax

{
    'PipelineExecutionArn': 'string'
}

Response Structure

  • (dict) --

    • PipelineExecutionArn (string) --

      The Amazon Resource Name (ARN) of the pipeline execution.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
  • SageMaker.Client.exceptions.ResourceLimitExceeded
start_edge_deployment_stage(**kwargs)

Starts a stage in an edge deployment plan.

See also: AWS API Documentation

Request Syntax

response = client.start_edge_deployment_stage(
    EdgeDeploymentPlanName='string',
    StageName='string'
)
Parameters
  • EdgeDeploymentPlanName (string) --

    [REQUIRED]

    The name of the edge deployment plan to start.

  • StageName (string) --

    [REQUIRED]

    The name of the stage to start.

Returns

None

start_inference_experiment(**kwargs)

Starts an inference experiment.

See also: AWS API Documentation

Request Syntax

response = client.start_inference_experiment(
    Name='string'
)
Parameters
Name (string) --

[REQUIRED]

The name of the inference experiment to start.

Return type
dict
Returns
Response Syntax
{
    'InferenceExperimentArn': 'string'
}

Response Structure

  • (dict) --
    • InferenceExperimentArn (string) --

      The ARN of the started inference experiment to start.

Exceptions

  • SageMaker.Client.exceptions.ConflictException
  • SageMaker.Client.exceptions.ResourceNotFound
start_monitoring_schedule(**kwargs)

Starts a previously stopped monitoring schedule.

Note

By default, when you successfully create a new schedule, the status of a monitoring schedule is scheduled .

See also: AWS API Documentation

Request Syntax

response = client.start_monitoring_schedule(
    MonitoringScheduleName='string'
)
Parameters
MonitoringScheduleName (string) --

[REQUIRED]

The name of the schedule to start.

Returns
None

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
start_notebook_instance(**kwargs)

Launches an ML compute instance with the latest version of the libraries and attaches your ML storage volume. After configuring the notebook instance, SageMaker sets the notebook instance status to InService . A notebook instance's status must be InService before you can connect to your Jupyter notebook.

See also: AWS API Documentation

Request Syntax

response = client.start_notebook_instance(
    NotebookInstanceName='string'
)
Parameters
NotebookInstanceName (string) --

[REQUIRED]

The name of the notebook instance to start.

Returns
None

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
start_pipeline_execution(**kwargs)

Starts a pipeline execution.

See also: AWS API Documentation

Request Syntax

response = client.start_pipeline_execution(
    PipelineName='string',
    PipelineExecutionDisplayName='string',
    PipelineParameters=[
        {
            'Name': 'string',
            'Value': 'string'
        },
    ],
    PipelineExecutionDescription='string',
    ClientRequestToken='string',
    ParallelismConfiguration={
        'MaxParallelExecutionSteps': 123
    }
)
Parameters
  • PipelineName (string) --

    [REQUIRED]

    The name of the pipeline.

  • PipelineExecutionDisplayName (string) -- The display name of the pipeline execution.
  • PipelineParameters (list) --

    Contains a list of pipeline parameters. This list can be empty.

    • (dict) --

      Assigns a value to a named Pipeline parameter.

      • Name (string) -- [REQUIRED]

        The name of the parameter to assign a value to. This parameter name must match a named parameter in the pipeline definition.

      • Value (string) -- [REQUIRED]

        The literal value for the parameter.

  • PipelineExecutionDescription (string) -- The description of the pipeline execution.
  • ClientRequestToken (string) --

    [REQUIRED]

    A unique, case-sensitive identifier that you provide to ensure the idempotency of the operation. An idempotent operation completes no more than once.

    This field is autopopulated if not provided.

  • ParallelismConfiguration (dict) --

    This configuration, if specified, overrides the parallelism configuration of the parent pipeline for this specific run.

    • MaxParallelExecutionSteps (integer) -- [REQUIRED]

      The max number of steps that can be executed in parallel.

Return type

dict

Returns

Response Syntax

{
    'PipelineExecutionArn': 'string'
}

Response Structure

  • (dict) --

    • PipelineExecutionArn (string) --

      The Amazon Resource Name (ARN) of the pipeline execution.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
  • SageMaker.Client.exceptions.ResourceLimitExceeded
stop_auto_ml_job(**kwargs)

A method for forcing a running job to shut down.

See also: AWS API Documentation

Request Syntax

response = client.stop_auto_ml_job(
    AutoMLJobName='string'
)
Parameters
AutoMLJobName (string) --

[REQUIRED]

The name of the object you are requesting.

Returns
None

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
stop_compilation_job(**kwargs)

Stops a model compilation job.

To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal. This gracefully shuts the job down. If the job hasn't stopped, it sends the SIGKILL signal.

When it receives a StopCompilationJob request, Amazon SageMaker changes the CompilationJobSummary$CompilationJobStatus of the job to Stopping . After Amazon SageMaker stops the job, it sets the CompilationJobSummary$CompilationJobStatus to Stopped .

See also: AWS API Documentation

Request Syntax

response = client.stop_compilation_job(
    CompilationJobName='string'
)
Parameters
CompilationJobName (string) --

[REQUIRED]

The name of the model compilation job to stop.

Returns
None

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
stop_edge_deployment_stage(**kwargs)

Stops a stage in an edge deployment plan.

See also: AWS API Documentation

Request Syntax

response = client.stop_edge_deployment_stage(
    EdgeDeploymentPlanName='string',
    StageName='string'
)
Parameters
  • EdgeDeploymentPlanName (string) --

    [REQUIRED]

    The name of the edge deployment plan to stop.

  • StageName (string) --

    [REQUIRED]

    The name of the stage to stop.

Returns

None

stop_edge_packaging_job(**kwargs)

Request to stop an edge packaging job.

See also: AWS API Documentation

Request Syntax

response = client.stop_edge_packaging_job(
    EdgePackagingJobName='string'
)
Parameters
EdgePackagingJobName (string) --

[REQUIRED]

The name of the edge packaging job.

Returns
None
stop_hyper_parameter_tuning_job(**kwargs)

Stops a running hyperparameter tuning job and all running training jobs that the tuning job launched.

All model artifacts output from the training jobs are stored in Amazon Simple Storage Service (Amazon S3). All data that the training jobs write to Amazon CloudWatch Logs are still available in CloudWatch. After the tuning job moves to the Stopped state, it releases all reserved resources for the tuning job.

See also: AWS API Documentation

Request Syntax

response = client.stop_hyper_parameter_tuning_job(
    HyperParameterTuningJobName='string'
)
Parameters
HyperParameterTuningJobName (string) --

[REQUIRED]

The name of the tuning job to stop.

Returns
None

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
stop_inference_experiment(**kwargs)

Stops an inference experiment.

See also: AWS API Documentation

Request Syntax

response = client.stop_inference_experiment(
    Name='string',
    ModelVariantActions={
        'string': 'Retain'|'Remove'|'Promote'
    },
    DesiredModelVariants=[
        {
            'ModelName': 'string',
            'VariantName': 'string',
            'InfrastructureConfig': {
                'InfrastructureType': 'RealTimeInference',
                'RealTimeInferenceConfig': {
                    'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                    'InstanceCount': 123
                }
            }
        },
    ],
    DesiredState='Completed'|'Cancelled',
    Reason='string'
)
Parameters
  • Name (string) --

    [REQUIRED]

    The name of the inference experiment to stop.

  • ModelVariantActions (dict) --

    [REQUIRED]

    Array of key-value pairs, with names of variants mapped to actions. The possible actions are the following:

    • Promote - Promote the shadow variant to a production variant
    • Remove - Delete the variant
    • Retain - Keep the variant as it is
    • (string) --
      • (string) --
  • DesiredModelVariants (list) --

    An array of ModelVariantConfig objects. There is one for each variant that you want to deploy after the inference experiment stops. Each ModelVariantConfig describes the infrastructure configuration for deploying the corresponding variant.

    • (dict) --

      Contains information about the deployment options of a model.

      • ModelName (string) -- [REQUIRED]

        The name of the Amazon SageMaker Model entity.

      • VariantName (string) -- [REQUIRED]

        The name of the variant.

      • InfrastructureConfig (dict) -- [REQUIRED]

        The configuration for the infrastructure that the model will be deployed to.

        • InfrastructureType (string) -- [REQUIRED]

          The inference option to which to deploy your model. Possible values are the following:

          • RealTime : Deploy to real-time inference.
        • RealTimeInferenceConfig (dict) -- [REQUIRED]

          The infrastructure configuration for deploying the model to real-time inference.

          • InstanceType (string) -- [REQUIRED]

            The instance type the model is deployed to.

          • InstanceCount (integer) -- [REQUIRED]

            The number of instances of the type specified by InstanceType .

  • DesiredState (string) --

    The desired state of the experiment after stopping. The possible states are the following:

    • Completed : The experiment completed successfully
    • Cancelled : The experiment was canceled
  • Reason (string) -- The reason for stopping the experiment.
Return type

dict

Returns

Response Syntax

{
    'InferenceExperimentArn': 'string'
}

Response Structure

  • (dict) --

    • InferenceExperimentArn (string) --

      The ARN of the stopped inference experiment.

Exceptions

  • SageMaker.Client.exceptions.ConflictException
  • SageMaker.Client.exceptions.ResourceNotFound
stop_inference_recommendations_job(**kwargs)

Stops an Inference Recommender job.

See also: AWS API Documentation

Request Syntax

response = client.stop_inference_recommendations_job(
    JobName='string'
)
Parameters
JobName (string) --

[REQUIRED]

The name of the job you want to stop.

Returns
None

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
stop_labeling_job(**kwargs)

Stops a running labeling job. A job that is stopped cannot be restarted. Any results obtained before the job is stopped are placed in the Amazon S3 output bucket.

See also: AWS API Documentation

Request Syntax

response = client.stop_labeling_job(
    LabelingJobName='string'
)
Parameters
LabelingJobName (string) --

[REQUIRED]

The name of the labeling job to stop.

Returns
None

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
stop_monitoring_schedule(**kwargs)

Stops a previously started monitoring schedule.

See also: AWS API Documentation

Request Syntax

response = client.stop_monitoring_schedule(
    MonitoringScheduleName='string'
)
Parameters
MonitoringScheduleName (string) --

[REQUIRED]

The name of the schedule to stop.

Returns
None

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
stop_notebook_instance(**kwargs)

Terminates the ML compute instance. Before terminating the instance, SageMaker disconnects the ML storage volume from it. SageMaker preserves the ML storage volume. SageMaker stops charging you for the ML compute instance when you call StopNotebookInstance .

To access data on the ML storage volume for a notebook instance that has been terminated, call the StartNotebookInstance API. StartNotebookInstance launches another ML compute instance, configures it, and attaches the preserved ML storage volume so you can continue your work.

See also: AWS API Documentation

Request Syntax

response = client.stop_notebook_instance(
    NotebookInstanceName='string'
)
Parameters
NotebookInstanceName (string) --

[REQUIRED]

The name of the notebook instance to terminate.

Returns
None
stop_pipeline_execution(**kwargs)

Stops a pipeline execution.

Callback Step

A pipeline execution won't stop while a callback step is running. When you call StopPipelineExecution on a pipeline execution with a running callback step, SageMaker Pipelines sends an additional Amazon SQS message to the specified SQS queue. The body of the SQS message contains a "Status" field which is set to "Stopping".

You should add logic to your Amazon SQS message consumer to take any needed action (for example, resource cleanup) upon receipt of the message followed by a call to SendPipelineExecutionStepSuccess or SendPipelineExecutionStepFailure .

Only when SageMaker Pipelines receives one of these calls will it stop the pipeline execution.

Lambda Step

A pipeline execution can't be stopped while a lambda step is running because the Lambda function invoked by the lambda step can't be stopped. If you attempt to stop the execution while the Lambda function is running, the pipeline waits for the Lambda function to finish or until the timeout is hit, whichever occurs first, and then stops. If the Lambda function finishes, the pipeline execution status is Stopped . If the timeout is hit the pipeline execution status is Failed .

See also: AWS API Documentation

Request Syntax

response = client.stop_pipeline_execution(
    PipelineExecutionArn='string',
    ClientRequestToken='string'
)
Parameters
  • PipelineExecutionArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of the pipeline execution.

  • ClientRequestToken (string) --

    [REQUIRED]

    A unique, case-sensitive identifier that you provide to ensure the idempotency of the operation. An idempotent operation completes no more than once.

    This field is autopopulated if not provided.

Return type

dict

Returns

Response Syntax

{
    'PipelineExecutionArn': 'string'
}

Response Structure

  • (dict) --

    • PipelineExecutionArn (string) --

      The Amazon Resource Name (ARN) of the pipeline execution.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
stop_processing_job(**kwargs)

Stops a processing job.

See also: AWS API Documentation

Request Syntax

response = client.stop_processing_job(
    ProcessingJobName='string'
)
Parameters
ProcessingJobName (string) --

[REQUIRED]

The name of the processing job to stop.

Returns
None

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
stop_training_job(**kwargs)

Stops a training job. To stop a job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms might use this 120-second window to save the model artifacts, so the results of the training is not lost.

When it receives a StopTrainingJob request, SageMaker changes the status of the job to Stopping . After SageMaker stops the job, it sets the status to Stopped .

See also: AWS API Documentation

Request Syntax

response = client.stop_training_job(
    TrainingJobName='string'
)
Parameters
TrainingJobName (string) --

[REQUIRED]

The name of the training job to stop.

Returns
None

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
stop_transform_job(**kwargs)

Stops a batch transform job.

When Amazon SageMaker receives a StopTransformJob request, the status of the job changes to Stopping . After Amazon SageMaker stops the job, the status is set to Stopped . When you stop a batch transform job before it is completed, Amazon SageMaker doesn't store the job's output in Amazon S3.

See also: AWS API Documentation

Request Syntax

response = client.stop_transform_job(
    TransformJobName='string'
)
Parameters
TransformJobName (string) --

[REQUIRED]

The name of the batch transform job to stop.

Returns
None

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
update_action(**kwargs)

Updates an action.

See also: AWS API Documentation

Request Syntax

response = client.update_action(
    ActionName='string',
    Description='string',
    Status='Unknown'|'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
    Properties={
        'string': 'string'
    },
    PropertiesToRemove=[
        'string',
    ]
)
Parameters
  • ActionName (string) --

    [REQUIRED]

    The name of the action to update.

  • Description (string) -- The new description for the action.
  • Status (string) -- The new status for the action.
  • Properties (dict) --

    The new list of properties. Overwrites the current property list.

    • (string) --
      • (string) --
  • PropertiesToRemove (list) --

    A list of properties to remove.

    • (string) --
Return type

dict

Returns

Response Syntax

{
    'ActionArn': 'string'
}

Response Structure

  • (dict) --

    • ActionArn (string) --

      The Amazon Resource Name (ARN) of the action.

Exceptions

  • SageMaker.Client.exceptions.ConflictException
  • SageMaker.Client.exceptions.ResourceNotFound
update_app_image_config(**kwargs)

Updates the properties of an AppImageConfig.

See also: AWS API Documentation

Request Syntax

response = client.update_app_image_config(
    AppImageConfigName='string',
    KernelGatewayImageConfig={
        'KernelSpecs': [
            {
                'Name': 'string',
                'DisplayName': 'string'
            },
        ],
        'FileSystemConfig': {
            'MountPath': 'string',
            'DefaultUid': 123,
            'DefaultGid': 123
        }
    }
)
Parameters
  • AppImageConfigName (string) --

    [REQUIRED]

    The name of the AppImageConfig to update.

  • KernelGatewayImageConfig (dict) --

    The new KernelGateway app to run on the image.

    • KernelSpecs (list) -- [REQUIRED]

      The specification of the Jupyter kernels in the image.

      • (dict) --

        The specification of a Jupyter kernel.

        • Name (string) -- [REQUIRED]

          The name of the Jupyter kernel in the image. This value is case sensitive.

        • DisplayName (string) --

          The display name of the kernel.

    • FileSystemConfig (dict) --

      The Amazon Elastic File System (EFS) storage configuration for a SageMaker image.

      • MountPath (string) --

        The path within the image to mount the user's EFS home directory. The directory should be empty. If not specified, defaults to /home/sagemaker-user .

      • DefaultUid (integer) --

        The default POSIX user ID (UID). If not specified, defaults to 1000 .

      • DefaultGid (integer) --

        The default POSIX group ID (GID). If not specified, defaults to 100 .

Return type

dict

Returns

Response Syntax

{
    'AppImageConfigArn': 'string'
}

Response Structure

  • (dict) --

    • AppImageConfigArn (string) --

      The Amazon Resource Name (ARN) for the AppImageConfig.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
update_artifact(**kwargs)

Updates an artifact.

See also: AWS API Documentation

Request Syntax

response = client.update_artifact(
    ArtifactArn='string',
    ArtifactName='string',
    Properties={
        'string': 'string'
    },
    PropertiesToRemove=[
        'string',
    ]
)
Parameters
  • ArtifactArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of the artifact to update.

  • ArtifactName (string) -- The new name for the artifact.
  • Properties (dict) --

    The new list of properties. Overwrites the current property list.

    • (string) --
      • (string) --
  • PropertiesToRemove (list) --

    A list of properties to remove.

    • (string) --
Return type

dict

Returns

Response Syntax

{
    'ArtifactArn': 'string'
}

Response Structure

  • (dict) --

    • ArtifactArn (string) --

      The Amazon Resource Name (ARN) of the artifact.

Exceptions

  • SageMaker.Client.exceptions.ConflictException
  • SageMaker.Client.exceptions.ResourceNotFound
update_code_repository(**kwargs)

Updates the specified Git repository with the specified values.

See also: AWS API Documentation

Request Syntax

response = client.update_code_repository(
    CodeRepositoryName='string',
    GitConfig={
        'SecretArn': 'string'
    }
)
Parameters
  • CodeRepositoryName (string) --

    [REQUIRED]

    The name of the Git repository to update.

  • GitConfig (dict) --

    The configuration of the git repository, including the URL and the Amazon Resource Name (ARN) of the Amazon Web Services Secrets Manager secret that contains the credentials used to access the repository. The secret must have a staging label of AWSCURRENT and must be in the following format:

    {"username": UserName, "password": Password}
    • SecretArn (string) --

      The Amazon Resource Name (ARN) of the Amazon Web Services Secrets Manager secret that contains the credentials used to access the git repository. The secret must have a staging label of AWSCURRENT and must be in the following format:

      {"username": UserName, "password": Password}
Return type

dict

Returns

Response Syntax

{
    'CodeRepositoryArn': 'string'
}

Response Structure

  • (dict) --

    • CodeRepositoryArn (string) --

      The ARN of the Git repository.

update_context(**kwargs)

Updates a context.

See also: AWS API Documentation

Request Syntax

response = client.update_context(
    ContextName='string',
    Description='string',
    Properties={
        'string': 'string'
    },
    PropertiesToRemove=[
        'string',
    ]
)
Parameters
  • ContextName (string) --

    [REQUIRED]

    The name of the context to update.

  • Description (string) -- The new description for the context.
  • Properties (dict) --

    The new list of properties. Overwrites the current property list.

    • (string) --
      • (string) --
  • PropertiesToRemove (list) --

    A list of properties to remove.

    • (string) --
Return type

dict

Returns

Response Syntax

{
    'ContextArn': 'string'
}

Response Structure

  • (dict) --

    • ContextArn (string) --

      The Amazon Resource Name (ARN) of the context.

Exceptions

  • SageMaker.Client.exceptions.ConflictException
  • SageMaker.Client.exceptions.ResourceNotFound
update_device_fleet(**kwargs)

Updates a fleet of devices.

See also: AWS API Documentation

Request Syntax

response = client.update_device_fleet(
    DeviceFleetName='string',
    RoleArn='string',
    Description='string',
    OutputConfig={
        'S3OutputLocation': 'string',
        'KmsKeyId': 'string',
        'PresetDeploymentType': 'GreengrassV2Component',
        'PresetDeploymentConfig': 'string'
    },
    EnableIotRoleAlias=True|False
)
Parameters
  • DeviceFleetName (string) --

    [REQUIRED]

    The name of the fleet.

  • RoleArn (string) -- The Amazon Resource Name (ARN) of the device.
  • Description (string) -- Description of the fleet.
  • OutputConfig (dict) --

    [REQUIRED]

    Output configuration for storing sample data collected by the fleet.

    • S3OutputLocation (string) -- [REQUIRED]

      The Amazon Simple Storage (S3) bucker URI.

    • KmsKeyId (string) --

      The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume after compilation job. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account.

    • PresetDeploymentType (string) --

      The deployment type SageMaker Edge Manager will create. Currently only supports Amazon Web Services IoT Greengrass Version 2 components.

    • PresetDeploymentConfig (string) --

      The configuration used to create deployment artifacts. Specify configuration options with a JSON string. The available configuration options for each type are:

      • ComponentName (optional) - Name of the GreenGrass V2 component. If not specified, the default name generated consists of "SagemakerEdgeManager" and the name of your SageMaker Edge Manager packaging job.
      • ComponentDescription (optional) - Description of the component.
      • ComponentVersion (optional) - The version of the component.

      Note

      Amazon Web Services IoT Greengrass uses semantic versions for components. Semantic versions follow a*major.minor.patch* number system. For example, version 1.0.0 represents the first major release for a component. For more information, see the semantic version specification.

      • PlatformOS (optional) - The name of the operating system for the platform. Supported platforms include Windows and Linux.
      • PlatformArchitecture (optional) - The processor architecture for the platform. Supported architectures Windows include: Windows32_x86, Windows64_x64. Supported architectures for Linux include: Linux x86_64, Linux ARMV8.
  • EnableIotRoleAlias (boolean) --

    Whether to create an Amazon Web Services IoT Role Alias during device fleet creation. The name of the role alias generated will match this pattern: "SageMakerEdge-{DeviceFleetName}".

    For example, if your device fleet is called "demo-fleet", the name of the role alias will be "SageMakerEdge-demo-fleet".

Returns

None

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
update_devices(**kwargs)

Updates one or more devices in a fleet.

See also: AWS API Documentation

Request Syntax

response = client.update_devices(
    DeviceFleetName='string',
    Devices=[
        {
            'DeviceName': 'string',
            'Description': 'string',
            'IotThingName': 'string'
        },
    ]
)
Parameters
  • DeviceFleetName (string) --

    [REQUIRED]

    The name of the fleet the devices belong to.

  • Devices (list) --

    [REQUIRED]

    List of devices to register with Edge Manager agent.

    • (dict) --

      Information of a particular device.

      • DeviceName (string) -- [REQUIRED]

        The name of the device.

      • Description (string) --

        Description of the device.

      • IotThingName (string) --

        Amazon Web Services Internet of Things (IoT) object name.

Returns

None

update_domain(**kwargs)

Updates the default settings for new user profiles in the domain.

See also: AWS API Documentation

Request Syntax

response = client.update_domain(
    DomainId='string',
    DefaultUserSettings={
        'ExecutionRole': 'string',
        'SecurityGroups': [
            'string',
        ],
        'SharingSettings': {
            'NotebookOutputOption': 'Allowed'|'Disabled',
            'S3OutputPath': 'string',
            'S3KmsKeyId': 'string'
        },
        'JupyterServerAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'LifecycleConfigArns': [
                'string',
            ],
            'CodeRepositories': [
                {
                    'RepositoryUrl': 'string'
                },
            ]
        },
        'KernelGatewayAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'CustomImages': [
                {
                    'ImageName': 'string',
                    'ImageVersionNumber': 123,
                    'AppImageConfigName': 'string'
                },
            ],
            'LifecycleConfigArns': [
                'string',
            ]
        },
        'TensorBoardAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            }
        },
        'RStudioServerProAppSettings': {
            'AccessStatus': 'ENABLED'|'DISABLED',
            'UserGroup': 'R_STUDIO_ADMIN'|'R_STUDIO_USER'
        },
        'RSessionAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'CustomImages': [
                {
                    'ImageName': 'string',
                    'ImageVersionNumber': 123,
                    'AppImageConfigName': 'string'
                },
            ]
        },
        'CanvasAppSettings': {
            'TimeSeriesForecastingSettings': {
                'Status': 'ENABLED'|'DISABLED',
                'AmazonForecastRoleArn': 'string'
            }
        }
    },
    DomainSettingsForUpdate={
        'RStudioServerProDomainSettingsForUpdate': {
            'DomainExecutionRoleArn': 'string',
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'RStudioConnectUrl': 'string',
            'RStudioPackageManagerUrl': 'string'
        },
        'ExecutionRoleIdentityConfig': 'USER_PROFILE_NAME'|'DISABLED',
        'SecurityGroupIds': [
            'string',
        ]
    },
    DefaultSpaceSettings={
        'ExecutionRole': 'string',
        'SecurityGroups': [
            'string',
        ],
        'JupyterServerAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'LifecycleConfigArns': [
                'string',
            ],
            'CodeRepositories': [
                {
                    'RepositoryUrl': 'string'
                },
            ]
        },
        'KernelGatewayAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'CustomImages': [
                {
                    'ImageName': 'string',
                    'ImageVersionNumber': 123,
                    'AppImageConfigName': 'string'
                },
            ],
            'LifecycleConfigArns': [
                'string',
            ]
        }
    },
    AppSecurityGroupManagement='Service'|'Customer'
)
Parameters
  • DomainId (string) --

    [REQUIRED]

    The ID of the domain to be updated.

  • DefaultUserSettings (dict) --

    A collection of settings.

    • ExecutionRole (string) --

      The execution role for the user.

    • SecurityGroups (list) --

      The security groups for the Amazon Virtual Private Cloud (VPC) that Studio uses for communication.

      Optional when the CreateDomain.AppNetworkAccessType parameter is set to PublicInternetOnly .

      Required when the CreateDomain.AppNetworkAccessType parameter is set to VpcOnly .

      Amazon SageMaker adds a security group to allow NFS traffic from SageMaker Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown.

      • (string) --
    • SharingSettings (dict) --

      Specifies options for sharing SageMaker Studio notebooks.

      • NotebookOutputOption (string) --

        Whether to include the notebook cell output when sharing the notebook. The default is Disabled .

      • S3OutputPath (string) --

        When NotebookOutputOption is Allowed , the Amazon S3 bucket used to store the shared notebook snapshots.

      • S3KmsKeyId (string) --

        When NotebookOutputOption is Allowed , the Amazon Web Services Key Management Service (KMS) encryption key ID used to encrypt the notebook cell output in the Amazon S3 bucket.

    • JupyterServerAppSettings (dict) --

      The Jupyter server's app settings.

      • DefaultResourceSpec (dict) --

        The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.

        • SageMakerImageArn (string) --

          The ARN of the SageMaker image that the image version belongs to.

        • SageMakerImageVersionArn (string) --

          The ARN of the image version created on the instance.

        • InstanceType (string) --

          The instance type that the image version runs on.

          Note

          JupyterServer apps only support the system value.

          For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

        • LifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

      • LifecycleConfigArns (list) --

        The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter is also required.

        Note

        To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.

        • (string) --
      • CodeRepositories (list) --

        A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.

        • (dict) --

          A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.

          • RepositoryUrl (string) -- [REQUIRED]

            The URL of the Git repository.

    • KernelGatewayAppSettings (dict) --

      The kernel gateway app settings.

      • DefaultResourceSpec (dict) --

        The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app.

        Note

        The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the Amazon Web Services Command Line Interface or Amazon Web Services CloudFormation and the instance type parameter value is not passed.

        • SageMakerImageArn (string) --

          The ARN of the SageMaker image that the image version belongs to.

        • SageMakerImageVersionArn (string) --

          The ARN of the image version created on the instance.

        • InstanceType (string) --

          The instance type that the image version runs on.

          Note

          JupyterServer apps only support the system value.

          For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

        • LifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

      • CustomImages (list) --

        A list of custom SageMaker images that are configured to run as a KernelGateway app.

        • (dict) --

          A custom SageMaker image. For more information, see Bring your own SageMaker image.

          • ImageName (string) -- [REQUIRED]

            The name of the CustomImage. Must be unique to your account.

          • ImageVersionNumber (integer) --

            The version number of the CustomImage.

          • AppImageConfigName (string) -- [REQUIRED]

            The name of the AppImageConfig.

      • LifecycleConfigArns (list) --

        The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.

        Note

        To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.

        • (string) --
    • TensorBoardAppSettings (dict) --

      The TensorBoard app settings.

      • DefaultResourceSpec (dict) --

        The default instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.

        • SageMakerImageArn (string) --

          The ARN of the SageMaker image that the image version belongs to.

        • SageMakerImageVersionArn (string) --

          The ARN of the image version created on the instance.

        • InstanceType (string) --

          The instance type that the image version runs on.

          Note

          JupyterServer apps only support the system value.

          For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

        • LifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

    • RStudioServerProAppSettings (dict) --

      A collection of settings that configure user interaction with the RStudioServerPro app.

      • AccessStatus (string) --

        Indicates whether the current user has access to the RStudioServerPro app.

      • UserGroup (string) --

        The level of permissions that the user has within the RStudioServerPro app. This value defaults to User. The Admin value allows the user access to the RStudio Administrative Dashboard.

    • RSessionAppSettings (dict) --

      A collection of settings that configure the RSessionGateway app.

      • DefaultResourceSpec (dict) --

        Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that the version runs on.

        • SageMakerImageArn (string) --

          The ARN of the SageMaker image that the image version belongs to.

        • SageMakerImageVersionArn (string) --

          The ARN of the image version created on the instance.

        • InstanceType (string) --

          The instance type that the image version runs on.

          Note

          JupyterServer apps only support the system value.

          For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

        • LifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

      • CustomImages (list) --

        A list of custom SageMaker images that are configured to run as a RSession app.

        • (dict) --

          A custom SageMaker image. For more information, see Bring your own SageMaker image.

          • ImageName (string) -- [REQUIRED]

            The name of the CustomImage. Must be unique to your account.

          • ImageVersionNumber (integer) --

            The version number of the CustomImage.

          • AppImageConfigName (string) -- [REQUIRED]

            The name of the AppImageConfig.

    • CanvasAppSettings (dict) --

      The Canvas app settings.

      • TimeSeriesForecastingSettings (dict) --

        Time series forecast settings for the Canvas app.

        • Status (string) --

          Describes whether time series forecasting is enabled or disabled in the Canvas app.

        • AmazonForecastRoleArn (string) --

          The IAM role that Canvas passes to Amazon Forecast for time series forecasting. By default, Canvas uses the execution role specified in the UserProfile that launches the Canvas app. If an execution role is not specified in the UserProfile , Canvas uses the execution role specified in the Domain that owns the UserProfile . To allow time series forecasting, this IAM role should have the AmazonSageMakerCanvasForecastAccess policy attached and forecast.amazonaws.com added in the trust relationship as a service principal.

  • DomainSettingsForUpdate (dict) --

    A collection of DomainSettings configuration values to update.

    • RStudioServerProDomainSettingsForUpdate (dict) --

      A collection of RStudioServerPro Domain-level app settings to update.

      • DomainExecutionRoleArn (string) -- [REQUIRED]

        The execution role for the RStudioServerPro Domain-level app.

      • DefaultResourceSpec (dict) --

        Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that the version runs on.

        • SageMakerImageArn (string) --

          The ARN of the SageMaker image that the image version belongs to.

        • SageMakerImageVersionArn (string) --

          The ARN of the image version created on the instance.

        • InstanceType (string) --

          The instance type that the image version runs on.

          Note

          JupyterServer apps only support the system value.

          For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

        • LifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

      • RStudioConnectUrl (string) --

        A URL pointing to an RStudio Connect server.

      • RStudioPackageManagerUrl (string) --

        A URL pointing to an RStudio Package Manager server.

    • ExecutionRoleIdentityConfig (string) --

      The configuration for attaching a SageMaker user profile name to the execution role as a sts:SourceIdentity key. This configuration can only be modified if there are no apps in the InService or Pending state.

    • SecurityGroupIds (list) --

      The security groups for the Amazon Virtual Private Cloud that the Domain uses for communication between Domain-level apps and user apps.

      • (string) --
  • DefaultSpaceSettings (dict) --

    The default settings used to create a space within the Domain.

    • ExecutionRole (string) --

      The execution role for the space.

    • SecurityGroups (list) --

      The security groups for the Amazon Virtual Private Cloud that the space uses for communication.

      • (string) --
    • JupyterServerAppSettings (dict) --

      The JupyterServer app settings.

      • DefaultResourceSpec (dict) --

        The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.

        • SageMakerImageArn (string) --

          The ARN of the SageMaker image that the image version belongs to.

        • SageMakerImageVersionArn (string) --

          The ARN of the image version created on the instance.

        • InstanceType (string) --

          The instance type that the image version runs on.

          Note

          JupyterServer apps only support the system value.

          For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

        • LifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

      • LifecycleConfigArns (list) --

        The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter is also required.

        Note

        To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.

        • (string) --
      • CodeRepositories (list) --

        A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.

        • (dict) --

          A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.

          • RepositoryUrl (string) -- [REQUIRED]

            The URL of the Git repository.

    • KernelGatewayAppSettings (dict) --

      The KernelGateway app settings.

      • DefaultResourceSpec (dict) --

        The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app.

        Note

        The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the Amazon Web Services Command Line Interface or Amazon Web Services CloudFormation and the instance type parameter value is not passed.

        • SageMakerImageArn (string) --

          The ARN of the SageMaker image that the image version belongs to.

        • SageMakerImageVersionArn (string) --

          The ARN of the image version created on the instance.

        • InstanceType (string) --

          The instance type that the image version runs on.

          Note

          JupyterServer apps only support the system value.

          For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

        • LifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

      • CustomImages (list) --

        A list of custom SageMaker images that are configured to run as a KernelGateway app.

        • (dict) --

          A custom SageMaker image. For more information, see Bring your own SageMaker image.

          • ImageName (string) -- [REQUIRED]

            The name of the CustomImage. Must be unique to your account.

          • ImageVersionNumber (integer) --

            The version number of the CustomImage.

          • AppImageConfigName (string) -- [REQUIRED]

            The name of the AppImageConfig.

      • LifecycleConfigArns (list) --

        The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.

        Note

        To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.

        • (string) --
  • AppSecurityGroupManagement (string) -- The entity that creates and manages the required security groups for inter-app communication in VPCOnly mode. Required when CreateDomain.AppNetworkAccessType is VPCOnly and DomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn is provided.
Return type

dict

Returns

Response Syntax

{
    'DomainArn': 'string'
}

Response Structure

  • (dict) --

    • DomainArn (string) --

      The Amazon Resource Name (ARN) of the domain.

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceNotFound
update_endpoint(**kwargs)

Deploys the new EndpointConfig specified in the request, switches to using newly created endpoint, and then deletes resources provisioned for the endpoint using the previous EndpointConfig (there is no availability loss).

When SageMaker receives the request, it sets the endpoint status to Updating . After updating the endpoint, it sets the status to InService . To check the status of an endpoint, use the DescribeEndpoint API.

Note

You must not delete an EndpointConfig in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. To update an endpoint, you must create a new EndpointConfig .

If you delete the EndpointConfig of an endpoint that is active or being created or updated you may lose visibility into the instance type the endpoint is using. The endpoint must be deleted in order to stop incurring charges.

See also: AWS API Documentation

Request Syntax

response = client.update_endpoint(
    EndpointName='string',
    EndpointConfigName='string',
    RetainAllVariantProperties=True|False,
    ExcludeRetainedVariantProperties=[
        {
            'VariantPropertyType': 'DesiredInstanceCount'|'DesiredWeight'|'DataCaptureConfig'
        },
    ],
    DeploymentConfig={
        'BlueGreenUpdatePolicy': {
            'TrafficRoutingConfiguration': {
                'Type': 'ALL_AT_ONCE'|'CANARY'|'LINEAR',
                'WaitIntervalInSeconds': 123,
                'CanarySize': {
                    'Type': 'INSTANCE_COUNT'|'CAPACITY_PERCENT',
                    'Value': 123
                },
                'LinearStepSize': {
                    'Type': 'INSTANCE_COUNT'|'CAPACITY_PERCENT',
                    'Value': 123
                }
            },
            'TerminationWaitInSeconds': 123,
            'MaximumExecutionTimeoutInSeconds': 123
        },
        'AutoRollbackConfiguration': {
            'Alarms': [
                {
                    'AlarmName': 'string'
                },
            ]
        }
    },
    RetainDeploymentConfig=True|False
)
Parameters
  • EndpointName (string) --

    [REQUIRED]

    The name of the endpoint whose configuration you want to update.

  • EndpointConfigName (string) --

    [REQUIRED]

    The name of the new endpoint configuration.

  • RetainAllVariantProperties (boolean) -- When updating endpoint resources, enables or disables the retention of variant properties, such as the instance count or the variant weight. To retain the variant properties of an endpoint when updating it, set RetainAllVariantProperties to true . To use the variant properties specified in a new EndpointConfig call when updating an endpoint, set RetainAllVariantProperties to false . The default is false .
  • ExcludeRetainedVariantProperties (list) --

    When you are updating endpoint resources with UpdateEndpointInput$RetainAllVariantProperties, whose value is set to true , ExcludeRetainedVariantProperties specifies the list of type VariantProperty to override with the values provided by EndpointConfig . If you don't specify a value for ExcludeRetainedVariantProperties , no variant properties are overridden.

    • (dict) --

      Specifies a production variant property type for an Endpoint.

      If you are updating an endpoint with the UpdateEndpointInput$RetainAllVariantProperties option set to true , the VariantProperty objects listed in UpdateEndpointInput$ExcludeRetainedVariantProperties override the existing variant properties of the endpoint.

      • VariantPropertyType (string) -- [REQUIRED]

        The type of variant property. The supported values are:

        • DesiredInstanceCount : Overrides the existing variant instance counts using the ProductionVariant$InitialInstanceCount values in the CreateEndpointConfigInput$ProductionVariants.
        • DesiredWeight : Overrides the existing variant weights using the ProductionVariant$InitialVariantWeight values in the CreateEndpointConfigInput$ProductionVariants.
        • DataCaptureConfig : (Not currently supported.)
  • DeploymentConfig (dict) --

    The deployment configuration for an endpoint, which contains the desired deployment strategy and rollback configurations.

    • BlueGreenUpdatePolicy (dict) -- [REQUIRED]

      Update policy for a blue/green deployment. If this update policy is specified, SageMaker creates a new fleet during the deployment while maintaining the old fleet. SageMaker flips traffic to the new fleet according to the specified traffic routing configuration. Only one update policy should be used in the deployment configuration. If no update policy is specified, SageMaker uses a blue/green deployment strategy with all at once traffic shifting by default.

      • TrafficRoutingConfiguration (dict) -- [REQUIRED]

        Defines the traffic routing strategy to shift traffic from the old fleet to the new fleet during an endpoint deployment.

        • Type (string) -- [REQUIRED]

          Traffic routing strategy type.

          • ALL_AT_ONCE : Endpoint traffic shifts to the new fleet in a single step.
          • CANARY : Endpoint traffic shifts to the new fleet in two steps. The first step is the canary, which is a small portion of the traffic. The second step is the remainder of the traffic.
          • LINEAR : Endpoint traffic shifts to the new fleet in n steps of a configurable size.
        • WaitIntervalInSeconds (integer) -- [REQUIRED]

          The waiting time (in seconds) between incremental steps to turn on traffic on the new endpoint fleet.

        • CanarySize (dict) --

          Batch size for the first step to turn on traffic on the new endpoint fleet. Value must be less than or equal to 50% of the variant's total instance count.

          • Type (string) -- [REQUIRED]

            Specifies the endpoint capacity type.

            • INSTANCE_COUNT : The endpoint activates based on the number of instances.
            • CAPACITY_PERCENT : The endpoint activates based on the specified percentage of capacity.
          • Value (integer) -- [REQUIRED]

            Defines the capacity size, either as a number of instances or a capacity percentage.

        • LinearStepSize (dict) --

          Batch size for each step to turn on traffic on the new endpoint fleet. Value must be 10-50% of the variant's total instance count.

          • Type (string) -- [REQUIRED]

            Specifies the endpoint capacity type.

            • INSTANCE_COUNT : The endpoint activates based on the number of instances.
            • CAPACITY_PERCENT : The endpoint activates based on the specified percentage of capacity.
          • Value (integer) -- [REQUIRED]

            Defines the capacity size, either as a number of instances or a capacity percentage.

      • TerminationWaitInSeconds (integer) --

        Additional waiting time in seconds after the completion of an endpoint deployment before terminating the old endpoint fleet. Default is 0.

      • MaximumExecutionTimeoutInSeconds (integer) --

        Maximum execution timeout for the deployment. Note that the timeout value should be larger than the total waiting time specified in TerminationWaitInSeconds and WaitIntervalInSeconds .

    • AutoRollbackConfiguration (dict) --

      Automatic rollback configuration for handling endpoint deployment failures and recovery.

      • Alarms (list) --

        List of CloudWatch alarms in your account that are configured to monitor metrics on an endpoint. If any alarms are tripped during a deployment, SageMaker rolls back the deployment.

        • (dict) --

          An Amazon CloudWatch alarm configured to monitor metrics on an endpoint.

          • AlarmName (string) --

            The name of a CloudWatch alarm in your account.

  • RetainDeploymentConfig (boolean) -- Specifies whether to reuse the last deployment configuration. The default value is false (the configuration is not reused).
Return type

dict

Returns

Response Syntax

{
    'EndpointArn': 'string'
}

Response Structure

  • (dict) --

    • EndpointArn (string) --

      The Amazon Resource Name (ARN) of the endpoint.

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
update_endpoint_weights_and_capacities(**kwargs)

Updates variant weight of one or more variants associated with an existing endpoint, or capacity of one variant associated with an existing endpoint. When it receives the request, SageMaker sets the endpoint status to Updating . After updating the endpoint, it sets the status to InService . To check the status of an endpoint, use the DescribeEndpoint API.

See also: AWS API Documentation

Request Syntax

response = client.update_endpoint_weights_and_capacities(
    EndpointName='string',
    DesiredWeightsAndCapacities=[
        {
            'VariantName': 'string',
            'DesiredWeight': ...,
            'DesiredInstanceCount': 123
        },
    ]
)
Parameters
  • EndpointName (string) --

    [REQUIRED]

    The name of an existing SageMaker endpoint.

  • DesiredWeightsAndCapacities (list) --

    [REQUIRED]

    An object that provides new capacity and weight values for a variant.

    • (dict) --

      Specifies weight and capacity values for a production variant.

      • VariantName (string) -- [REQUIRED]

        The name of the variant to update.

      • DesiredWeight (float) --

        The variant's weight.

      • DesiredInstanceCount (integer) --

        The variant's capacity.

Return type

dict

Returns

Response Syntax

{
    'EndpointArn': 'string'
}

Response Structure

  • (dict) --

    • EndpointArn (string) --

      The Amazon Resource Name (ARN) of the updated endpoint.

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
update_experiment(**kwargs)

Adds, updates, or removes the description of an experiment. Updates the display name of an experiment.

See also: AWS API Documentation

Request Syntax

response = client.update_experiment(
    ExperimentName='string',
    DisplayName='string',
    Description='string'
)
Parameters
  • ExperimentName (string) --

    [REQUIRED]

    The name of the experiment to update.

  • DisplayName (string) -- The name of the experiment as displayed. The name doesn't need to be unique. If DisplayName isn't specified, ExperimentName is displayed.
  • Description (string) -- The description of the experiment.
Return type

dict

Returns

Response Syntax

{
    'ExperimentArn': 'string'
}

Response Structure

  • (dict) --

    • ExperimentArn (string) --

      The Amazon Resource Name (ARN) of the experiment.

Exceptions

  • SageMaker.Client.exceptions.ConflictException
  • SageMaker.Client.exceptions.ResourceNotFound
update_feature_group(**kwargs)

Updates the feature group.

See also: AWS API Documentation

Request Syntax

response = client.update_feature_group(
    FeatureGroupName='string',
    FeatureAdditions=[
        {
            'FeatureName': 'string',
            'FeatureType': 'Integral'|'Fractional'|'String'
        },
    ]
)
Parameters
  • FeatureGroupName (string) --

    [REQUIRED]

    The name of the feature group that you're updating.

  • FeatureAdditions (list) --

    Updates the feature group. Updating a feature group is an asynchronous operation. When you get an HTTP 200 response, you've made a valid request. It takes some time after you've made a valid request for Feature Store to update the feature group.

    • (dict) --

      A list of features. You must include FeatureName and FeatureType . Valid feature FeatureType s are Integral , Fractional and String .

      • FeatureName (string) --

        The name of a feature. The type must be a string. FeatureName cannot be any of the following: is_deleted , write_time , api_invocation_time .

      • FeatureType (string) --

        The value type of a feature. Valid values are Integral, Fractional, or String.

Return type

dict

Returns

Response Syntax

{
    'FeatureGroupArn': 'string'
}

Response Structure

  • (dict) --

    • FeatureGroupArn (string) --

      The Amazon Resource Number (ARN) of the feature group that you're updating.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
update_feature_metadata(**kwargs)

Updates the description and parameters of the feature group.

See also: AWS API Documentation

Request Syntax

response = client.update_feature_metadata(
    FeatureGroupName='string',
    FeatureName='string',
    Description='string',
    ParameterAdditions=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    ParameterRemovals=[
        'string',
    ]
)
Parameters
  • FeatureGroupName (string) --

    [REQUIRED]

    The name of the feature group containing the feature that you're updating.

  • FeatureName (string) --

    [REQUIRED]

    The name of the feature that you're updating.

  • Description (string) -- A description that you can write to better describe the feature.
  • ParameterAdditions (list) --

    A list of key-value pairs that you can add to better describe the feature.

    • (dict) --

      A key-value pair that you specify to describe the feature.

      • Key (string) --

        A key that must contain a value to describe the feature.

      • Value (string) --

        The value that belongs to a key.

  • ParameterRemovals (list) --

    A list of parameter keys that you can specify to remove parameters that describe your feature.

    • (string) --
Returns

None

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
update_hub(**kwargs)

Update a hub.

Note

Hub APIs are only callable through SageMaker Studio.

See also: AWS API Documentation

Request Syntax

response = client.update_hub(
    HubName='string',
    HubDescription='string',
    HubDisplayName='string',
    HubSearchKeywords=[
        'string',
    ]
)
Parameters
  • HubName (string) --

    [REQUIRED]

    The name of the hub to update.

  • HubDescription (string) -- A description of the updated hub.
  • HubDisplayName (string) -- The display name of the hub.
  • HubSearchKeywords (list) --

    The searchable keywords for the hub.

    • (string) --
Return type

dict

Returns

Response Syntax

{
    'HubArn': 'string'
}

Response Structure

  • (dict) --

    • HubArn (string) --

      The Amazon Resource Name (ARN) of the updated hub.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
update_image(**kwargs)

Updates the properties of a SageMaker image. To change the image's tags, use the AddTags and DeleteTags APIs.

See also: AWS API Documentation

Request Syntax

response = client.update_image(
    DeleteProperties=[
        'string',
    ],
    Description='string',
    DisplayName='string',
    ImageName='string',
    RoleArn='string'
)
Parameters
  • DeleteProperties (list) --

    A list of properties to delete. Only the Description and DisplayName properties can be deleted.

    • (string) --
  • Description (string) -- The new description for the image.
  • DisplayName (string) -- The new display name for the image.
  • ImageName (string) --

    [REQUIRED]

    The name of the image to update.

  • RoleArn (string) -- The new ARN for the IAM role that enables Amazon SageMaker to perform tasks on your behalf.
Return type

dict

Returns

Response Syntax

{
    'ImageArn': 'string'
}

Response Structure

  • (dict) --

    • ImageArn (string) --

      The ARN of the image.

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceNotFound
update_image_version(**kwargs)

Updates the properties of a SageMaker image version.

See also: AWS API Documentation

Request Syntax

response = client.update_image_version(
    ImageName='string',
    Alias='string',
    Version=123,
    AliasesToAdd=[
        'string',
    ],
    AliasesToDelete=[
        'string',
    ],
    VendorGuidance='NOT_PROVIDED'|'STABLE'|'TO_BE_ARCHIVED'|'ARCHIVED',
    JobType='TRAINING'|'INFERENCE'|'NOTEBOOK_KERNEL',
    MLFramework='string',
    ProgrammingLang='string',
    Processor='CPU'|'GPU',
    Horovod=True|False,
    ReleaseNotes='string'
)
Parameters
  • ImageName (string) --

    [REQUIRED]

    The name of the image.

  • Alias (string) -- The alias of the image version.
  • Version (integer) -- The version of the image.
  • AliasesToAdd (list) --

    A list of aliases to add.

    • (string) --
  • AliasesToDelete (list) --

    A list of aliases to delete.

    • (string) --
  • VendorGuidance (string) --

    The availability of the image version specified by the maintainer.

    • NOT_PROVIDED : The maintainers did not provide a status for image version stability.
    • STABLE : The image version is stable.
    • TO_BE_ARCHIVED : The image version is set to be archived. Custom image versions that are set to be archived are automatically archived after three months.
    • ARCHIVED : The image version is archived. Archived image versions are not searchable and are no longer actively supported.
  • JobType (string) --

    Indicates SageMaker job type compatibility.

    • TRAINING : The image version is compatible with SageMaker training jobs.
    • INFERENCE : The image version is compatible with SageMaker inference jobs.
    • NOTEBOOK_KERNEL : The image version is compatible with SageMaker notebook kernels.
  • MLFramework (string) -- The machine learning framework vended in the image version.
  • ProgrammingLang (string) -- The supported programming language and its version.
  • Processor (string) --

    Indicates CPU or GPU compatibility.

    • CPU : The image version is compatible with CPU.
    • GPU : The image version is compatible with GPU.
  • Horovod (boolean) -- Indicates Horovod compatibility.
  • ReleaseNotes (string) -- The maintainer description of the image version.
Return type

dict

Returns

Response Syntax

{
    'ImageVersionArn': 'string'
}

Response Structure

  • (dict) --

    • ImageVersionArn (string) --

      The ARN of the image version.

Exceptions

  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceNotFound
update_inference_experiment(**kwargs)

Updates an inference experiment that you created. The status of the inference experiment has to be either Created , Running . For more information on the status of an inference experiment, see DescribeInferenceExperimentResponse$Status.

See also: AWS API Documentation

Request Syntax

response = client.update_inference_experiment(
    Name='string',
    Schedule={
        'StartTime': datetime(2015, 1, 1),
        'EndTime': datetime(2015, 1, 1)
    },
    Description='string',
    ModelVariants=[
        {
            'ModelName': 'string',
            'VariantName': 'string',
            'InfrastructureConfig': {
                'InfrastructureType': 'RealTimeInference',
                'RealTimeInferenceConfig': {
                    'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                    'InstanceCount': 123
                }
            }
        },
    ],
    DataStorageConfig={
        'Destination': 'string',
        'KmsKey': 'string',
        'ContentType': {
            'CsvContentTypes': [
                'string',
            ],
            'JsonContentTypes': [
                'string',
            ]
        }
    },
    ShadowModeConfig={
        'SourceModelVariantName': 'string',
        'ShadowModelVariants': [
            {
                'ShadowModelVariantName': 'string',
                'SamplingPercentage': 123
            },
        ]
    }
)
Parameters
  • Name (string) --

    [REQUIRED]

    The name of the inference experiment to be updated.

  • Schedule (dict) --

    The duration for which the inference experiment will run. If the status of the inference experiment is Created , then you can update both the start and end dates. If the status of the inference experiment is Running , then you can update only the end date.

    • StartTime (datetime) --

      The timestamp at which the inference experiment started or will start.

    • EndTime (datetime) --

      The timestamp at which the inference experiment ended or will end.

  • Description (string) -- The description of the inference experiment.
  • ModelVariants (list) --

    An array of ModelVariantConfig objects. There is one for each variant, whose infrastructure configuration you want to update.

    • (dict) --

      Contains information about the deployment options of a model.

      • ModelName (string) -- [REQUIRED]

        The name of the Amazon SageMaker Model entity.

      • VariantName (string) -- [REQUIRED]

        The name of the variant.

      • InfrastructureConfig (dict) -- [REQUIRED]

        The configuration for the infrastructure that the model will be deployed to.

        • InfrastructureType (string) -- [REQUIRED]

          The inference option to which to deploy your model. Possible values are the following:

          • RealTime : Deploy to real-time inference.
        • RealTimeInferenceConfig (dict) -- [REQUIRED]

          The infrastructure configuration for deploying the model to real-time inference.

          • InstanceType (string) -- [REQUIRED]

            The instance type the model is deployed to.

          • InstanceCount (integer) -- [REQUIRED]

            The number of instances of the type specified by InstanceType .

  • DataStorageConfig (dict) --

    The Amazon S3 location and configuration for storing inference request and response data.

    • Destination (string) -- [REQUIRED]

      The Amazon S3 bucket where the inference request and response data is stored.

    • KmsKey (string) --

      The Amazon Web Services Key Management Service key that Amazon SageMaker uses to encrypt captured data at rest using Amazon S3 server-side encryption.

    • ContentType (dict) --

      Configuration specifying how to treat different headers. If no headers are specified SageMaker will by default base64 encode when capturing the data.

      • CsvContentTypes (list) --

        The list of all content type headers that SageMaker will treat as CSV and capture accordingly.

        • (string) --
      • JsonContentTypes (list) --

        The list of all content type headers that SageMaker will treat as JSON and capture accordingly.

        • (string) --
  • ShadowModeConfig (dict) --

    The configuration of ShadowMode inference experiment type. Use this field to specify a production variant which takes all the inference requests, and a shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. For the shadow variant also specify the percentage of requests that Amazon SageMaker replicates.

    • SourceModelVariantName (string) -- [REQUIRED]

      The name of the production variant, which takes all the inference requests.

    • ShadowModelVariants (list) -- [REQUIRED]

      List of shadow variant configurations.

      • (dict) --

        The name and sampling percentage of a shadow variant.

        • ShadowModelVariantName (string) -- [REQUIRED]

          The name of the shadow variant.

        • SamplingPercentage (integer) -- [REQUIRED]

          The percentage of inference requests that Amazon SageMaker replicates from the production variant to the shadow variant.

Return type

dict

Returns

Response Syntax

{
    'InferenceExperimentArn': 'string'
}

Response Structure

  • (dict) --

    • InferenceExperimentArn (string) --

      The ARN of the updated inference experiment.

Exceptions

  • SageMaker.Client.exceptions.ConflictException
  • SageMaker.Client.exceptions.ResourceNotFound
update_model_card(**kwargs)

Update an Amazon SageMaker Model Card.

Warning

You cannot update both model card content and model card status in a single call.

See also: AWS API Documentation

Request Syntax

response = client.update_model_card(
    ModelCardName='string',
    Content='string',
    ModelCardStatus='Draft'|'PendingReview'|'Approved'|'Archived'
)
Parameters
  • ModelCardName (string) --

    [REQUIRED]

    The name of the model card to update.

  • Content (string) --

    The updated model card content. Content must be in model card JSON schema and provided as a string.

    When updating model card content, be sure to include the full content and not just updated content.

  • ModelCardStatus (string) --

    The approval status of the model card within your organization. Different organizations might have different criteria for model card review and approval.

    • Draft : The model card is a work in progress.
    • PendingReview : The model card is pending review.
    • Approved : The model card is approved.
    • Archived : The model card is archived. No more updates should be made to the model card, but it can still be exported.
Return type

dict

Returns

Response Syntax

{
    'ModelCardArn': 'string'
}

Response Structure

  • (dict) --

    • ModelCardArn (string) --

      The Amazon Resource Name (ARN) of the updated model card.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
  • SageMaker.Client.exceptions.ResourceLimitExceeded
  • SageMaker.Client.exceptions.ConflictException
update_model_package(**kwargs)

Updates a versioned model.

See also: AWS API Documentation

Request Syntax

response = client.update_model_package(
    ModelPackageArn='string',
    ModelApprovalStatus='Approved'|'Rejected'|'PendingManualApproval',
    ApprovalDescription='string',
    CustomerMetadataProperties={
        'string': 'string'
    },
    CustomerMetadataPropertiesToRemove=[
        'string',
    ],
    AdditionalInferenceSpecificationsToAdd=[
        {
            'Name': 'string',
            'Description': 'string',
            'Containers': [
                {
                    'ContainerHostname': 'string',
                    'Image': 'string',
                    'ImageDigest': 'string',
                    'ModelDataUrl': 'string',
                    'ProductId': 'string',
                    'Environment': {
                        'string': 'string'
                    },
                    'ModelInput': {
                        'DataInputConfig': 'string'
                    },
                    'Framework': 'string',
                    'FrameworkVersion': 'string',
                    'NearestModelName': 'string'
                },
            ],
            'SupportedTransformInstanceTypes': [
                'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
            ],
            'SupportedRealtimeInferenceInstanceTypes': [
                'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge',
            ],
            'SupportedContentTypes': [
                'string',
            ],
            'SupportedResponseMIMETypes': [
                'string',
            ]
        },
    ]
)
Parameters
  • ModelPackageArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of the model package.

  • ModelApprovalStatus (string) -- The approval status of the model.
  • ApprovalDescription (string) -- A description for the approval status of the model.
  • CustomerMetadataProperties (dict) --

    The metadata properties associated with the model package versions.

    • (string) --
      • (string) --
  • CustomerMetadataPropertiesToRemove (list) --

    The metadata properties associated with the model package versions to remove.

    • (string) --
  • AdditionalInferenceSpecificationsToAdd (list) --

    An array of additional Inference Specification objects to be added to the existing array additional Inference Specification. Total number of additional Inference Specifications can not exceed 15. Each additional Inference Specification specifies artifacts based on this model package that can be used on inference endpoints. Generally used with SageMaker Neo to store the compiled artifacts.

    • (dict) --

      A structure of additional Inference Specification. Additional Inference Specification specifies details about inference jobs that can be run with models based on this model package

      • Name (string) -- [REQUIRED]

        A unique name to identify the additional inference specification. The name must be unique within the list of your additional inference specifications for a particular model package.

      • Description (string) --

        A description of the additional Inference specification

      • Containers (list) -- [REQUIRED]

        The Amazon ECR registry path of the Docker image that contains the inference code.

        • (dict) --

          Describes the Docker container for the model package.

          • ContainerHostname (string) --

            The DNS host name for the Docker container.

          • Image (string) -- [REQUIRED]

            The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.

            If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

          • ImageDigest (string) --

            An MD5 hash of the training algorithm that identifies the Docker image used for training.

          • ModelDataUrl (string) --

            The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).

            Note

            The model artifacts must be in an S3 bucket that is in the same region as the model package.

          • ProductId (string) --

            The Amazon Web Services Marketplace product ID of the model package.

          • Environment (dict) --

            The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.

            • (string) --
              • (string) --
          • ModelInput (dict) --

            A structure with Model Input details.

            • DataInputConfig (string) -- [REQUIRED]

              The input configuration object for the model.

          • Framework (string) --

            The machine learning framework of the model package container image.

          • FrameworkVersion (string) --

            The framework version of the Model Package Container Image.

          • NearestModelName (string) --

            The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata .

      • SupportedTransformInstanceTypes (list) --

        A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.

        • (string) --
      • SupportedRealtimeInferenceInstanceTypes (list) --

        A list of the instance types that are used to generate inferences in real-time.

        • (string) --
      • SupportedContentTypes (list) --

        The supported MIME types for the input data.

        • (string) --
      • SupportedResponseMIMETypes (list) --

        The supported MIME types for the output data.

        • (string) --
Return type

dict

Returns

Response Syntax

{
    'ModelPackageArn': 'string'
}

Response Structure

  • (dict) --

    • ModelPackageArn (string) --

      The Amazon Resource Name (ARN) of the model.

update_monitoring_alert(**kwargs)

Update the parameters of a model monitor alert.

See also: AWS API Documentation

Request Syntax

response = client.update_monitoring_alert(
    MonitoringScheduleName='string',
    MonitoringAlertName='string',
    DatapointsToAlert=123,
    EvaluationPeriod=123
)
Parameters
  • MonitoringScheduleName (string) --

    [REQUIRED]

    The name of a monitoring schedule.

  • MonitoringAlertName (string) --

    [REQUIRED]

    The name of a monitoring alert.

  • DatapointsToAlert (integer) --

    [REQUIRED]

    Within EvaluationPeriod , how many execution failures will raise an alert.

  • EvaluationPeriod (integer) --

    [REQUIRED]

    The number of most recent monitoring executions to consider when evaluating alert status.

Return type

dict

Returns

Response Syntax

{
    'MonitoringScheduleArn': 'string',
    'MonitoringAlertName': 'string'
}

Response Structure

  • (dict) --

    • MonitoringScheduleArn (string) --

      The Amazon Resource Name (ARN) of the monitoring schedule.

    • MonitoringAlertName (string) --

      The name of a monitoring alert.

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
  • SageMaker.Client.exceptions.ResourceNotFound
update_monitoring_schedule(**kwargs)

Updates a previously created schedule.

See also: AWS API Documentation

Request Syntax

response = client.update_monitoring_schedule(
    MonitoringScheduleName='string',
    MonitoringScheduleConfig={
        'ScheduleConfig': {
            'ScheduleExpression': 'string'
        },
        'MonitoringJobDefinition': {
            'BaselineConfig': {
                'BaseliningJobName': 'string',
                'ConstraintsResource': {
                    'S3Uri': 'string'
                },
                'StatisticsResource': {
                    'S3Uri': 'string'
                }
            },
            'MonitoringInputs': [
                {
                    'EndpointInput': {
                        'EndpointName': 'string',
                        'LocalPath': 'string',
                        'S3InputMode': 'Pipe'|'File',
                        'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                        'FeaturesAttribute': 'string',
                        'InferenceAttribute': 'string',
                        'ProbabilityAttribute': 'string',
                        'ProbabilityThresholdAttribute': 123.0,
                        'StartTimeOffset': 'string',
                        'EndTimeOffset': 'string'
                    },
                    'BatchTransformInput': {
                        'DataCapturedDestinationS3Uri': 'string',
                        'DatasetFormat': {
                            'Csv': {
                                'Header': True|False
                            },
                            'Json': {
                                'Line': True|False
                            },
                            'Parquet': {}

                        },
                        'LocalPath': 'string',
                        'S3InputMode': 'Pipe'|'File',
                        'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                        'FeaturesAttribute': 'string',
                        'InferenceAttribute': 'string',
                        'ProbabilityAttribute': 'string',
                        'ProbabilityThresholdAttribute': 123.0,
                        'StartTimeOffset': 'string',
                        'EndTimeOffset': 'string'
                    }
                },
            ],
            'MonitoringOutputConfig': {
                'MonitoringOutputs': [
                    {
                        'S3Output': {
                            'S3Uri': 'string',
                            'LocalPath': 'string',
                            'S3UploadMode': 'Continuous'|'EndOfJob'
                        }
                    },
                ],
                'KmsKeyId': 'string'
            },
            'MonitoringResources': {
                'ClusterConfig': {
                    'InstanceCount': 123,
                    'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
                    'VolumeSizeInGB': 123,
                    'VolumeKmsKeyId': 'string'
                }
            },
            'MonitoringAppSpecification': {
                'ImageUri': 'string',
                'ContainerEntrypoint': [
                    'string',
                ],
                'ContainerArguments': [
                    'string',
                ],
                'RecordPreprocessorSourceUri': 'string',
                'PostAnalyticsProcessorSourceUri': 'string'
            },
            'StoppingCondition': {
                'MaxRuntimeInSeconds': 123
            },
            'Environment': {
                'string': 'string'
            },
            'NetworkConfig': {
                'EnableInterContainerTrafficEncryption': True|False,
                'EnableNetworkIsolation': True|False,
                'VpcConfig': {
                    'SecurityGroupIds': [
                        'string',
                    ],
                    'Subnets': [
                        'string',
                    ]
                }
            },
            'RoleArn': 'string'
        },
        'MonitoringJobDefinitionName': 'string',
        'MonitoringType': 'DataQuality'|'ModelQuality'|'ModelBias'|'ModelExplainability'
    }
)
Parameters
  • MonitoringScheduleName (string) --

    [REQUIRED]

    The name of the monitoring schedule. The name must be unique within an Amazon Web Services Region within an Amazon Web Services account.

  • MonitoringScheduleConfig (dict) --

    [REQUIRED]

    The configuration object that specifies the monitoring schedule and defines the monitoring job.

    • ScheduleConfig (dict) --

      Configures the monitoring schedule.

      • ScheduleExpression (string) -- [REQUIRED]

        A cron expression that describes details about the monitoring schedule.

        Currently the only supported cron expressions are:

        • If you want to set the job to start every hour, please use the following: Hourly: cron(0 * ? * * *)
        • If you want to start the job daily: cron(0 [00-23] ? * * *)

        For example, the following are valid cron expressions:

        • Daily at noon UTC: cron(0 12 ? * * *)
        • Daily at midnight UTC: cron(0 0 ? * * *)

        To support running every 6, 12 hours, the following are also supported:

        cron(0 [00-23]/[01-24] ? * * *)

        For example, the following are valid cron expressions:

        • Every 12 hours, starting at 5pm UTC: cron(0 17/12 ? * * *)
        • Every two hours starting at midnight: cron(0 0/2 ? * * *)

        Note

        • Even though the cron expression is set to start at 5PM UTC, note that there could be a delay of 0-20 minutes from the actual requested time to run the execution.
        • We recommend that if you would like a daily schedule, you do not provide this parameter. Amazon SageMaker will pick a time for running every day.
    • MonitoringJobDefinition (dict) --

      Defines the monitoring job.

      • BaselineConfig (dict) --

        Baseline configuration used to validate that the data conforms to the specified constraints and statistics

        • BaseliningJobName (string) --

          The name of the job that performs baselining for the monitoring job.

        • ConstraintsResource (dict) --

          The baseline constraint file in Amazon S3 that the current monitoring job should validated against.

          • S3Uri (string) --

            The Amazon S3 URI for the constraints resource.

        • StatisticsResource (dict) --

          The baseline statistics file in Amazon S3 that the current monitoring job should be validated against.

          • S3Uri (string) --

            The Amazon S3 URI for the statistics resource.

      • MonitoringInputs (list) -- [REQUIRED]

        The array of inputs for the monitoring job. Currently we support monitoring an Amazon SageMaker Endpoint.

        • (dict) --

          The inputs for a monitoring job.

          • EndpointInput (dict) --

            The endpoint for a monitoring job.

            • EndpointName (string) -- [REQUIRED]

              An endpoint in customer's account which has enabled DataCaptureConfig enabled.

            • LocalPath (string) -- [REQUIRED]

              Path to the filesystem where the endpoint data is available to the container.

            • S3InputMode (string) --

              Whether the Pipe or File is used as the input mode for transferring data for the monitoring job. Pipe mode is recommended for large datasets. File mode is useful for small files that fit in memory. Defaults to File .

            • S3DataDistributionType (string) --

              Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defaults to FullyReplicated

            • FeaturesAttribute (string) --

              The attributes of the input data that are the input features.

            • InferenceAttribute (string) --

              The attribute of the input data that represents the ground truth label.

            • ProbabilityAttribute (string) --

              In a classification problem, the attribute that represents the class probability.

            • ProbabilityThresholdAttribute (float) --

              The threshold for the class probability to be evaluated as a positive result.

            • StartTimeOffset (string) --

              If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

            • EndTimeOffset (string) --

              If specified, monitoring jobs substract this time from the end time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

          • BatchTransformInput (dict) --

            Input object for the batch transform job.

            • DataCapturedDestinationS3Uri (string) -- [REQUIRED]

              The Amazon S3 location being used to capture the data.

            • DatasetFormat (dict) -- [REQUIRED]

              The dataset format for your batch transform job.

              • Csv (dict) --

                The CSV dataset used in the monitoring job.

                • Header (boolean) --

                  Indicates if the CSV data has a header.

              • Json (dict) --

                The JSON dataset used in the monitoring job

                • Line (boolean) --

                  Indicates if the file should be read as a json object per line.

              • Parquet (dict) --

                The Parquet dataset used in the monitoring job

            • LocalPath (string) -- [REQUIRED]

              Path to the filesystem where the batch transform data is available to the container.

            • S3InputMode (string) --

              Whether the Pipe or File is used as the input mode for transferring data for the monitoring job. Pipe mode is recommended for large datasets. File mode is useful for small files that fit in memory. Defaults to File .

            • S3DataDistributionType (string) --

              Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defaults to FullyReplicated

            • FeaturesAttribute (string) --

              The attributes of the input data that are the input features.

            • InferenceAttribute (string) --

              The attribute of the input data that represents the ground truth label.

            • ProbabilityAttribute (string) --

              In a classification problem, the attribute that represents the class probability.

            • ProbabilityThresholdAttribute (float) --

              The threshold for the class probability to be evaluated as a positive result.

            • StartTimeOffset (string) --

              If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

            • EndTimeOffset (string) --

              If specified, monitoring jobs substract this time from the end time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

      • MonitoringOutputConfig (dict) -- [REQUIRED]

        The array of outputs from the monitoring job to be uploaded to Amazon Simple Storage Service (Amazon S3).

        • MonitoringOutputs (list) -- [REQUIRED]

          Monitoring outputs for monitoring jobs. This is where the output of the periodic monitoring jobs is uploaded.

          • (dict) --

            The output object for a monitoring job.

            • S3Output (dict) -- [REQUIRED]

              The Amazon S3 storage location where the results of a monitoring job are saved.

              • S3Uri (string) -- [REQUIRED]

                A URI that identifies the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job.

              • LocalPath (string) -- [REQUIRED]

                The local path to the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job. LocalPath is an absolute path for the output data.

              • S3UploadMode (string) --

                Whether to upload the results of the monitoring job continuously or after the job completes.

        • KmsKeyId (string) --

          The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.

      • MonitoringResources (dict) -- [REQUIRED]

        Identifies the resources, ML compute instances, and ML storage volumes to deploy for a monitoring job. In distributed processing, you specify more than one instance.

        • ClusterConfig (dict) -- [REQUIRED]

          The configuration for the cluster resources used to run the processing job.

          • InstanceCount (integer) -- [REQUIRED]

            The number of ML compute instances to use in the model monitoring job. For distributed processing jobs, specify a value greater than 1. The default value is 1.

          • InstanceType (string) -- [REQUIRED]

            The ML compute instance type for the processing job.

          • VolumeSizeInGB (integer) -- [REQUIRED]

            The size of the ML storage volume, in gigabytes, that you want to provision. You must specify sufficient ML storage for your scenario.

          • VolumeKmsKeyId (string) --

            The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.

      • MonitoringAppSpecification (dict) -- [REQUIRED]

        Configures the monitoring job to run a specified Docker container image.

        • ImageUri (string) -- [REQUIRED]

          The container image to be run by the monitoring job.

        • ContainerEntrypoint (list) --

          Specifies the entrypoint for a container used to run the monitoring job.

          • (string) --
        • ContainerArguments (list) --

          An array of arguments for the container used to run the monitoring job.

          • (string) --
        • RecordPreprocessorSourceUri (string) --

          An Amazon S3 URI to a script that is called per row prior to running analysis. It can base64 decode the payload and convert it into a flatted json so that the built-in container can use the converted data. Applicable only for the built-in (first party) containers.

        • PostAnalyticsProcessorSourceUri (string) --

          An Amazon S3 URI to a script that is called after analysis has been performed. Applicable only for the built-in (first party) containers.

      • StoppingCondition (dict) --

        Specifies a time limit for how long the monitoring job is allowed to run.

        • MaxRuntimeInSeconds (integer) -- [REQUIRED]

          The maximum runtime allowed in seconds.

          Note

          The MaxRuntimeInSeconds cannot exceed the frequency of the job. For data quality and model explainability, this can be up to 3600 seconds for an hourly schedule. For model bias and model quality hourly schedules, this can be up to 1800 seconds.

      • Environment (dict) --

        Sets the environment variables in the Docker container.

        • (string) --
          • (string) --
      • NetworkConfig (dict) --

        Specifies networking options for an monitoring job.

        • EnableInterContainerTrafficEncryption (boolean) --

          Whether to encrypt all communications between distributed processing jobs. Choose True to encrypt communications. Encryption provides greater security for distributed processing jobs, but the processing might take longer.

        • EnableNetworkIsolation (boolean) --

          Whether to allow inbound and outbound network calls to and from the containers used for the processing job.

        • VpcConfig (dict) --

          Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud.

          • SecurityGroupIds (list) -- [REQUIRED]

            The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

            • (string) --
          • Subnets (list) -- [REQUIRED]

            The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.

            • (string) --
      • RoleArn (string) -- [REQUIRED]

        The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.

    • MonitoringJobDefinitionName (string) --

      The name of the monitoring job definition to schedule.

    • MonitoringType (string) --

      The type of the monitoring job definition to schedule.

Return type

dict

Returns

Response Syntax

{
    'MonitoringScheduleArn': 'string'
}

Response Structure

  • (dict) --

    • MonitoringScheduleArn (string) --

      The Amazon Resource Name (ARN) of the monitoring schedule.

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
  • SageMaker.Client.exceptions.ResourceNotFound
update_notebook_instance(**kwargs)

Updates a notebook instance. NotebookInstance updates include upgrading or downgrading the ML compute instance used for your notebook instance to accommodate changes in your workload requirements.

See also: AWS API Documentation

Request Syntax

response = client.update_notebook_instance(
    NotebookInstanceName='string',
    InstanceType='ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
    RoleArn='string',
    LifecycleConfigName='string',
    DisassociateLifecycleConfig=True|False,
    VolumeSizeInGB=123,
    DefaultCodeRepository='string',
    AdditionalCodeRepositories=[
        'string',
    ],
    AcceleratorTypes=[
        'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge',
    ],
    DisassociateAcceleratorTypes=True|False,
    DisassociateDefaultCodeRepository=True|False,
    DisassociateAdditionalCodeRepositories=True|False,
    RootAccess='Enabled'|'Disabled',
    InstanceMetadataServiceConfiguration={
        'MinimumInstanceMetadataServiceVersion': 'string'
    }
)
Parameters
  • NotebookInstanceName (string) --

    [REQUIRED]

    The name of the notebook instance to update.

  • InstanceType (string) -- The Amazon ML compute instance type.
  • RoleArn (string) --

    The Amazon Resource Name (ARN) of the IAM role that SageMaker can assume to access the notebook instance. For more information, see SageMaker Roles.

    Note

    To be able to pass this role to SageMaker, the caller of this API must have the iam:PassRole permission.

  • LifecycleConfigName (string) -- The name of a lifecycle configuration to associate with the notebook instance. For information about lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
  • DisassociateLifecycleConfig (boolean) -- Set to true to remove the notebook instance lifecycle configuration currently associated with the notebook instance. This operation is idempotent. If you specify a lifecycle configuration that is not associated with the notebook instance when you call this method, it does not throw an error.
  • VolumeSizeInGB (integer) -- The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB. ML storage volumes are encrypted, so SageMaker can't determine the amount of available free space on the volume. Because of this, you can increase the volume size when you update a notebook instance, but you can't decrease the volume size. If you want to decrease the size of the ML storage volume in use, create a new notebook instance with the desired size.
  • DefaultCodeRepository (string) -- The Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker Notebook Instances.
  • AdditionalCodeRepositories (list) --

    An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker Notebook Instances.

    • (string) --
  • AcceleratorTypes (list) --

    A list of the Elastic Inference (EI) instance types to associate with this notebook instance. Currently only one EI instance type can be associated with a notebook instance. For more information, see Using Elastic Inference in Amazon SageMaker.

    • (string) --
  • DisassociateAcceleratorTypes (boolean) -- A list of the Elastic Inference (EI) instance types to remove from this notebook instance. This operation is idempotent. If you specify an accelerator type that is not associated with the notebook instance when you call this method, it does not throw an error.
  • DisassociateDefaultCodeRepository (boolean) -- The name or URL of the default Git repository to remove from this notebook instance. This operation is idempotent. If you specify a Git repository that is not associated with the notebook instance when you call this method, it does not throw an error.
  • DisassociateAdditionalCodeRepositories (boolean) -- A list of names or URLs of the default Git repositories to remove from this notebook instance. This operation is idempotent. If you specify a Git repository that is not associated with the notebook instance when you call this method, it does not throw an error.
  • RootAccess (string) --

    Whether root access is enabled or disabled for users of the notebook instance. The default value is Enabled .

    Note

    If you set this to Disabled , users don't have root access on the notebook instance, but lifecycle configuration scripts still run with root permissions.

  • InstanceMetadataServiceConfiguration (dict) --

    Information on the IMDS configuration of the notebook instance

    • MinimumInstanceMetadataServiceVersion (string) -- [REQUIRED]

      Indicates the minimum IMDS version that the notebook instance supports. When passed as part of CreateNotebookInstance , if no value is selected, then it defaults to IMDSv1. This means that both IMDSv1 and IMDSv2 are supported. If passed as part of UpdateNotebookInstance , there is no default.

Return type

dict

Returns

Response Syntax

{}

Response Structure

  • (dict) --

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
update_notebook_instance_lifecycle_config(**kwargs)

Updates a notebook instance lifecycle configuration created with the CreateNotebookInstanceLifecycleConfig API.

See also: AWS API Documentation

Request Syntax

response = client.update_notebook_instance_lifecycle_config(
    NotebookInstanceLifecycleConfigName='string',
    OnCreate=[
        {
            'Content': 'string'
        },
    ],
    OnStart=[
        {
            'Content': 'string'
        },
    ]
)
Parameters
  • NotebookInstanceLifecycleConfigName (string) --

    [REQUIRED]

    The name of the lifecycle configuration.

  • OnCreate (list) --

    The shell script that runs only once, when you create a notebook instance. The shell script must be a base64-encoded string.

    • (dict) --

      Contains the notebook instance lifecycle configuration script.

      Each lifecycle configuration script has a limit of 16384 characters.

      The value of the $PATH environment variable that is available to both scripts is /sbin:bin:/usr/sbin:/usr/bin .

      View CloudWatch Logs for notebook instance lifecycle configurations in log group /aws/sagemaker/NotebookInstances in log stream [notebook-instance-name]/[LifecycleConfigHook] .

      Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started.

      For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.

      • Content (string) --

        A base64-encoded string that contains a shell script for a notebook instance lifecycle configuration.

  • OnStart (list) --

    The shell script that runs every time you start a notebook instance, including when you create the notebook instance. The shell script must be a base64-encoded string.

    • (dict) --

      Contains the notebook instance lifecycle configuration script.

      Each lifecycle configuration script has a limit of 16384 characters.

      The value of the $PATH environment variable that is available to both scripts is /sbin:bin:/usr/sbin:/usr/bin .

      View CloudWatch Logs for notebook instance lifecycle configurations in log group /aws/sagemaker/NotebookInstances in log stream [notebook-instance-name]/[LifecycleConfigHook] .

      Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started.

      For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.

      • Content (string) --

        A base64-encoded string that contains a shell script for a notebook instance lifecycle configuration.

Return type

dict

Returns

Response Syntax

{}

Response Structure

  • (dict) --

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
update_pipeline(**kwargs)

Updates a pipeline.

See also: AWS API Documentation

Request Syntax

response = client.update_pipeline(
    PipelineName='string',
    PipelineDisplayName='string',
    PipelineDefinition='string',
    PipelineDefinitionS3Location={
        'Bucket': 'string',
        'ObjectKey': 'string',
        'VersionId': 'string'
    },
    PipelineDescription='string',
    RoleArn='string',
    ParallelismConfiguration={
        'MaxParallelExecutionSteps': 123
    }
)
Parameters
  • PipelineName (string) --

    [REQUIRED]

    The name of the pipeline to update.

  • PipelineDisplayName (string) -- The display name of the pipeline.
  • PipelineDefinition (string) -- The JSON pipeline definition.
  • PipelineDefinitionS3Location (dict) --

    The location of the pipeline definition stored in Amazon S3. If specified, SageMaker will retrieve the pipeline definition from this location.

    • Bucket (string) -- [REQUIRED]

      Name of the S3 bucket.

    • ObjectKey (string) -- [REQUIRED]

      The object key (or key name) uniquely identifies the object in an S3 bucket.

    • VersionId (string) --

      Version Id of the pipeline definition file. If not specified, Amazon SageMaker will retrieve the latest version.

  • PipelineDescription (string) -- The description of the pipeline.
  • RoleArn (string) -- The Amazon Resource Name (ARN) that the pipeline uses to execute.
  • ParallelismConfiguration (dict) --

    If specified, it applies to all executions of this pipeline by default.

    • MaxParallelExecutionSteps (integer) -- [REQUIRED]

      The max number of steps that can be executed in parallel.

Return type

dict

Returns

Response Syntax

{
    'PipelineArn': 'string'
}

Response Structure

  • (dict) --

    • PipelineArn (string) --

      The Amazon Resource Name (ARN) of the updated pipeline.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
update_pipeline_execution(**kwargs)

Updates a pipeline execution.

See also: AWS API Documentation

Request Syntax

response = client.update_pipeline_execution(
    PipelineExecutionArn='string',
    PipelineExecutionDescription='string',
    PipelineExecutionDisplayName='string',
    ParallelismConfiguration={
        'MaxParallelExecutionSteps': 123
    }
)
Parameters
  • PipelineExecutionArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of the pipeline execution.

  • PipelineExecutionDescription (string) -- The description of the pipeline execution.
  • PipelineExecutionDisplayName (string) -- The display name of the pipeline execution.
  • ParallelismConfiguration (dict) --

    This configuration, if specified, overrides the parallelism configuration of the parent pipeline for this specific run.

    • MaxParallelExecutionSteps (integer) -- [REQUIRED]

      The max number of steps that can be executed in parallel.

Return type

dict

Returns

Response Syntax

{
    'PipelineExecutionArn': 'string'
}

Response Structure

  • (dict) --

    • PipelineExecutionArn (string) --

      The Amazon Resource Name (ARN) of the updated pipeline execution.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
update_project(**kwargs)

Updates a machine learning (ML) project that is created from a template that sets up an ML pipeline from training to deploying an approved model.

Note

You must not update a project that is in use. If you update the ServiceCatalogProvisioningUpdateDetails of a project that is active or being created, or updated, you may lose resources already created by the project.

See also: AWS API Documentation

Request Syntax

response = client.update_project(
    ProjectName='string',
    ProjectDescription='string',
    ServiceCatalogProvisioningUpdateDetails={
        'ProvisioningArtifactId': 'string',
        'ProvisioningParameters': [
            {
                'Key': 'string',
                'Value': 'string'
            },
        ]
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
Parameters
  • ProjectName (string) --

    [REQUIRED]

    The name of the project.

  • ProjectDescription (string) -- The description for the project.
  • ServiceCatalogProvisioningUpdateDetails (dict) --

    The product ID and provisioning artifact ID to provision a service catalog. The provisioning artifact ID will default to the latest provisioning artifact ID of the product, if you don't provide the provisioning artifact ID. For more information, see What is Amazon Web Services Service Catalog.

    • ProvisioningArtifactId (string) --

      The ID of the provisioning artifact.

    • ProvisioningParameters (list) --

      A list of key value pairs that you specify when you provision a product.

      • (dict) --

        A key value pair used when you provision a project as a service catalog product. For information, see What is Amazon Web Services Service Catalog.

        • Key (string) --

          The key that identifies a provisioning parameter.

        • Value (string) --

          The value of the provisioning parameter.

  • Tags (list) --

    An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources. In addition, the project must have tag update constraints set in order to include this parameter in the request. For more information, see Amazon Web Services Service Catalog Tag Update Constraints.

    • (dict) --

      A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

      You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

      For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

      • Key (string) -- [REQUIRED]

        The tag key. Tag keys must be unique per resource.

      • Value (string) -- [REQUIRED]

        The tag value.

Return type

dict

Returns

Response Syntax

{
    'ProjectArn': 'string'
}

Response Structure

  • (dict) --

    • ProjectArn (string) --

      The Amazon Resource Name (ARN) of the project.

update_space(**kwargs)

Updates the settings of a space.

See also: AWS API Documentation

Request Syntax

response = client.update_space(
    DomainId='string',
    SpaceName='string',
    SpaceSettings={
        'JupyterServerAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'LifecycleConfigArns': [
                'string',
            ],
            'CodeRepositories': [
                {
                    'RepositoryUrl': 'string'
                },
            ]
        },
        'KernelGatewayAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'CustomImages': [
                {
                    'ImageName': 'string',
                    'ImageVersionNumber': 123,
                    'AppImageConfigName': 'string'
                },
            ],
            'LifecycleConfigArns': [
                'string',
            ]
        }
    }
)
Parameters
  • DomainId (string) --

    [REQUIRED]

    The ID of the associated Domain.

  • SpaceName (string) --

    [REQUIRED]

    The name of the space.

  • SpaceSettings (dict) --

    A collection of space settings.

    • JupyterServerAppSettings (dict) --

      The JupyterServer app settings.

      • DefaultResourceSpec (dict) --

        The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.

        • SageMakerImageArn (string) --

          The ARN of the SageMaker image that the image version belongs to.

        • SageMakerImageVersionArn (string) --

          The ARN of the image version created on the instance.

        • InstanceType (string) --

          The instance type that the image version runs on.

          Note

          JupyterServer apps only support the system value.

          For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

        • LifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

      • LifecycleConfigArns (list) --

        The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter is also required.

        Note

        To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.

        • (string) --
      • CodeRepositories (list) --

        A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.

        • (dict) --

          A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.

          • RepositoryUrl (string) -- [REQUIRED]

            The URL of the Git repository.

    • KernelGatewayAppSettings (dict) --

      The KernelGateway app settings.

      • DefaultResourceSpec (dict) --

        The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app.

        Note

        The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the Amazon Web Services Command Line Interface or Amazon Web Services CloudFormation and the instance type parameter value is not passed.

        • SageMakerImageArn (string) --

          The ARN of the SageMaker image that the image version belongs to.

        • SageMakerImageVersionArn (string) --

          The ARN of the image version created on the instance.

        • InstanceType (string) --

          The instance type that the image version runs on.

          Note

          JupyterServer apps only support the system value.

          For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

        • LifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

      • CustomImages (list) --

        A list of custom SageMaker images that are configured to run as a KernelGateway app.

        • (dict) --

          A custom SageMaker image. For more information, see Bring your own SageMaker image.

          • ImageName (string) -- [REQUIRED]

            The name of the CustomImage. Must be unique to your account.

          • ImageVersionNumber (integer) --

            The version number of the CustomImage.

          • AppImageConfigName (string) -- [REQUIRED]

            The name of the AppImageConfig.

      • LifecycleConfigArns (list) --

        The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.

        Note

        To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.

        • (string) --
Return type

dict

Returns

Response Syntax

{
    'SpaceArn': 'string'
}

Response Structure

  • (dict) --

    • SpaceArn (string) --

      The space's Amazon Resource Name (ARN).

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceNotFound
update_training_job(**kwargs)

Update a model training job to request a new Debugger profiling configuration or to change warm pool retention length.

See also: AWS API Documentation

Request Syntax

response = client.update_training_job(
    TrainingJobName='string',
    ProfilerConfig={
        'S3OutputPath': 'string',
        'ProfilingIntervalInMilliseconds': 123,
        'ProfilingParameters': {
            'string': 'string'
        },
        'DisableProfiler': True|False
    },
    ProfilerRuleConfigurations=[
        {
            'RuleConfigurationName': 'string',
            'LocalPath': 'string',
            'S3OutputPath': 'string',
            'RuleEvaluatorImage': 'string',
            'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
            'VolumeSizeInGB': 123,
            'RuleParameters': {
                'string': 'string'
            }
        },
    ],
    ResourceConfig={
        'KeepAlivePeriodInSeconds': 123
    }
)
Parameters
  • TrainingJobName (string) --

    [REQUIRED]

    The name of a training job to update the Debugger profiling configuration.

  • ProfilerConfig (dict) --

    Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.

    • S3OutputPath (string) --

      Path to Amazon S3 storage location for system and framework metrics.

    • ProfilingIntervalInMilliseconds (integer) --

      A time interval for capturing system metrics in milliseconds. Available values are 100, 200, 500, 1000 (1 second), 5000 (5 seconds), and 60000 (1 minute) milliseconds. The default value is 500 milliseconds.

    • ProfilingParameters (dict) --

      Configuration information for capturing framework metrics. Available key strings for different profiling options are DetailedProfilingConfig , PythonProfilingConfig , and DataLoaderProfilingConfig . The following codes are configuration structures for the ProfilingParameters parameter. To learn more about how to configure the ProfilingParameters parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.

      • (string) --
        • (string) --
    • DisableProfiler (boolean) --

      To turn off Amazon SageMaker Debugger monitoring and profiling while a training job is in progress, set to True .

  • ProfilerRuleConfigurations (list) --

    Configuration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.

    • (dict) --

      Configuration information for profiling rules.

      • RuleConfigurationName (string) -- [REQUIRED]

        The name of the rule configuration. It must be unique relative to other rule configuration names.

      • LocalPath (string) --

        Path to local storage location for output of rules. Defaults to /opt/ml/processing/output/rule/ .

      • S3OutputPath (string) --

        Path to Amazon S3 storage location for rules.

      • RuleEvaluatorImage (string) -- [REQUIRED]

        The Amazon Elastic Container Registry Image for the managed rule evaluation.

      • InstanceType (string) --

        The instance type to deploy a custom rule for profiling a training job.

      • VolumeSizeInGB (integer) --

        The size, in GB, of the ML storage volume attached to the processing instance.

      • RuleParameters (dict) --

        Runtime configuration for rule container.

        • (string) --
          • (string) --
  • ResourceConfig (dict) --

    The training job ResourceConfig to update warm pool retention length.

    • KeepAlivePeriodInSeconds (integer) -- [REQUIRED]

      The KeepAlivePeriodInSeconds value specified in the ResourceConfig to update.

Return type

dict

Returns

Response Syntax

{
    'TrainingJobArn': 'string'
}

Response Structure

  • (dict) --

    • TrainingJobArn (string) --

      The Amazon Resource Name (ARN) of the training job.

Exceptions

  • SageMaker.Client.exceptions.ResourceNotFound
update_trial(**kwargs)

Updates the display name of a trial.

See also: AWS API Documentation

Request Syntax

response = client.update_trial(
    TrialName='string',
    DisplayName='string'
)
Parameters
  • TrialName (string) --

    [REQUIRED]

    The name of the trial to update.

  • DisplayName (string) -- The name of the trial as displayed. The name doesn't need to be unique. If DisplayName isn't specified, TrialName is displayed.
Return type

dict

Returns

Response Syntax

{
    'TrialArn': 'string'
}

Response Structure

  • (dict) --

    • TrialArn (string) --

      The Amazon Resource Name (ARN) of the trial.

Exceptions

  • SageMaker.Client.exceptions.ConflictException
  • SageMaker.Client.exceptions.ResourceNotFound
update_trial_component(**kwargs)

Updates one or more properties of a trial component.

See also: AWS API Documentation

Request Syntax

response = client.update_trial_component(
    TrialComponentName='string',
    DisplayName='string',
    Status={
        'PrimaryStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
        'Message': 'string'
    },
    StartTime=datetime(2015, 1, 1),
    EndTime=datetime(2015, 1, 1),
    Parameters={
        'string': {
            'StringValue': 'string',
            'NumberValue': 123.0
        }
    },
    ParametersToRemove=[
        'string',
    ],
    InputArtifacts={
        'string': {
            'MediaType': 'string',
            'Value': 'string'
        }
    },
    InputArtifactsToRemove=[
        'string',
    ],
    OutputArtifacts={
        'string': {
            'MediaType': 'string',
            'Value': 'string'
        }
    },
    OutputArtifactsToRemove=[
        'string',
    ]
)
Parameters
  • TrialComponentName (string) --

    [REQUIRED]

    The name of the component to update.

  • DisplayName (string) -- The name of the component as displayed. The name doesn't need to be unique. If DisplayName isn't specified, TrialComponentName is displayed.
  • Status (dict) --

    The new status of the component.

    • PrimaryStatus (string) --

      The status of the trial component.

    • Message (string) --

      If the component failed, a message describing why.

  • StartTime (datetime) -- When the component started.
  • EndTime (datetime) -- When the component ended.
  • Parameters (dict) --

    Replaces all of the component's hyperparameters with the specified hyperparameters.

    • (string) --
      • (dict) --

        The value of a hyperparameter. Only one of NumberValue or StringValue can be specified.

        This object is specified in the CreateTrialComponent request.

        • StringValue (string) --

          The string value of a categorical hyperparameter. If you specify a value for this parameter, you can't specify the NumberValue parameter.

        • NumberValue (float) --

          The numeric value of a numeric hyperparameter. If you specify a value for this parameter, you can't specify the StringValue parameter.

  • ParametersToRemove (list) --

    The hyperparameters to remove from the component.

    • (string) --
  • InputArtifacts (dict) --

    Replaces all of the component's input artifacts with the specified artifacts.

    • (string) --
      • (dict) --

        Represents an input or output artifact of a trial component. You specify TrialComponentArtifact as part of the InputArtifacts and OutputArtifacts parameters in the CreateTrialComponent request.

        Examples of input artifacts are datasets, algorithms, hyperparameters, source code, and instance types. Examples of output artifacts are metrics, snapshots, logs, and images.

        • MediaType (string) --

          The media type of the artifact, which indicates the type of data in the artifact file. The media type consists of a type and a subtype concatenated with a slash (/) character, for example, text/csv, image/jpeg, and s3/uri. The type specifies the category of the media. The subtype specifies the kind of data.

        • Value (string) -- [REQUIRED]

          The location of the artifact.

  • InputArtifactsToRemove (list) --

    The input artifacts to remove from the component.

    • (string) --
  • OutputArtifacts (dict) --

    Replaces all of the component's output artifacts with the specified artifacts.

    • (string) --
      • (dict) --

        Represents an input or output artifact of a trial component. You specify TrialComponentArtifact as part of the InputArtifacts and OutputArtifacts parameters in the CreateTrialComponent request.

        Examples of input artifacts are datasets, algorithms, hyperparameters, source code, and instance types. Examples of output artifacts are metrics, snapshots, logs, and images.

        • MediaType (string) --

          The media type of the artifact, which indicates the type of data in the artifact file. The media type consists of a type and a subtype concatenated with a slash (/) character, for example, text/csv, image/jpeg, and s3/uri. The type specifies the category of the media. The subtype specifies the kind of data.

        • Value (string) -- [REQUIRED]

          The location of the artifact.

  • OutputArtifactsToRemove (list) --

    The output artifacts to remove from the component.

    • (string) --
Return type

dict

Returns

Response Syntax

{
    'TrialComponentArn': 'string'
}

Response Structure

  • (dict) --

    • TrialComponentArn (string) --

      The Amazon Resource Name (ARN) of the trial component.

Exceptions

  • SageMaker.Client.exceptions.ConflictException
  • SageMaker.Client.exceptions.ResourceNotFound
update_user_profile(**kwargs)

Updates a user profile.

See also: AWS API Documentation

Request Syntax

response = client.update_user_profile(
    DomainId='string',
    UserProfileName='string',
    UserSettings={
        'ExecutionRole': 'string',
        'SecurityGroups': [
            'string',
        ],
        'SharingSettings': {
            'NotebookOutputOption': 'Allowed'|'Disabled',
            'S3OutputPath': 'string',
            'S3KmsKeyId': 'string'
        },
        'JupyterServerAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'LifecycleConfigArns': [
                'string',
            ],
            'CodeRepositories': [
                {
                    'RepositoryUrl': 'string'
                },
            ]
        },
        'KernelGatewayAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'CustomImages': [
                {
                    'ImageName': 'string',
                    'ImageVersionNumber': 123,
                    'AppImageConfigName': 'string'
                },
            ],
            'LifecycleConfigArns': [
                'string',
            ]
        },
        'TensorBoardAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            }
        },
        'RStudioServerProAppSettings': {
            'AccessStatus': 'ENABLED'|'DISABLED',
            'UserGroup': 'R_STUDIO_ADMIN'|'R_STUDIO_USER'
        },
        'RSessionAppSettings': {
            'DefaultResourceSpec': {
                'SageMakerImageArn': 'string',
                'SageMakerImageVersionArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
                'LifecycleConfigArn': 'string'
            },
            'CustomImages': [
                {
                    'ImageName': 'string',
                    'ImageVersionNumber': 123,
                    'AppImageConfigName': 'string'
                },
            ]
        },
        'CanvasAppSettings': {
            'TimeSeriesForecastingSettings': {
                'Status': 'ENABLED'|'DISABLED',
                'AmazonForecastRoleArn': 'string'
            }
        }
    }
)
Parameters
  • DomainId (string) --

    [REQUIRED]

    The domain ID.

  • UserProfileName (string) --

    [REQUIRED]

    The user profile name.

  • UserSettings (dict) --

    A collection of settings.

    • ExecutionRole (string) --

      The execution role for the user.

    • SecurityGroups (list) --

      The security groups for the Amazon Virtual Private Cloud (VPC) that Studio uses for communication.

      Optional when the CreateDomain.AppNetworkAccessType parameter is set to PublicInternetOnly .

      Required when the CreateDomain.AppNetworkAccessType parameter is set to VpcOnly .

      Amazon SageMaker adds a security group to allow NFS traffic from SageMaker Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown.

      • (string) --
    • SharingSettings (dict) --

      Specifies options for sharing SageMaker Studio notebooks.

      • NotebookOutputOption (string) --

        Whether to include the notebook cell output when sharing the notebook. The default is Disabled .

      • S3OutputPath (string) --

        When NotebookOutputOption is Allowed , the Amazon S3 bucket used to store the shared notebook snapshots.

      • S3KmsKeyId (string) --

        When NotebookOutputOption is Allowed , the Amazon Web Services Key Management Service (KMS) encryption key ID used to encrypt the notebook cell output in the Amazon S3 bucket.

    • JupyterServerAppSettings (dict) --

      The Jupyter server's app settings.

      • DefaultResourceSpec (dict) --

        The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.

        • SageMakerImageArn (string) --

          The ARN of the SageMaker image that the image version belongs to.

        • SageMakerImageVersionArn (string) --

          The ARN of the image version created on the instance.

        • InstanceType (string) --

          The instance type that the image version runs on.

          Note

          JupyterServer apps only support the system value.

          For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

        • LifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

      • LifecycleConfigArns (list) --

        The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter is also required.

        Note

        To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.

        • (string) --
      • CodeRepositories (list) --

        A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.

        • (dict) --

          A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.

          • RepositoryUrl (string) -- [REQUIRED]

            The URL of the Git repository.

    • KernelGatewayAppSettings (dict) --

      The kernel gateway app settings.

      • DefaultResourceSpec (dict) --

        The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app.

        Note

        The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the Amazon Web Services Command Line Interface or Amazon Web Services CloudFormation and the instance type parameter value is not passed.

        • SageMakerImageArn (string) --

          The ARN of the SageMaker image that the image version belongs to.

        • SageMakerImageVersionArn (string) --

          The ARN of the image version created on the instance.

        • InstanceType (string) --

          The instance type that the image version runs on.

          Note

          JupyterServer apps only support the system value.

          For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

        • LifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

      • CustomImages (list) --

        A list of custom SageMaker images that are configured to run as a KernelGateway app.

        • (dict) --

          A custom SageMaker image. For more information, see Bring your own SageMaker image.

          • ImageName (string) -- [REQUIRED]

            The name of the CustomImage. Must be unique to your account.

          • ImageVersionNumber (integer) --

            The version number of the CustomImage.

          • AppImageConfigName (string) -- [REQUIRED]

            The name of the AppImageConfig.

      • LifecycleConfigArns (list) --

        The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.

        Note

        To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.

        • (string) --
    • TensorBoardAppSettings (dict) --

      The TensorBoard app settings.

      • DefaultResourceSpec (dict) --

        The default instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.

        • SageMakerImageArn (string) --

          The ARN of the SageMaker image that the image version belongs to.

        • SageMakerImageVersionArn (string) --

          The ARN of the image version created on the instance.

        • InstanceType (string) --

          The instance type that the image version runs on.

          Note

          JupyterServer apps only support the system value.

          For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

        • LifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

    • RStudioServerProAppSettings (dict) --

      A collection of settings that configure user interaction with the RStudioServerPro app.

      • AccessStatus (string) --

        Indicates whether the current user has access to the RStudioServerPro app.

      • UserGroup (string) --

        The level of permissions that the user has within the RStudioServerPro app. This value defaults to User. The Admin value allows the user access to the RStudio Administrative Dashboard.

    • RSessionAppSettings (dict) --

      A collection of settings that configure the RSessionGateway app.

      • DefaultResourceSpec (dict) --

        Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that the version runs on.

        • SageMakerImageArn (string) --

          The ARN of the SageMaker image that the image version belongs to.

        • SageMakerImageVersionArn (string) --

          The ARN of the image version created on the instance.

        • InstanceType (string) --

          The instance type that the image version runs on.

          Note

          JupyterServer apps only support the system value.

          For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.

        • LifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

      • CustomImages (list) --

        A list of custom SageMaker images that are configured to run as a RSession app.

        • (dict) --

          A custom SageMaker image. For more information, see Bring your own SageMaker image.

          • ImageName (string) -- [REQUIRED]

            The name of the CustomImage. Must be unique to your account.

          • ImageVersionNumber (integer) --

            The version number of the CustomImage.

          • AppImageConfigName (string) -- [REQUIRED]

            The name of the AppImageConfig.

    • CanvasAppSettings (dict) --

      The Canvas app settings.

      • TimeSeriesForecastingSettings (dict) --

        Time series forecast settings for the Canvas app.

        • Status (string) --

          Describes whether time series forecasting is enabled or disabled in the Canvas app.

        • AmazonForecastRoleArn (string) --

          The IAM role that Canvas passes to Amazon Forecast for time series forecasting. By default, Canvas uses the execution role specified in the UserProfile that launches the Canvas app. If an execution role is not specified in the UserProfile , Canvas uses the execution role specified in the Domain that owns the UserProfile . To allow time series forecasting, this IAM role should have the AmazonSageMakerCanvasForecastAccess policy attached and forecast.amazonaws.com added in the trust relationship as a service principal.

Return type

dict

Returns

Response Syntax

{
    'UserProfileArn': 'string'
}

Response Structure

  • (dict) --

    • UserProfileArn (string) --

      The user profile Amazon Resource Name (ARN).

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded
  • SageMaker.Client.exceptions.ResourceInUse
  • SageMaker.Client.exceptions.ResourceNotFound
update_workforce(**kwargs)

Use this operation to update your workforce. You can use this operation to require that workers use specific IP addresses to work on tasks and to update your OpenID Connect (OIDC) Identity Provider (IdP) workforce configuration.

The worker portal is now supported in VPC and public internet.

Use SourceIpConfig to restrict worker access to tasks to a specific range of IP addresses. You specify allowed IP addresses by creating a list of up to ten CIDRs. By default, a workforce isn't restricted to specific IP addresses. If you specify a range of IP addresses, workers who attempt to access tasks using any IP address outside the specified range are denied and get a Not Found error message on the worker portal.

To restrict access to all the workers in public internet, add the SourceIpConfig CIDR value as "0.0.0.0/0".

Warning

Amazon SageMaker does not support Source Ip restriction for worker portals in VPC.

Use OidcConfig to update the configuration of a workforce created using your own OIDC IdP.

Warning

You can only update your OIDC IdP configuration when there are no work teams associated with your workforce. You can delete work teams using the operation.

After restricting access to a range of IP addresses or updating your OIDC IdP configuration with this operation, you can view details about your update workforce using the operation.

Warning

This operation only applies to private workforces.

See also: AWS API Documentation

Request Syntax

response = client.update_workforce(
    WorkforceName='string',
    SourceIpConfig={
        'Cidrs': [
            'string',
        ]
    },
    OidcConfig={
        'ClientId': 'string',
        'ClientSecret': 'string',
        'Issuer': 'string',
        'AuthorizationEndpoint': 'string',
        'TokenEndpoint': 'string',
        'UserInfoEndpoint': 'string',
        'LogoutEndpoint': 'string',
        'JwksUri': 'string'
    },
    WorkforceVpcConfig={
        'VpcId': 'string',
        'SecurityGroupIds': [
            'string',
        ],
        'Subnets': [
            'string',
        ]
    }
)
Parameters
  • WorkforceName (string) --

    [REQUIRED]

    The name of the private workforce that you want to update. You can find your workforce name by using the operation.

  • SourceIpConfig (dict) --

    A list of one to ten worker IP address ranges ( CIDRs ) that can be used to access tasks assigned to this workforce.

    Maximum: Ten CIDR values

    • Cidrs (list) -- [REQUIRED]

      A list of one to ten Classless Inter-Domain Routing (CIDR) values.

      Maximum: Ten CIDR values

      Note

      The following Length Constraints apply to individual CIDR values in the CIDR value list.

      • (string) --
  • OidcConfig (dict) --

    Use this parameter to update your OIDC Identity Provider (IdP) configuration for a workforce made using your own IdP.

    • ClientId (string) -- [REQUIRED]

      The OIDC IdP client ID used to configure your private workforce.

    • ClientSecret (string) -- [REQUIRED]

      The OIDC IdP client secret used to configure your private workforce.

    • Issuer (string) -- [REQUIRED]

      The OIDC IdP issuer used to configure your private workforce.

    • AuthorizationEndpoint (string) -- [REQUIRED]

      The OIDC IdP authorization endpoint used to configure your private workforce.

    • TokenEndpoint (string) -- [REQUIRED]

      The OIDC IdP token endpoint used to configure your private workforce.

    • UserInfoEndpoint (string) -- [REQUIRED]

      The OIDC IdP user information endpoint used to configure your private workforce.

    • LogoutEndpoint (string) -- [REQUIRED]

      The OIDC IdP logout endpoint used to configure your private workforce.

    • JwksUri (string) -- [REQUIRED]

      The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your private workforce.

  • WorkforceVpcConfig (dict) --

    Use this parameter to update your VPC configuration for a workforce.

    • VpcId (string) --

      The ID of the VPC that the workforce uses for communication.

    • SecurityGroupIds (list) --

      The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet.

      • (string) --
    • Subnets (list) --

      The ID of the subnets in the VPC that you want to connect.

      • (string) --
Return type

dict

Returns

Response Syntax

{
    'Workforce': {
        'WorkforceName': 'string',
        'WorkforceArn': 'string',
        'LastUpdatedDate': datetime(2015, 1, 1),
        'SourceIpConfig': {
            'Cidrs': [
                'string',
            ]
        },
        'SubDomain': 'string',
        'CognitoConfig': {
            'UserPool': 'string',
            'ClientId': 'string'
        },
        'OidcConfig': {
            'ClientId': 'string',
            'Issuer': 'string',
            'AuthorizationEndpoint': 'string',
            'TokenEndpoint': 'string',
            'UserInfoEndpoint': 'string',
            'LogoutEndpoint': 'string',
            'JwksUri': 'string'
        },
        'CreateDate': datetime(2015, 1, 1),
        'WorkforceVpcConfig': {
            'VpcId': 'string',
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ],
            'VpcEndpointId': 'string'
        },
        'Status': 'Initializing'|'Updating'|'Deleting'|'Failed'|'Active',
        'FailureReason': 'string'
    }
}

Response Structure

  • (dict) --

    • Workforce (dict) --

      A single private workforce. You can create one private work force in each Amazon Web Services Region. By default, any workforce-related API operation used in a specific region will apply to the workforce created in that region. To learn how to create a private workforce, see Create a Private Workforce.

      • WorkforceName (string) --

        The name of the private workforce.

      • WorkforceArn (string) --

        The Amazon Resource Name (ARN) of the private workforce.

      • LastUpdatedDate (datetime) --

        The most recent date that was used to successfully add one or more IP address ranges ( CIDRs ) to a private workforce's allow list.

      • SourceIpConfig (dict) --

        A list of one to ten IP address ranges ( CIDRs ) to be added to the workforce allow list. By default, a workforce isn't restricted to specific IP addresses.

        • Cidrs (list) --

          A list of one to ten Classless Inter-Domain Routing (CIDR) values.

          Maximum: Ten CIDR values

          Note

          The following Length Constraints apply to individual CIDR values in the CIDR value list.

          • (string) --
      • SubDomain (string) --

        The subdomain for your OIDC Identity Provider.

      • CognitoConfig (dict) --

        The configuration of an Amazon Cognito workforce. A single Cognito workforce is created using and corresponds to a single Amazon Cognito user pool.

        • UserPool (string) --

          A user pool is a user directory in Amazon Cognito. With a user pool, your users can sign in to your web or mobile app through Amazon Cognito. Your users can also sign in through social identity providers like Google, Facebook, Amazon, or Apple, and through SAML identity providers.

        • ClientId (string) --

          The client ID for your Amazon Cognito user pool.

      • OidcConfig (dict) --

        The configuration of an OIDC Identity Provider (IdP) private workforce.

        • ClientId (string) --

          The OIDC IdP client ID used to configure your private workforce.

        • Issuer (string) --

          The OIDC IdP issuer used to configure your private workforce.

        • AuthorizationEndpoint (string) --

          The OIDC IdP authorization endpoint used to configure your private workforce.

        • TokenEndpoint (string) --

          The OIDC IdP token endpoint used to configure your private workforce.

        • UserInfoEndpoint (string) --

          The OIDC IdP user information endpoint used to configure your private workforce.

        • LogoutEndpoint (string) --

          The OIDC IdP logout endpoint used to configure your private workforce.

        • JwksUri (string) --

          The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your private workforce.

      • CreateDate (datetime) --

        The date that the workforce is created.

      • WorkforceVpcConfig (dict) --

        The configuration of a VPC workforce.

        • VpcId (string) --

          The ID of the VPC that the workforce uses for communication.

        • SecurityGroupIds (list) --

          The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet.

          • (string) --
        • Subnets (list) --

          The ID of the subnets in the VPC that you want to connect.

          • (string) --
        • VpcEndpointId (string) --

          The IDs for the VPC service endpoints of your VPC workforce when it is created and updated.

      • Status (string) --

        The status of your workforce.

      • FailureReason (string) --

        The reason your workforce failed.

Exceptions

  • SageMaker.Client.exceptions.ConflictException
update_workteam(**kwargs)

Updates an existing work team with new member definitions or description.

See also: AWS API Documentation

Request Syntax

response = client.update_workteam(
    WorkteamName='string',
    MemberDefinitions=[
        {
            'CognitoMemberDefinition': {
                'UserPool': 'string',
                'UserGroup': 'string',
                'ClientId': 'string'
            },
            'OidcMemberDefinition': {
                'Groups': [
                    'string',
                ]
            }
        },
    ],
    Description='string',
    NotificationConfiguration={
        'NotificationTopicArn': 'string'
    }
)
Parameters
  • WorkteamName (string) --

    [REQUIRED]

    The name of the work team to update.

  • MemberDefinitions (list) --

    A list of MemberDefinition objects that contains objects that identify the workers that make up the work team.

    Workforces can be created using Amazon Cognito or your own OIDC Identity Provider (IdP). For private workforces created using Amazon Cognito use CognitoMemberDefinition . For workforces created using your own OIDC identity provider (IdP) use OidcMemberDefinition . You should not provide input for both of these parameters in a single request.

    For workforces created using Amazon Cognito, private work teams correspond to Amazon Cognito user groups within the user pool used to create a workforce. All of the CognitoMemberDefinition objects that make up the member definition must have the same ClientId and UserPool values. To add a Amazon Cognito user group to an existing worker pool, see Adding groups to a User Pool. For more information about user pools, see `Amazon Cognito User Pools.

    For workforces created using your own OIDC IdP, specify the user groups that you want to include in your private work team in OidcMemberDefinition by listing those groups in Groups . Be aware that user groups that are already in the work team must also be listed in Groups when you make this request to remain on the work team. If you do not include these user groups, they will no longer be associated with the work team you update.

    • (dict) --

      Defines an Amazon Cognito or your own OIDC IdP user group that is part of a work team.

      • CognitoMemberDefinition (dict) --

        The Amazon Cognito user group that is part of the work team.

        • UserPool (string) -- [REQUIRED]

          An identifier for a user pool. The user pool must be in the same region as the service that you are calling.

        • UserGroup (string) -- [REQUIRED]

          An identifier for a user group.

        • ClientId (string) -- [REQUIRED]

          An identifier for an application client. You must create the app client ID using Amazon Cognito.

      • OidcMemberDefinition (dict) --

        A list user groups that exist in your OIDC Identity Provider (IdP). One to ten groups can be used to create a single private work team. When you add a user group to the list of Groups , you can add that user group to one or more private work teams. If you add a user group to a private work team, all workers in that user group are added to the work team.

        • Groups (list) -- [REQUIRED]

          A list of comma seperated strings that identifies user groups in your OIDC IdP. Each user group is made up of a group of private workers.

          • (string) --
  • Description (string) -- An updated description for the work team.
  • NotificationConfiguration (dict) --

    Configures SNS topic notifications for available or expiring work items

    • NotificationTopicArn (string) --

      The ARN for the Amazon SNS topic to which notifications should be published.

Return type

dict

Returns

Response Syntax

{
    'Workteam': {
        'WorkteamName': 'string',
        'MemberDefinitions': [
            {
                'CognitoMemberDefinition': {
                    'UserPool': 'string',
                    'UserGroup': 'string',
                    'ClientId': 'string'
                },
                'OidcMemberDefinition': {
                    'Groups': [
                        'string',
                    ]
                }
            },
        ],
        'WorkteamArn': 'string',
        'WorkforceArn': 'string',
        'ProductListingIds': [
            'string',
        ],
        'Description': 'string',
        'SubDomain': 'string',
        'CreateDate': datetime(2015, 1, 1),
        'LastUpdatedDate': datetime(2015, 1, 1),
        'NotificationConfiguration': {
            'NotificationTopicArn': 'string'
        }
    }
}

Response Structure

  • (dict) --

    • Workteam (dict) --

      A Workteam object that describes the updated work team.

      • WorkteamName (string) --

        The name of the work team.

      • MemberDefinitions (list) --

        A list of MemberDefinition objects that contains objects that identify the workers that make up the work team.

        Workforces can be created using Amazon Cognito or your own OIDC Identity Provider (IdP). For private workforces created using Amazon Cognito use CognitoMemberDefinition . For workforces created using your own OIDC identity provider (IdP) use OidcMemberDefinition .

        • (dict) --

          Defines an Amazon Cognito or your own OIDC IdP user group that is part of a work team.

          • CognitoMemberDefinition (dict) --

            The Amazon Cognito user group that is part of the work team.

            • UserPool (string) --

              An identifier for a user pool. The user pool must be in the same region as the service that you are calling.

            • UserGroup (string) --

              An identifier for a user group.

            • ClientId (string) --

              An identifier for an application client. You must create the app client ID using Amazon Cognito.

          • OidcMemberDefinition (dict) --

            A list user groups that exist in your OIDC Identity Provider (IdP). One to ten groups can be used to create a single private work team. When you add a user group to the list of Groups , you can add that user group to one or more private work teams. If you add a user group to a private work team, all workers in that user group are added to the work team.

            • Groups (list) --

              A list of comma seperated strings that identifies user groups in your OIDC IdP. Each user group is made up of a group of private workers.

              • (string) --
      • WorkteamArn (string) --

        The Amazon Resource Name (ARN) that identifies the work team.

      • WorkforceArn (string) --

        The Amazon Resource Name (ARN) of the workforce.

      • ProductListingIds (list) --

        The Amazon Marketplace identifier for a vendor's work team.

        • (string) --
      • Description (string) --

        A description of the work team.

      • SubDomain (string) --

        The URI of the labeling job's user interface. Workers open this URI to start labeling your data objects.

      • CreateDate (datetime) --

        The date and time that the work team was created (timestamp).

      • LastUpdatedDate (datetime) --

        The date and time that the work team was last updated (timestamp).

      • NotificationConfiguration (dict) --

        Configures SNS notifications of available or expiring work items for work teams.

        • NotificationTopicArn (string) --

          The ARN for the Amazon SNS topic to which notifications should be published.

Exceptions

  • SageMaker.Client.exceptions.ResourceLimitExceeded

Paginators

The available paginators are:

class SageMaker.Paginator.ListActions
paginator = client.get_paginator('list_actions')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_actions().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    SourceUri='string',
    ActionType='string',
    CreatedAfter=datetime(2015, 1, 1),
    CreatedBefore=datetime(2015, 1, 1),
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • SourceUri (string) -- A filter that returns only actions with the specified source URI.
  • ActionType (string) -- A filter that returns only actions of the specified type.
  • CreatedAfter (datetime) -- A filter that returns only actions created on or after the specified time.
  • CreatedBefore (datetime) -- A filter that returns only actions created on or before the specified time.
  • SortBy (string) -- The property used to sort results. The default value is CreationTime .
  • SortOrder (string) -- The sort order. The default value is Descending .
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'ActionSummaries': [
        {
            'ActionArn': 'string',
            'ActionName': 'string',
            'Source': {
                'SourceUri': 'string',
                'SourceType': 'string',
                'SourceId': 'string'
            },
            'ActionType': 'string',
            'Status': 'Unknown'|'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],

}

Response Structure

  • (dict) --

    • ActionSummaries (list) --

      A list of actions and their properties.

      • (dict) --

        Lists the properties of an action . An action represents an action or activity. Some examples are a workflow step and a model deployment. Generally, an action involves at least one input artifact or output artifact.

        • ActionArn (string) --

          The Amazon Resource Name (ARN) of the action.

        • ActionName (string) --

          The name of the action.

        • Source (dict) --

          The source of the action.

          • SourceUri (string) --

            The URI of the source.

          • SourceType (string) --

            The type of the source.

          • SourceId (string) --

            The ID of the source.

        • ActionType (string) --

          The type of the action.

        • Status (string) --

          The status of the action.

        • CreationTime (datetime) --

          When the action was created.

        • LastModifiedTime (datetime) --

          When the action was last modified.

class SageMaker.Paginator.ListAlgorithms
paginator = client.get_paginator('list_algorithms')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_algorithms().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    NameContains='string',
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • CreationTimeAfter (datetime) -- A filter that returns only algorithms created after the specified time (timestamp).
  • CreationTimeBefore (datetime) -- A filter that returns only algorithms created before the specified time (timestamp).
  • NameContains (string) -- A string in the algorithm name. This filter returns only algorithms whose name contains the specified string.
  • SortBy (string) -- The parameter by which to sort the results. The default is CreationTime .
  • SortOrder (string) -- The sort order for the results. The default is Ascending .
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'AlgorithmSummaryList': [
        {
            'AlgorithmName': 'string',
            'AlgorithmArn': 'string',
            'AlgorithmDescription': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'AlgorithmStatus': 'Pending'|'InProgress'|'Completed'|'Failed'|'Deleting'
        },
    ],

}

Response Structure

  • (dict) --

    • AlgorithmSummaryList (list) --

      >An array of AlgorithmSummary objects, each of which lists an algorithm.

      • (dict) --

        Provides summary information about an algorithm.

        • AlgorithmName (string) --

          The name of the algorithm that is described by the summary.

        • AlgorithmArn (string) --

          The Amazon Resource Name (ARN) of the algorithm.

        • AlgorithmDescription (string) --

          A brief description of the algorithm.

        • CreationTime (datetime) --

          A timestamp that shows when the algorithm was created.

        • AlgorithmStatus (string) --

          The overall status of the algorithm.

class SageMaker.Paginator.ListAliases
paginator = client.get_paginator('list_aliases')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_aliases().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    ImageName='string',
    Alias='string',
    Version=123,
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • ImageName (string) --

    [REQUIRED]

    The name of the image.

  • Alias (string) -- The alias of the image version.
  • Version (integer) -- The version of the image. If image version is not specified, the aliases of all versions of the image are listed.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'SageMakerImageVersionAliases': [
        'string',
    ],

}

Response Structure

  • (dict) --

    • SageMakerImageVersionAliases (list) --

      A list of SageMaker image version aliases.

      • (string) --

class SageMaker.Paginator.ListAppImageConfigs
paginator = client.get_paginator('list_app_image_configs')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_app_image_configs().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    NameContains='string',
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1),
    ModifiedTimeBefore=datetime(2015, 1, 1),
    ModifiedTimeAfter=datetime(2015, 1, 1),
    SortBy='CreationTime'|'LastModifiedTime'|'Name',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • NameContains (string) -- A filter that returns only AppImageConfigs whose name contains the specified string.
  • CreationTimeBefore (datetime) -- A filter that returns only AppImageConfigs created on or before the specified time.
  • CreationTimeAfter (datetime) -- A filter that returns only AppImageConfigs created on or after the specified time.
  • ModifiedTimeBefore (datetime) -- A filter that returns only AppImageConfigs modified on or before the specified time.
  • ModifiedTimeAfter (datetime) -- A filter that returns only AppImageConfigs modified on or after the specified time.
  • SortBy (string) -- The property used to sort results. The default value is CreationTime .
  • SortOrder (string) -- The sort order. The default value is Descending .
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'AppImageConfigs': [
        {
            'AppImageConfigArn': 'string',
            'AppImageConfigName': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'KernelGatewayImageConfig': {
                'KernelSpecs': [
                    {
                        'Name': 'string',
                        'DisplayName': 'string'
                    },
                ],
                'FileSystemConfig': {
                    'MountPath': 'string',
                    'DefaultUid': 123,
                    'DefaultGid': 123
                }
            }
        },
    ]
}

Response Structure

  • (dict) --

    • AppImageConfigs (list) --

      A list of AppImageConfigs and their properties.

      • (dict) --

        The configuration for running a SageMaker image as a KernelGateway app.

        • AppImageConfigArn (string) --

          The Amazon Resource Name (ARN) of the AppImageConfig.

        • AppImageConfigName (string) --

          The name of the AppImageConfig. Must be unique to your account.

        • CreationTime (datetime) --

          When the AppImageConfig was created.

        • LastModifiedTime (datetime) --

          When the AppImageConfig was last modified.

        • KernelGatewayImageConfig (dict) --

          The configuration for the file system and kernels in the SageMaker image.

          • KernelSpecs (list) --

            The specification of the Jupyter kernels in the image.

            • (dict) --

              The specification of a Jupyter kernel.

              • Name (string) --

                The name of the Jupyter kernel in the image. This value is case sensitive.

              • DisplayName (string) --

                The display name of the kernel.

          • FileSystemConfig (dict) --

            The Amazon Elastic File System (EFS) storage configuration for a SageMaker image.

            • MountPath (string) --

              The path within the image to mount the user's EFS home directory. The directory should be empty. If not specified, defaults to /home/sagemaker-user .

            • DefaultUid (integer) --

              The default POSIX user ID (UID). If not specified, defaults to 1000 .

            • DefaultGid (integer) --

              The default POSIX group ID (GID). If not specified, defaults to 100 .

class SageMaker.Paginator.ListApps
paginator = client.get_paginator('list_apps')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_apps().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    SortOrder='Ascending'|'Descending',
    SortBy='CreationTime',
    DomainIdEquals='string',
    UserProfileNameEquals='string',
    SpaceNameEquals='string',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • SortOrder (string) -- The sort order for the results. The default is Ascending.
  • SortBy (string) -- The parameter by which to sort the results. The default is CreationTime.
  • DomainIdEquals (string) -- A parameter to search for the domain ID.
  • UserProfileNameEquals (string) -- A parameter to search by user profile name. If SpaceNameEquals is set, then this value cannot be set.
  • SpaceNameEquals (string) -- A parameter to search by space name. If UserProfileNameEquals is set, then this value cannot be set.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'Apps': [
        {
            'DomainId': 'string',
            'UserProfileName': 'string',
            'AppType': 'JupyterServer'|'KernelGateway'|'TensorBoard'|'RStudioServerPro'|'RSessionGateway',
            'AppName': 'string',
            'Status': 'Deleted'|'Deleting'|'Failed'|'InService'|'Pending',
            'CreationTime': datetime(2015, 1, 1),
            'SpaceName': 'string'
        },
    ],

}

Response Structure

  • (dict) --

    • Apps (list) --

      The list of apps.

      • (dict) --

        Details about an Amazon SageMaker app.

        • DomainId (string) --

          The domain ID.

        • UserProfileName (string) --

          The user profile name.

        • AppType (string) --

          The type of app.

        • AppName (string) --

          The name of the app.

        • Status (string) --

          The status.

        • CreationTime (datetime) --

          The creation time.

        • SpaceName (string) --

          The name of the space.

class SageMaker.Paginator.ListArtifacts
paginator = client.get_paginator('list_artifacts')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_artifacts().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    SourceUri='string',
    ArtifactType='string',
    CreatedAfter=datetime(2015, 1, 1),
    CreatedBefore=datetime(2015, 1, 1),
    SortBy='CreationTime',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • SourceUri (string) -- A filter that returns only artifacts with the specified source URI.
  • ArtifactType (string) -- A filter that returns only artifacts of the specified type.
  • CreatedAfter (datetime) -- A filter that returns only artifacts created on or after the specified time.
  • CreatedBefore (datetime) -- A filter that returns only artifacts created on or before the specified time.
  • SortBy (string) -- The property used to sort results. The default value is CreationTime .
  • SortOrder (string) -- The sort order. The default value is Descending .
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'ArtifactSummaries': [
        {
            'ArtifactArn': 'string',
            'ArtifactName': 'string',
            'Source': {
                'SourceUri': 'string',
                'SourceTypes': [
                    {
                        'SourceIdType': 'MD5Hash'|'S3ETag'|'S3Version'|'Custom',
                        'Value': 'string'
                    },
                ]
            },
            'ArtifactType': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],

}

Response Structure

  • (dict) --

    • ArtifactSummaries (list) --

      A list of artifacts and their properties.

      • (dict) --

        Lists a summary of the properties of an artifact. An artifact represents a URI addressable object or data. Some examples are a dataset and a model.

        • ArtifactArn (string) --

          The Amazon Resource Name (ARN) of the artifact.

        • ArtifactName (string) --

          The name of the artifact.

        • Source (dict) --

          The source of the artifact.

          • SourceUri (string) --

            The URI of the source.

          • SourceTypes (list) --

            A list of source types.

            • (dict) --

              The ID and ID type of an artifact source.

              • SourceIdType (string) --

                The type of ID.

              • Value (string) --

                The ID.

        • ArtifactType (string) --

          The type of the artifact.

        • CreationTime (datetime) --

          When the artifact was created.

        • LastModifiedTime (datetime) --

          When the artifact was last modified.

class SageMaker.Paginator.ListAssociations
paginator = client.get_paginator('list_associations')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_associations().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    SourceArn='string',
    DestinationArn='string',
    SourceType='string',
    DestinationType='string',
    AssociationType='ContributedTo'|'AssociatedWith'|'DerivedFrom'|'Produced',
    CreatedAfter=datetime(2015, 1, 1),
    CreatedBefore=datetime(2015, 1, 1),
    SortBy='SourceArn'|'DestinationArn'|'SourceType'|'DestinationType'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • SourceArn (string) -- A filter that returns only associations with the specified source ARN.
  • DestinationArn (string) -- A filter that returns only associations with the specified destination Amazon Resource Name (ARN).
  • SourceType (string) -- A filter that returns only associations with the specified source type.
  • DestinationType (string) -- A filter that returns only associations with the specified destination type.
  • AssociationType (string) -- A filter that returns only associations of the specified type.
  • CreatedAfter (datetime) -- A filter that returns only associations created on or after the specified time.
  • CreatedBefore (datetime) -- A filter that returns only associations created on or before the specified time.
  • SortBy (string) -- The property used to sort results. The default value is CreationTime .
  • SortOrder (string) -- The sort order. The default value is Descending .
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'AssociationSummaries': [
        {
            'SourceArn': 'string',
            'DestinationArn': 'string',
            'SourceType': 'string',
            'DestinationType': 'string',
            'AssociationType': 'ContributedTo'|'AssociatedWith'|'DerivedFrom'|'Produced',
            'SourceName': 'string',
            'DestinationName': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'CreatedBy': {
                'UserProfileArn': 'string',
                'UserProfileName': 'string',
                'DomainId': 'string'
            }
        },
    ],

}

Response Structure

  • (dict) --

    • AssociationSummaries (list) --

      A list of associations and their properties.

      • (dict) --

        Lists a summary of the properties of an association. An association is an entity that links other lineage or experiment entities. An example would be an association between a training job and a model.

        • SourceArn (string) --

          The ARN of the source.

        • DestinationArn (string) --

          The Amazon Resource Name (ARN) of the destination.

        • SourceType (string) --

          The source type.

        • DestinationType (string) --

          The destination type.

        • AssociationType (string) --

          The type of the association.

        • SourceName (string) --

          The name of the source.

        • DestinationName (string) --

          The name of the destination.

        • CreationTime (datetime) --

          When the association was created.

        • CreatedBy (dict) --

          Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

          • UserProfileArn (string) --

            The Amazon Resource Name (ARN) of the user's profile.

          • UserProfileName (string) --

            The name of the user's profile.

          • DomainId (string) --

            The domain associated with the user.

class SageMaker.Paginator.ListAutoMLJobs
paginator = client.get_paginator('list_auto_ml_jobs')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_auto_ml_jobs().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    NameContains='string',
    StatusEquals='Completed'|'InProgress'|'Failed'|'Stopped'|'Stopping',
    SortOrder='Ascending'|'Descending',
    SortBy='Name'|'CreationTime'|'Status',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • CreationTimeAfter (datetime) -- Request a list of jobs, using a filter for time.
  • CreationTimeBefore (datetime) -- Request a list of jobs, using a filter for time.
  • LastModifiedTimeAfter (datetime) -- Request a list of jobs, using a filter for time.
  • LastModifiedTimeBefore (datetime) -- Request a list of jobs, using a filter for time.
  • NameContains (string) -- Request a list of jobs, using a search filter for name.
  • StatusEquals (string) -- Request a list of jobs, using a filter for status.
  • SortOrder (string) -- The sort order for the results. The default is Descending .
  • SortBy (string) -- The parameter by which to sort the results. The default is Name .
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'AutoMLJobSummaries': [
        {
            'AutoMLJobName': 'string',
            'AutoMLJobArn': 'string',
            'AutoMLJobStatus': 'Completed'|'InProgress'|'Failed'|'Stopped'|'Stopping',
            'AutoMLJobSecondaryStatus': 'Starting'|'AnalyzingData'|'FeatureEngineering'|'ModelTuning'|'MaxCandidatesReached'|'Failed'|'Stopped'|'MaxAutoMLJobRuntimeReached'|'Stopping'|'CandidateDefinitionsGenerated'|'GeneratingExplainabilityReport'|'Completed'|'ExplainabilityError'|'DeployingModel'|'ModelDeploymentError'|'GeneratingModelInsightsReport'|'ModelInsightsError',
            'CreationTime': datetime(2015, 1, 1),
            'EndTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'FailureReason': 'string',
            'PartialFailureReasons': [
                {
                    'PartialFailureMessage': 'string'
                },
            ]
        },
    ],

}

Response Structure

  • (dict) --

    • AutoMLJobSummaries (list) --

      Returns a summary list of jobs.

      • (dict) --

        Provides a summary about an AutoML job.

        • AutoMLJobName (string) --

          The name of the AutoML job you are requesting.

        • AutoMLJobArn (string) --

          The ARN of the AutoML job.

        • AutoMLJobStatus (string) --

          The status of the AutoML job.

        • AutoMLJobSecondaryStatus (string) --

          The secondary status of the AutoML job.

        • CreationTime (datetime) --

          When the AutoML job was created.

        • EndTime (datetime) --

          The end time of an AutoML job.

        • LastModifiedTime (datetime) --

          When the AutoML job was last modified.

        • FailureReason (string) --

          The failure reason of an AutoML job.

        • PartialFailureReasons (list) --

          The list of reasons for partial failures within an AutoML job.

          • (dict) --

            The reason for a partial failure of an AutoML job.

            • PartialFailureMessage (string) --

              The message containing the reason for a partial failure of an AutoML job.

class SageMaker.Paginator.ListCandidatesForAutoMLJob
paginator = client.get_paginator('list_candidates_for_auto_ml_job')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_candidates_for_auto_ml_job().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    AutoMLJobName='string',
    StatusEquals='Completed'|'InProgress'|'Failed'|'Stopped'|'Stopping',
    CandidateNameEquals='string',
    SortOrder='Ascending'|'Descending',
    SortBy='CreationTime'|'Status'|'FinalObjectiveMetricValue',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • AutoMLJobName (string) --

    [REQUIRED]

    List the candidates created for the job by providing the job's name.

  • StatusEquals (string) -- List the candidates for the job and filter by status.
  • CandidateNameEquals (string) -- List the candidates for the job and filter by candidate name.
  • SortOrder (string) -- The sort order for the results. The default is Ascending .
  • SortBy (string) -- The parameter by which to sort the results. The default is Descending .
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'Candidates': [
        {
            'CandidateName': 'string',
            'FinalAutoMLJobObjectiveMetric': {
                'Type': 'Maximize'|'Minimize',
                'MetricName': 'Accuracy'|'MSE'|'F1'|'F1macro'|'AUC'|'RMSE'|'MAE'|'R2'|'BalancedAccuracy'|'Precision'|'PrecisionMacro'|'Recall'|'RecallMacro',
                'Value': ...,
                'StandardMetricName': 'Accuracy'|'MSE'|'F1'|'F1macro'|'AUC'|'RMSE'|'MAE'|'R2'|'BalancedAccuracy'|'Precision'|'PrecisionMacro'|'Recall'|'RecallMacro'
            },
            'ObjectiveStatus': 'Succeeded'|'Pending'|'Failed',
            'CandidateSteps': [
                {
                    'CandidateStepType': 'AWS::SageMaker::TrainingJob'|'AWS::SageMaker::TransformJob'|'AWS::SageMaker::ProcessingJob',
                    'CandidateStepArn': 'string',
                    'CandidateStepName': 'string'
                },
            ],
            'CandidateStatus': 'Completed'|'InProgress'|'Failed'|'Stopped'|'Stopping',
            'InferenceContainers': [
                {
                    'Image': 'string',
                    'ModelDataUrl': 'string',
                    'Environment': {
                        'string': 'string'
                    }
                },
            ],
            'CreationTime': datetime(2015, 1, 1),
            'EndTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'FailureReason': 'string',
            'CandidateProperties': {
                'CandidateArtifactLocations': {
                    'Explainability': 'string',
                    'ModelInsights': 'string'
                },
                'CandidateMetrics': [
                    {
                        'MetricName': 'Accuracy'|'MSE'|'F1'|'F1macro'|'AUC'|'RMSE'|'MAE'|'R2'|'BalancedAccuracy'|'Precision'|'PrecisionMacro'|'Recall'|'RecallMacro',
                        'Value': ...,
                        'Set': 'Train'|'Validation'|'Test',
                        'StandardMetricName': 'Accuracy'|'MSE'|'F1'|'F1macro'|'AUC'|'RMSE'|'MAE'|'R2'|'BalancedAccuracy'|'Precision'|'PrecisionMacro'|'Recall'|'RecallMacro'|'LogLoss'|'InferenceLatency'
                    },
                ]
            }
        },
    ],

}

Response Structure

  • (dict) --

    • Candidates (list) --

      Summaries about the AutoMLCandidates .

      • (dict) --

        Information about a candidate produced by an AutoML training job, including its status, steps, and other properties.

        • CandidateName (string) --

          The name of the candidate.

        • FinalAutoMLJobObjectiveMetric (dict) --

          The best candidate result from an AutoML training job.

          • Type (string) --

            The type of metric with the best result.

          • MetricName (string) --

            The name of the metric with the best result. For a description of the possible objective metrics, see AutoMLJobObjective$MetricName.

          • Value (float) --

            The value of the metric with the best result.

          • StandardMetricName (string) --

            The name of the standard metric. For a description of the standard metrics, see Autopilot candidate metrics.

        • ObjectiveStatus (string) --

          The objective's status.

        • CandidateSteps (list) --

          Information about the candidate's steps.

          • (dict) --

            Information about the steps for a candidate and what step it is working on.

            • CandidateStepType (string) --

              Whether the candidate is at the transform, training, or processing step.

            • CandidateStepArn (string) --

              The ARN for the candidate's step.

            • CandidateStepName (string) --

              The name for the candidate's step.

        • CandidateStatus (string) --

          The candidate's status.

        • InferenceContainers (list) --

          Information about the inference container definitions.

          • (dict) --

            A list of container definitions that describe the different containers that make up an AutoML candidate. For more information, see .

            • Image (string) --

              The Amazon Elastic Container Registry (Amazon ECR) path of the container. For more information, see .

            • ModelDataUrl (string) --

              The location of the model artifacts. For more information, see .

            • Environment (dict) --

              The environment variables to set in the container. For more information, see .

              • (string) --
                • (string) --
        • CreationTime (datetime) --

          The creation time.

        • EndTime (datetime) --

          The end time.

        • LastModifiedTime (datetime) --

          The last modified time.

        • FailureReason (string) --

          The failure reason.

        • CandidateProperties (dict) --

          The properties of an AutoML candidate job.

          • CandidateArtifactLocations (dict) --

            The Amazon S3 prefix to the artifacts generated for an AutoML candidate.

            • Explainability (string) --

              The Amazon S3 prefix to the explainability artifacts generated for the AutoML candidate.

            • ModelInsights (string) --

              The Amazon S3 prefix to the model insight artifacts generated for the AutoML candidate.

          • CandidateMetrics (list) --

            Information about the candidate metrics for an AutoML job.

            • (dict) --

              Information about the metric for a candidate produced by an AutoML job.

              • MetricName (string) --

                The name of the metric.

              • Value (float) --

                The value of the metric.

              • Set (string) --

                The dataset split from which the AutoML job produced the metric.

              • StandardMetricName (string) --

                The name of the standard metric.

                Note

                For definitions of the standard metrics, see Autopilot candidate metrics.

class SageMaker.Paginator.ListCodeRepositories
paginator = client.get_paginator('list_code_repositories')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_code_repositories().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    NameContains='string',
    SortBy='Name'|'CreationTime'|'LastModifiedTime',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • CreationTimeAfter (datetime) -- A filter that returns only Git repositories that were created after the specified time.
  • CreationTimeBefore (datetime) -- A filter that returns only Git repositories that were created before the specified time.
  • LastModifiedTimeAfter (datetime) -- A filter that returns only Git repositories that were last modified after the specified time.
  • LastModifiedTimeBefore (datetime) -- A filter that returns only Git repositories that were last modified before the specified time.
  • NameContains (string) -- A string in the Git repositories name. This filter returns only repositories whose name contains the specified string.
  • SortBy (string) -- The field to sort results by. The default is Name .
  • SortOrder (string) -- The sort order for results. The default is Ascending .
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'CodeRepositorySummaryList': [
        {
            'CodeRepositoryName': 'string',
            'CodeRepositoryArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'GitConfig': {
                'RepositoryUrl': 'string',
                'Branch': 'string',
                'SecretArn': 'string'
            }
        },
    ],

}

Response Structure

  • (dict) --

    • CodeRepositorySummaryList (list) --

      Gets a list of summaries of the Git repositories. Each summary specifies the following values for the repository:

      • Name
      • Amazon Resource Name (ARN)
      • Creation time
      • Last modified time
      • Configuration information, including the URL location of the repository and the ARN of the Amazon Web Services Secrets Manager secret that contains the credentials used to access the repository.
      • (dict) --

        Specifies summary information about a Git repository.

        • CodeRepositoryName (string) --

          The name of the Git repository.

        • CodeRepositoryArn (string) --

          The Amazon Resource Name (ARN) of the Git repository.

        • CreationTime (datetime) --

          The date and time that the Git repository was created.

        • LastModifiedTime (datetime) --

          The date and time that the Git repository was last modified.

        • GitConfig (dict) --

          Configuration details for the Git repository, including the URL where it is located and the ARN of the Amazon Web Services Secrets Manager secret that contains the credentials used to access the repository.

          • RepositoryUrl (string) --

            The URL where the Git repository is located.

          • Branch (string) --

            The default branch for the Git repository.

          • SecretArn (string) --

            The Amazon Resource Name (ARN) of the Amazon Web Services Secrets Manager secret that contains the credentials used to access the git repository. The secret must have a staging label of AWSCURRENT and must be in the following format:

            {"username": UserName, "password": Password}

class SageMaker.Paginator.ListCompilationJobs
paginator = client.get_paginator('list_compilation_jobs')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_compilation_jobs().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    NameContains='string',
    StatusEquals='INPROGRESS'|'COMPLETED'|'FAILED'|'STARTING'|'STOPPING'|'STOPPED',
    SortBy='Name'|'CreationTime'|'Status',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • CreationTimeAfter (datetime) -- A filter that returns the model compilation jobs that were created after a specified time.
  • CreationTimeBefore (datetime) -- A filter that returns the model compilation jobs that were created before a specified time.
  • LastModifiedTimeAfter (datetime) -- A filter that returns the model compilation jobs that were modified after a specified time.
  • LastModifiedTimeBefore (datetime) -- A filter that returns the model compilation jobs that were modified before a specified time.
  • NameContains (string) -- A filter that returns the model compilation jobs whose name contains a specified string.
  • StatusEquals (string) -- A filter that retrieves model compilation jobs with a specific DescribeCompilationJobResponse$CompilationJobStatus status.
  • SortBy (string) -- The field by which to sort results. The default is CreationTime .
  • SortOrder (string) -- The sort order for results. The default is Ascending .
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'CompilationJobSummaries': [
        {
            'CompilationJobName': 'string',
            'CompilationJobArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'CompilationStartTime': datetime(2015, 1, 1),
            'CompilationEndTime': datetime(2015, 1, 1),
            'CompilationTargetDevice': 'lambda'|'ml_m4'|'ml_m5'|'ml_c4'|'ml_c5'|'ml_p2'|'ml_p3'|'ml_g4dn'|'ml_inf1'|'ml_eia2'|'jetson_tx1'|'jetson_tx2'|'jetson_nano'|'jetson_xavier'|'rasp3b'|'imx8qm'|'deeplens'|'rk3399'|'rk3288'|'aisage'|'sbe_c'|'qcs605'|'qcs603'|'sitara_am57x'|'amba_cv2'|'amba_cv22'|'amba_cv25'|'x86_win32'|'x86_win64'|'coreml'|'jacinto_tda4vm'|'imx8mplus',
            'CompilationTargetPlatformOs': 'ANDROID'|'LINUX',
            'CompilationTargetPlatformArch': 'X86_64'|'X86'|'ARM64'|'ARM_EABI'|'ARM_EABIHF',
            'CompilationTargetPlatformAccelerator': 'INTEL_GRAPHICS'|'MALI'|'NVIDIA'|'NNA',
            'LastModifiedTime': datetime(2015, 1, 1),
            'CompilationJobStatus': 'INPROGRESS'|'COMPLETED'|'FAILED'|'STARTING'|'STOPPING'|'STOPPED'
        },
    ],

}

Response Structure

  • (dict) --

    • CompilationJobSummaries (list) --

      An array of CompilationJobSummary objects, each describing a model compilation job.

      • (dict) --

        A summary of a model compilation job.

        • CompilationJobName (string) --

          The name of the model compilation job that you want a summary for.

        • CompilationJobArn (string) --

          The Amazon Resource Name (ARN) of the model compilation job.

        • CreationTime (datetime) --

          The time when the model compilation job was created.

        • CompilationStartTime (datetime) --

          The time when the model compilation job started.

        • CompilationEndTime (datetime) --

          The time when the model compilation job completed.

        • CompilationTargetDevice (string) --

          The type of device that the model will run on after the compilation job has completed.

        • CompilationTargetPlatformOs (string) --

          The type of OS that the model will run on after the compilation job has completed.

        • CompilationTargetPlatformArch (string) --

          The type of architecture that the model will run on after the compilation job has completed.

        • CompilationTargetPlatformAccelerator (string) --

          The type of accelerator that the model will run on after the compilation job has completed.

        • LastModifiedTime (datetime) --

          The time when the model compilation job was last modified.

        • CompilationJobStatus (string) --

          The status of the model compilation job.

class SageMaker.Paginator.ListContexts
paginator = client.get_paginator('list_contexts')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_contexts().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    SourceUri='string',
    ContextType='string',
    CreatedAfter=datetime(2015, 1, 1),
    CreatedBefore=datetime(2015, 1, 1),
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • SourceUri (string) -- A filter that returns only contexts with the specified source URI.
  • ContextType (string) -- A filter that returns only contexts of the specified type.
  • CreatedAfter (datetime) -- A filter that returns only contexts created on or after the specified time.
  • CreatedBefore (datetime) -- A filter that returns only contexts created on or before the specified time.
  • SortBy (string) -- The property used to sort results. The default value is CreationTime .
  • SortOrder (string) -- The sort order. The default value is Descending .
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'ContextSummaries': [
        {
            'ContextArn': 'string',
            'ContextName': 'string',
            'Source': {
                'SourceUri': 'string',
                'SourceType': 'string',
                'SourceId': 'string'
            },
            'ContextType': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],

}

Response Structure

  • (dict) --

    • ContextSummaries (list) --

      A list of contexts and their properties.

      • (dict) --

        Lists a summary of the properties of a context. A context provides a logical grouping of other entities.

        • ContextArn (string) --

          The Amazon Resource Name (ARN) of the context.

        • ContextName (string) --

          The name of the context.

        • Source (dict) --

          The source of the context.

          • SourceUri (string) --

            The URI of the source.

          • SourceType (string) --

            The type of the source.

          • SourceId (string) --

            The ID of the source.

        • ContextType (string) --

          The type of the context.

        • CreationTime (datetime) --

          When the context was created.

        • LastModifiedTime (datetime) --

          When the context was last modified.

class SageMaker.Paginator.ListDataQualityJobDefinitions
paginator = client.get_paginator('list_data_quality_job_definitions')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_data_quality_job_definitions().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    EndpointName='string',
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    NameContains='string',
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1),
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • EndpointName (string) -- A filter that lists the data quality job definitions associated with the specified endpoint.
  • SortBy (string) -- The field to sort results by. The default is CreationTime .
  • SortOrder (string) -- The sort order for results. The default is Descending .
  • NameContains (string) -- A string in the data quality monitoring job definition name. This filter returns only data quality monitoring job definitions whose name contains the specified string.
  • CreationTimeBefore (datetime) -- A filter that returns only data quality monitoring job definitions created before the specified time.
  • CreationTimeAfter (datetime) -- A filter that returns only data quality monitoring job definitions created after the specified time.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'JobDefinitionSummaries': [
        {
            'MonitoringJobDefinitionName': 'string',
            'MonitoringJobDefinitionArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'EndpointName': 'string'
        },
    ],

}

Response Structure

  • (dict) --

    • JobDefinitionSummaries (list) --

      A list of data quality monitoring job definitions.

      • (dict) --

        Summary information about a monitoring job.

        • MonitoringJobDefinitionName (string) --

          The name of the monitoring job.

        • MonitoringJobDefinitionArn (string) --

          The Amazon Resource Name (ARN) of the monitoring job.

        • CreationTime (datetime) --

          The time that the monitoring job was created.

        • EndpointName (string) --

          The name of the endpoint that the job monitors.

class SageMaker.Paginator.ListDeviceFleets
paginator = client.get_paginator('list_device_fleets')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_device_fleets().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    NameContains='string',
    SortBy='NAME'|'CREATION_TIME'|'LAST_MODIFIED_TIME',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • CreationTimeAfter (datetime) -- Filter fleets where packaging job was created after specified time.
  • CreationTimeBefore (datetime) -- Filter fleets where the edge packaging job was created before specified time.
  • LastModifiedTimeAfter (datetime) -- Select fleets where the job was updated after X
  • LastModifiedTimeBefore (datetime) -- Select fleets where the job was updated before X
  • NameContains (string) -- Filter for fleets containing this name in their fleet device name.
  • SortBy (string) -- The column to sort by.
  • SortOrder (string) -- What direction to sort in.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'DeviceFleetSummaries': [
        {
            'DeviceFleetArn': 'string',
            'DeviceFleetName': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],

}

Response Structure

  • (dict) --

    • DeviceFleetSummaries (list) --

      Summary of the device fleet.

      • (dict) --

        Summary of the device fleet.

        • DeviceFleetArn (string) --

          Amazon Resource Name (ARN) of the device fleet.

        • DeviceFleetName (string) --

          Name of the device fleet.

        • CreationTime (datetime) --

          Timestamp of when the device fleet was created.

        • LastModifiedTime (datetime) --

          Timestamp of when the device fleet was last updated.

class SageMaker.Paginator.ListDevices
paginator = client.get_paginator('list_devices')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_devices().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    LatestHeartbeatAfter=datetime(2015, 1, 1),
    ModelName='string',
    DeviceFleetName='string',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • LatestHeartbeatAfter (datetime) -- Select fleets where the job was updated after X
  • ModelName (string) -- A filter that searches devices that contains this name in any of their models.
  • DeviceFleetName (string) -- Filter for fleets containing this name in their device fleet name.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'DeviceSummaries': [
        {
            'DeviceName': 'string',
            'DeviceArn': 'string',
            'Description': 'string',
            'DeviceFleetName': 'string',
            'IotThingName': 'string',
            'RegistrationTime': datetime(2015, 1, 1),
            'LatestHeartbeat': datetime(2015, 1, 1),
            'Models': [
                {
                    'ModelName': 'string',
                    'ModelVersion': 'string'
                },
            ],
            'AgentVersion': 'string'
        },
    ],

}

Response Structure

  • (dict) --

    • DeviceSummaries (list) --

      Summary of devices.

      • (dict) --

        Summary of the device.

        • DeviceName (string) --

          The unique identifier of the device.

        • DeviceArn (string) --

          Amazon Resource Name (ARN) of the device.

        • Description (string) --

          A description of the device.

        • DeviceFleetName (string) --

          The name of the fleet the device belongs to.

        • IotThingName (string) --

          The Amazon Web Services Internet of Things (IoT) object thing name associated with the device..

        • RegistrationTime (datetime) --

          The timestamp of the last registration or de-reregistration.

        • LatestHeartbeat (datetime) --

          The last heartbeat received from the device.

        • Models (list) --

          Models on the device.

          • (dict) --

            Summary of model on edge device.

            • ModelName (string) --

              The name of the model.

            • ModelVersion (string) --

              The version model.

        • AgentVersion (string) --

          Edge Manager agent version.

class SageMaker.Paginator.ListDomains
paginator = client.get_paginator('list_domains')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_domains().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
PaginationConfig (dict) --

A dictionary that provides parameters to control pagination.

  • MaxItems (integer) --

    The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

  • PageSize (integer) --

    The size of each page.

  • StartingToken (string) --

    A token to specify where to start paginating. This is the NextToken from a previous response.

Return type
dict
Returns
Response Syntax
{
    'Domains': [
        {
            'DomainArn': 'string',
            'DomainId': 'string',
            'DomainName': 'string',
            'Status': 'Deleting'|'Failed'|'InService'|'Pending'|'Updating'|'Update_Failed'|'Delete_Failed',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'Url': 'string'
        },
    ],

}

Response Structure

  • (dict) --
    • Domains (list) --

      The list of domains.

      • (dict) --

        The domain's details.

        • DomainArn (string) --

          The domain's Amazon Resource Name (ARN).

        • DomainId (string) --

          The domain ID.

        • DomainName (string) --

          The domain name.

        • Status (string) --

          The status.

        • CreationTime (datetime) --

          The creation time.

        • LastModifiedTime (datetime) --

          The last modified time.

        • Url (string) --

          The domain's URL.

class SageMaker.Paginator.ListEdgeDeploymentPlans
paginator = client.get_paginator('list_edge_deployment_plans')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_edge_deployment_plans().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    NameContains='string',
    DeviceFleetNameContains='string',
    SortBy='NAME'|'DEVICE_FLEET_NAME'|'CREATION_TIME'|'LAST_MODIFIED_TIME',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • CreationTimeAfter (datetime) -- Selects edge deployment plans created after this time.
  • CreationTimeBefore (datetime) -- Selects edge deployment plans created before this time.
  • LastModifiedTimeAfter (datetime) -- Selects edge deployment plans that were last updated after this time.
  • LastModifiedTimeBefore (datetime) -- Selects edge deployment plans that were last updated before this time.
  • NameContains (string) -- Selects edge deployment plans with names containing this name.
  • DeviceFleetNameContains (string) -- Selects edge deployment plans with a device fleet name containing this name.
  • SortBy (string) -- The column by which to sort the edge deployment plans. Can be one of NAME , DEVICEFLEETNAME , CREATIONTIME , LASTMODIFIEDTIME .
  • SortOrder (string) -- The direction of the sorting (ascending or descending).
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'EdgeDeploymentPlanSummaries': [
        {
            'EdgeDeploymentPlanArn': 'string',
            'EdgeDeploymentPlanName': 'string',
            'DeviceFleetName': 'string',
            'EdgeDeploymentSuccess': 123,
            'EdgeDeploymentPending': 123,
            'EdgeDeploymentFailed': 123,
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],

}

Response Structure

  • (dict) --

    • EdgeDeploymentPlanSummaries (list) --

      List of summaries of edge deployment plans.

      • (dict) --

        Contains information summarizing an edge deployment plan.

        • EdgeDeploymentPlanArn (string) --

          The ARN of the edge deployment plan.

        • EdgeDeploymentPlanName (string) --

          The name of the edge deployment plan.

        • DeviceFleetName (string) --

          The name of the device fleet used for the deployment.

        • EdgeDeploymentSuccess (integer) --

          The number of edge devices with the successful deployment.

        • EdgeDeploymentPending (integer) --

          The number of edge devices yet to pick up the deployment, or in progress.

        • EdgeDeploymentFailed (integer) --

          The number of edge devices that failed the deployment.

        • CreationTime (datetime) --

          The time when the edge deployment plan was created.

        • LastModifiedTime (datetime) --

          The time when the edge deployment plan was last updated.

class SageMaker.Paginator.ListEdgePackagingJobs
paginator = client.get_paginator('list_edge_packaging_jobs')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_edge_packaging_jobs().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    NameContains='string',
    ModelNameContains='string',
    StatusEquals='STARTING'|'INPROGRESS'|'COMPLETED'|'FAILED'|'STOPPING'|'STOPPED',
    SortBy='NAME'|'MODEL_NAME'|'CREATION_TIME'|'LAST_MODIFIED_TIME'|'STATUS',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • CreationTimeAfter (datetime) -- Select jobs where the job was created after specified time.
  • CreationTimeBefore (datetime) -- Select jobs where the job was created before specified time.
  • LastModifiedTimeAfter (datetime) -- Select jobs where the job was updated after specified time.
  • LastModifiedTimeBefore (datetime) -- Select jobs where the job was updated before specified time.
  • NameContains (string) -- Filter for jobs containing this name in their packaging job name.
  • ModelNameContains (string) -- Filter for jobs where the model name contains this string.
  • StatusEquals (string) -- The job status to filter for.
  • SortBy (string) -- Use to specify what column to sort by.
  • SortOrder (string) -- What direction to sort by.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'EdgePackagingJobSummaries': [
        {
            'EdgePackagingJobArn': 'string',
            'EdgePackagingJobName': 'string',
            'EdgePackagingJobStatus': 'STARTING'|'INPROGRESS'|'COMPLETED'|'FAILED'|'STOPPING'|'STOPPED',
            'CompilationJobName': 'string',
            'ModelName': 'string',
            'ModelVersion': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],

}

Response Structure

  • (dict) --

    • EdgePackagingJobSummaries (list) --

      Summaries of edge packaging jobs.

      • (dict) --

        Summary of edge packaging job.

        • EdgePackagingJobArn (string) --

          The Amazon Resource Name (ARN) of the edge packaging job.

        • EdgePackagingJobName (string) --

          The name of the edge packaging job.

        • EdgePackagingJobStatus (string) --

          The status of the edge packaging job.

        • CompilationJobName (string) --

          The name of the SageMaker Neo compilation job.

        • ModelName (string) --

          The name of the model.

        • ModelVersion (string) --

          The version of the model.

        • CreationTime (datetime) --

          The timestamp of when the job was created.

        • LastModifiedTime (datetime) --

          The timestamp of when the edge packaging job was last updated.

class SageMaker.Paginator.ListEndpointConfigs
paginator = client.get_paginator('list_endpoint_configs')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_endpoint_configs().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    NameContains='string',
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1),
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • SortBy (string) -- The field to sort results by. The default is CreationTime .
  • SortOrder (string) -- The sort order for results. The default is Descending .
  • NameContains (string) -- A string in the endpoint configuration name. This filter returns only endpoint configurations whose name contains the specified string.
  • CreationTimeBefore (datetime) -- A filter that returns only endpoint configurations created before the specified time (timestamp).
  • CreationTimeAfter (datetime) -- A filter that returns only endpoint configurations with a creation time greater than or equal to the specified time (timestamp).
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'EndpointConfigs': [
        {
            'EndpointConfigName': 'string',
            'EndpointConfigArn': 'string',
            'CreationTime': datetime(2015, 1, 1)
        },
    ],

}

Response Structure

  • (dict) --

    • EndpointConfigs (list) --

      An array of endpoint configurations.

      • (dict) --

        Provides summary information for an endpoint configuration.

        • EndpointConfigName (string) --

          The name of the endpoint configuration.

        • EndpointConfigArn (string) --

          The Amazon Resource Name (ARN) of the endpoint configuration.

        • CreationTime (datetime) --

          A timestamp that shows when the endpoint configuration was created.

class SageMaker.Paginator.ListEndpoints
paginator = client.get_paginator('list_endpoints')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_endpoints().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    SortBy='Name'|'CreationTime'|'Status',
    SortOrder='Ascending'|'Descending',
    NameContains='string',
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    StatusEquals='OutOfService'|'Creating'|'Updating'|'SystemUpdating'|'RollingBack'|'InService'|'Deleting'|'Failed',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • SortBy (string) -- Sorts the list of results. The default is CreationTime .
  • SortOrder (string) -- The sort order for results. The default is Descending .
  • NameContains (string) -- A string in endpoint names. This filter returns only endpoints whose name contains the specified string.
  • CreationTimeBefore (datetime) -- A filter that returns only endpoints that were created before the specified time (timestamp).
  • CreationTimeAfter (datetime) -- A filter that returns only endpoints with a creation time greater than or equal to the specified time (timestamp).
  • LastModifiedTimeBefore (datetime) -- A filter that returns only endpoints that were modified before the specified timestamp.
  • LastModifiedTimeAfter (datetime) -- A filter that returns only endpoints that were modified after the specified timestamp.
  • StatusEquals (string) -- A filter that returns only endpoints with the specified status.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'Endpoints': [
        {
            'EndpointName': 'string',
            'EndpointArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'EndpointStatus': 'OutOfService'|'Creating'|'Updating'|'SystemUpdating'|'RollingBack'|'InService'|'Deleting'|'Failed'
        },
    ],

}

Response Structure

  • (dict) --

    • Endpoints (list) --

      An array or endpoint objects.

      • (dict) --

        Provides summary information for an endpoint.

        • EndpointName (string) --

          The name of the endpoint.

        • EndpointArn (string) --

          The Amazon Resource Name (ARN) of the endpoint.

        • CreationTime (datetime) --

          A timestamp that shows when the endpoint was created.

        • LastModifiedTime (datetime) --

          A timestamp that shows when the endpoint was last modified.

        • EndpointStatus (string) --

          The status of the endpoint.

          • OutOfService : Endpoint is not available to take incoming requests.
          • Creating : CreateEndpoint is executing.
          • Updating : UpdateEndpoint or UpdateEndpointWeightsAndCapacities is executing.
          • SystemUpdating : Endpoint is undergoing maintenance and cannot be updated or deleted or re-scaled until it has completed. This maintenance operation does not change any customer-specified values such as VPC config, KMS encryption, model, instance type, or instance count.
          • RollingBack : Endpoint fails to scale up or down or change its variant weight and is in the process of rolling back to its previous configuration. Once the rollback completes, endpoint returns to an InService status. This transitional status only applies to an endpoint that has autoscaling enabled and is undergoing variant weight or capacity changes as part of an UpdateEndpointWeightsAndCapacities call or when the UpdateEndpointWeightsAndCapacities operation is called explicitly.
          • InService : Endpoint is available to process incoming requests.
          • Deleting : DeleteEndpoint is executing.
          • Failed : Endpoint could not be created, updated, or re-scaled. Use DescribeEndpointOutput$FailureReason for information about the failure. DeleteEndpoint is the only operation that can be performed on a failed endpoint.

          To get a list of endpoints with a specified status, use the ListEndpointsInput$StatusEquals filter.

class SageMaker.Paginator.ListExperiments
paginator = client.get_paginator('list_experiments')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_experiments().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    CreatedAfter=datetime(2015, 1, 1),
    CreatedBefore=datetime(2015, 1, 1),
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • CreatedAfter (datetime) -- A filter that returns only experiments created after the specified time.
  • CreatedBefore (datetime) -- A filter that returns only experiments created before the specified time.
  • SortBy (string) -- The property used to sort results. The default value is CreationTime .
  • SortOrder (string) -- The sort order. The default value is Descending .
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'ExperimentSummaries': [
        {
            'ExperimentArn': 'string',
            'ExperimentName': 'string',
            'DisplayName': 'string',
            'ExperimentSource': {
                'SourceArn': 'string',
                'SourceType': 'string'
            },
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],

}

Response Structure

  • (dict) --

    • ExperimentSummaries (list) --

      A list of the summaries of your experiments.

      • (dict) --

        A summary of the properties of an experiment. To get the complete set of properties, call the DescribeExperiment API and provide the ExperimentName .

        • ExperimentArn (string) --

          The Amazon Resource Name (ARN) of the experiment.

        • ExperimentName (string) --

          The name of the experiment.

        • DisplayName (string) --

          The name of the experiment as displayed. If DisplayName isn't specified, ExperimentName is displayed.

        • ExperimentSource (dict) --

          The source of the experiment.

          • SourceArn (string) --

            The Amazon Resource Name (ARN) of the source.

          • SourceType (string) --

            The source type.

        • CreationTime (datetime) --

          When the experiment was created.

        • LastModifiedTime (datetime) --

          When the experiment was last modified.

class SageMaker.Paginator.ListFeatureGroups
paginator = client.get_paginator('list_feature_groups')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_feature_groups().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    NameContains='string',
    FeatureGroupStatusEquals='Creating'|'Created'|'CreateFailed'|'Deleting'|'DeleteFailed',
    OfflineStoreStatusEquals='Active'|'Blocked'|'Disabled',
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    SortOrder='Ascending'|'Descending',
    SortBy='Name'|'FeatureGroupStatus'|'OfflineStoreStatus'|'CreationTime',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • NameContains (string) -- A string that partially matches one or more FeatureGroup s names. Filters FeatureGroup s by name.
  • FeatureGroupStatusEquals (string) -- A FeatureGroup status. Filters by FeatureGroup status.
  • OfflineStoreStatusEquals (string) -- An OfflineStore status. Filters by OfflineStore status.
  • CreationTimeAfter (datetime) -- Use this parameter to search for FeatureGroups s created after a specific date and time.
  • CreationTimeBefore (datetime) -- Use this parameter to search for FeatureGroups s created before a specific date and time.
  • SortOrder (string) -- The order in which feature groups are listed.
  • SortBy (string) -- The value on which the feature group list is sorted.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'FeatureGroupSummaries': [
        {
            'FeatureGroupName': 'string',
            'FeatureGroupArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'FeatureGroupStatus': 'Creating'|'Created'|'CreateFailed'|'Deleting'|'DeleteFailed',
            'OfflineStoreStatus': {
                'Status': 'Active'|'Blocked'|'Disabled',
                'BlockedReason': 'string'
            }
        },
    ],

}

Response Structure

  • (dict) --

    • FeatureGroupSummaries (list) --

      A summary of feature groups.

      • (dict) --

        The name, Arn, CreationTime , FeatureGroup values, LastUpdatedTime and EnableOnlineStorage status of a FeatureGroup .

        • FeatureGroupName (string) --

          The name of FeatureGroup .

        • FeatureGroupArn (string) --

          Unique identifier for the FeatureGroup .

        • CreationTime (datetime) --

          A timestamp indicating the time of creation time of the FeatureGroup .

        • FeatureGroupStatus (string) --

          The status of a FeatureGroup. The status can be any of the following: Creating , Created , CreateFail , Deleting or DetailFail .

        • OfflineStoreStatus (dict) --

          Notifies you if replicating data into the OfflineStore has failed. Returns either: Active or Blocked .

          • Status (string) --

            An OfflineStore status.

          • BlockedReason (string) --

            The justification for why the OfflineStoreStatus is Blocked (if applicable).

class SageMaker.Paginator.ListFlowDefinitions
paginator = client.get_paginator('list_flow_definitions')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_flow_definitions().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • CreationTimeAfter (datetime) -- A filter that returns only flow definitions with a creation time greater than or equal to the specified timestamp.
  • CreationTimeBefore (datetime) -- A filter that returns only flow definitions that were created before the specified timestamp.
  • SortOrder (string) -- An optional value that specifies whether you want the results sorted in Ascending or Descending order.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'FlowDefinitionSummaries': [
        {
            'FlowDefinitionName': 'string',
            'FlowDefinitionArn': 'string',
            'FlowDefinitionStatus': 'Initializing'|'Active'|'Failed'|'Deleting',
            'CreationTime': datetime(2015, 1, 1),
            'FailureReason': 'string'
        },
    ],

}

Response Structure

  • (dict) --

    • FlowDefinitionSummaries (list) --

      An array of objects describing the flow definitions.

      • (dict) --

        Contains summary information about the flow definition.

        • FlowDefinitionName (string) --

          The name of the flow definition.

        • FlowDefinitionArn (string) --

          The Amazon Resource Name (ARN) of the flow definition.

        • FlowDefinitionStatus (string) --

          The status of the flow definition. Valid values:

        • CreationTime (datetime) --

          The timestamp when SageMaker created the flow definition.

        • FailureReason (string) --

          The reason why the flow definition creation failed. A failure reason is returned only when the flow definition status is Failed .

class SageMaker.Paginator.ListHumanTaskUis
paginator = client.get_paginator('list_human_task_uis')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_human_task_uis().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • CreationTimeAfter (datetime) -- A filter that returns only human task user interfaces with a creation time greater than or equal to the specified timestamp.
  • CreationTimeBefore (datetime) -- A filter that returns only human task user interfaces that were created before the specified timestamp.
  • SortOrder (string) -- An optional value that specifies whether you want the results sorted in Ascending or Descending order.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'HumanTaskUiSummaries': [
        {
            'HumanTaskUiName': 'string',
            'HumanTaskUiArn': 'string',
            'CreationTime': datetime(2015, 1, 1)
        },
    ],

}

Response Structure

  • (dict) --

    • HumanTaskUiSummaries (list) --

      An array of objects describing the human task user interfaces.

      • (dict) --

        Container for human task user interface information.

        • HumanTaskUiName (string) --

          The name of the human task user interface.

        • HumanTaskUiArn (string) --

          The Amazon Resource Name (ARN) of the human task user interface.

        • CreationTime (datetime) --

          A timestamp when SageMaker created the human task user interface.

class SageMaker.Paginator.ListHyperParameterTuningJobs
paginator = client.get_paginator('list_hyper_parameter_tuning_jobs')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_hyper_parameter_tuning_jobs().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    SortBy='Name'|'Status'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    NameContains='string',
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    StatusEquals='Completed'|'InProgress'|'Failed'|'Stopped'|'Stopping',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • SortBy (string) -- The field to sort results by. The default is Name .
  • SortOrder (string) -- The sort order for results. The default is Ascending .
  • NameContains (string) -- A string in the tuning job name. This filter returns only tuning jobs whose name contains the specified string.
  • CreationTimeAfter (datetime) -- A filter that returns only tuning jobs that were created after the specified time.
  • CreationTimeBefore (datetime) -- A filter that returns only tuning jobs that were created before the specified time.
  • LastModifiedTimeAfter (datetime) -- A filter that returns only tuning jobs that were modified after the specified time.
  • LastModifiedTimeBefore (datetime) -- A filter that returns only tuning jobs that were modified before the specified time.
  • StatusEquals (string) -- A filter that returns only tuning jobs with the specified status.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'HyperParameterTuningJobSummaries': [
        {
            'HyperParameterTuningJobName': 'string',
            'HyperParameterTuningJobArn': 'string',
            'HyperParameterTuningJobStatus': 'Completed'|'InProgress'|'Failed'|'Stopped'|'Stopping',
            'Strategy': 'Bayesian'|'Random'|'Hyperband'|'Grid',
            'CreationTime': datetime(2015, 1, 1),
            'HyperParameterTuningEndTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'TrainingJobStatusCounters': {
                'Completed': 123,
                'InProgress': 123,
                'RetryableError': 123,
                'NonRetryableError': 123,
                'Stopped': 123
            },
            'ObjectiveStatusCounters': {
                'Succeeded': 123,
                'Pending': 123,
                'Failed': 123
            },
            'ResourceLimits': {
                'MaxNumberOfTrainingJobs': 123,
                'MaxParallelTrainingJobs': 123,
                'MaxRuntimeInSeconds': 123
            }
        },
    ],

}

Response Structure

  • (dict) --

    • HyperParameterTuningJobSummaries (list) --

      A list of HyperParameterTuningJobSummary objects that describe the tuning jobs that the ListHyperParameterTuningJobs request returned.

      • (dict) --

        Provides summary information about a hyperparameter tuning job.

        • HyperParameterTuningJobName (string) --

          The name of the tuning job.

        • HyperParameterTuningJobArn (string) --

          The Amazon Resource Name (ARN) of the tuning job.

        • HyperParameterTuningJobStatus (string) --

          The status of the tuning job.

        • Strategy (string) --

          Specifies the search strategy hyperparameter tuning uses to choose which hyperparameters to evaluate at each iteration.

        • CreationTime (datetime) --

          The date and time that the tuning job was created.

        • HyperParameterTuningEndTime (datetime) --

          The date and time that the tuning job ended.

        • LastModifiedTime (datetime) --

          The date and time that the tuning job was modified.

        • TrainingJobStatusCounters (dict) --

          The TrainingJobStatusCounters object that specifies the numbers of training jobs, categorized by status, that this tuning job launched.

          • Completed (integer) --

            The number of completed training jobs launched by the hyperparameter tuning job.

          • InProgress (integer) --

            The number of in-progress training jobs launched by a hyperparameter tuning job.

          • RetryableError (integer) --

            The number of training jobs that failed, but can be retried. A failed training job can be retried only if it failed because an internal service error occurred.

          • NonRetryableError (integer) --

            The number of training jobs that failed and can't be retried. A failed training job can't be retried if it failed because a client error occurred.

          • Stopped (integer) --

            The number of training jobs launched by a hyperparameter tuning job that were manually stopped.

        • ObjectiveStatusCounters (dict) --

          The ObjectiveStatusCounters object that specifies the numbers of training jobs, categorized by objective metric status, that this tuning job launched.

          • Succeeded (integer) --

            The number of training jobs whose final objective metric was evaluated by the hyperparameter tuning job and used in the hyperparameter tuning process.

          • Pending (integer) --

            The number of training jobs that are in progress and pending evaluation of their final objective metric.

          • Failed (integer) --

            The number of training jobs whose final objective metric was not evaluated and used in the hyperparameter tuning process. This typically occurs when the training job failed or did not emit an objective metric.

        • ResourceLimits (dict) --

          The ResourceLimits object that specifies the maximum number of training jobs and parallel training jobs allowed for this tuning job.

          • MaxNumberOfTrainingJobs (integer) --

            The maximum number of training jobs that a hyperparameter tuning job can launch.

          • MaxParallelTrainingJobs (integer) --

            The maximum number of concurrent training jobs that a hyperparameter tuning job can launch.

          • MaxRuntimeInSeconds (integer) --

            The maximum time in seconds that a training job launched by a hyperparameter tuning job can run.

class SageMaker.Paginator.ListImageVersions
paginator = client.get_paginator('list_image_versions')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_image_versions().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    ImageName='string',
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    SortBy='CREATION_TIME'|'LAST_MODIFIED_TIME'|'VERSION',
    SortOrder='ASCENDING'|'DESCENDING',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • CreationTimeAfter (datetime) -- A filter that returns only versions created on or after the specified time.
  • CreationTimeBefore (datetime) -- A filter that returns only versions created on or before the specified time.
  • ImageName (string) --

    [REQUIRED]

    The name of the image to list the versions of.

  • LastModifiedTimeAfter (datetime) -- A filter that returns only versions modified on or after the specified time.
  • LastModifiedTimeBefore (datetime) -- A filter that returns only versions modified on or before the specified time.
  • SortBy (string) -- The property used to sort results. The default value is CREATION_TIME .
  • SortOrder (string) -- The sort order. The default value is DESCENDING .
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'ImageVersions': [
        {
            'CreationTime': datetime(2015, 1, 1),
            'FailureReason': 'string',
            'ImageArn': 'string',
            'ImageVersionArn': 'string',
            'ImageVersionStatus': 'CREATING'|'CREATED'|'CREATE_FAILED'|'DELETING'|'DELETE_FAILED',
            'LastModifiedTime': datetime(2015, 1, 1),
            'Version': 123
        },
    ],

}

Response Structure

  • (dict) --

    • ImageVersions (list) --

      A list of versions and their properties.

      • (dict) --

        A version of a SageMaker Image . A version represents an existing container image.

        • CreationTime (datetime) --

          When the version was created.

        • FailureReason (string) --

          When a create or delete operation fails, the reason for the failure.

        • ImageArn (string) --

          The ARN of the image the version is based on.

        • ImageVersionArn (string) --

          The ARN of the version.

        • ImageVersionStatus (string) --

          The status of the version.

        • LastModifiedTime (datetime) --

          When the version was last modified.

        • Version (integer) --

          The version number.

class SageMaker.Paginator.ListImages
paginator = client.get_paginator('list_images')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_images().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    NameContains='string',
    SortBy='CREATION_TIME'|'LAST_MODIFIED_TIME'|'IMAGE_NAME',
    SortOrder='ASCENDING'|'DESCENDING',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • CreationTimeAfter (datetime) -- A filter that returns only images created on or after the specified time.
  • CreationTimeBefore (datetime) -- A filter that returns only images created on or before the specified time.
  • LastModifiedTimeAfter (datetime) -- A filter that returns only images modified on or after the specified time.
  • LastModifiedTimeBefore (datetime) -- A filter that returns only images modified on or before the specified time.
  • NameContains (string) -- A filter that returns only images whose name contains the specified string.
  • SortBy (string) -- The property used to sort results. The default value is CREATION_TIME .
  • SortOrder (string) -- The sort order. The default value is DESCENDING .
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'Images': [
        {
            'CreationTime': datetime(2015, 1, 1),
            'Description': 'string',
            'DisplayName': 'string',
            'FailureReason': 'string',
            'ImageArn': 'string',
            'ImageName': 'string',
            'ImageStatus': 'CREATING'|'CREATED'|'CREATE_FAILED'|'UPDATING'|'UPDATE_FAILED'|'DELETING'|'DELETE_FAILED',
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],

}

Response Structure

  • (dict) --

    • Images (list) --

      A list of images and their properties.

      • (dict) --

        A SageMaker image. A SageMaker image represents a set of container images that are derived from a common base container image. Each of these container images is represented by a SageMaker ImageVersion .

        • CreationTime (datetime) --

          When the image was created.

        • Description (string) --

          The description of the image.

        • DisplayName (string) --

          The name of the image as displayed.

        • FailureReason (string) --

          When a create, update, or delete operation fails, the reason for the failure.

        • ImageArn (string) --

          The ARN of the image.

        • ImageName (string) --

          The name of the image.

        • ImageStatus (string) --

          The status of the image.

        • LastModifiedTime (datetime) --

          When the image was last modified.

class SageMaker.Paginator.ListInferenceExperiments
paginator = client.get_paginator('list_inference_experiments')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_inference_experiments().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    NameContains='string',
    Type='ShadowMode',
    StatusEquals='Creating'|'Created'|'Updating'|'Running'|'Starting'|'Stopping'|'Completed'|'Cancelled',
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    SortBy='Name'|'CreationTime'|'Status',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • NameContains (string) -- Selects inference experiments whose names contain this name.
  • Type (string) -- Selects inference experiments of this type. For the possible types of inference experiments, see CreateInferenceExperimentRequest$Type.
  • StatusEquals (string) -- Selects inference experiments which are in this status. For the possible statuses, see DescribeInferenceExperimentResponse$Status.
  • CreationTimeAfter (datetime) -- Selects inference experiments which were created after this timestamp.
  • CreationTimeBefore (datetime) -- Selects inference experiments which were created before this timestamp.
  • LastModifiedTimeAfter (datetime) -- Selects inference experiments which were last modified after this timestamp.
  • LastModifiedTimeBefore (datetime) -- Selects inference experiments which were last modified before this timestamp.
  • SortBy (string) -- The column by which to sort the listed inference experiments.
  • SortOrder (string) -- The direction of sorting (ascending or descending).
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'InferenceExperiments': [
        {
            'Name': 'string',
            'Type': 'ShadowMode',
            'Schedule': {
                'StartTime': datetime(2015, 1, 1),
                'EndTime': datetime(2015, 1, 1)
            },
            'Status': 'Creating'|'Created'|'Updating'|'Running'|'Starting'|'Stopping'|'Completed'|'Cancelled',
            'StatusReason': 'string',
            'Description': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'CompletionTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'RoleArn': 'string'
        },
    ],

}

Response Structure

  • (dict) --

    • InferenceExperiments (list) --

      List of inference experiments.

      • (dict) --

        Lists a summary of properties of an inference experiment.

        • Name (string) --

          The name of the inference experiment.

        • Type (string) --

          The type of the inference experiment.

        • Schedule (dict) --

          The duration for which the inference experiment ran or will run.

          The maximum duration that you can set for an inference experiment is 30 days.

          • StartTime (datetime) --

            The timestamp at which the inference experiment started or will start.

          • EndTime (datetime) --

            The timestamp at which the inference experiment ended or will end.

        • Status (string) --

          The status of the inference experiment.

        • StatusReason (string) --

          The error message for the inference experiment status result.

        • Description (string) --

          The description of the inference experiment.

        • CreationTime (datetime) --

          The timestamp at which the inference experiment was created.

        • CompletionTime (datetime) --

          The timestamp at which the inference experiment was completed.

        • LastModifiedTime (datetime) --

          The timestamp when you last modified the inference experiment.

        • RoleArn (string) --

          The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images, and manage Amazon SageMaker Inference endpoints for model deployment.

class SageMaker.Paginator.ListInferenceRecommendationsJobSteps
paginator = client.get_paginator('list_inference_recommendations_job_steps')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_inference_recommendations_job_steps().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    JobName='string',
    Status='PENDING'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOPPING'|'STOPPED',
    StepType='BENCHMARK',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • JobName (string) --

    [REQUIRED]

    The name for the Inference Recommender job.

  • Status (string) -- A filter to return benchmarks of a specified status. If this field is left empty, then all benchmarks are returned.
  • StepType (string) --

    A filter to return details about the specified type of subtask.

    BENCHMARK : Evaluate the performance of your model on different instance types.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'Steps': [
        {
            'StepType': 'BENCHMARK',
            'JobName': 'string',
            'Status': 'PENDING'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOPPING'|'STOPPED',
            'InferenceBenchmark': {
                'Metrics': {
                    'CostPerHour': ...,
                    'CostPerInference': ...,
                    'MaxInvocations': 123,
                    'ModelLatency': 123,
                    'CpuUtilization': ...,
                    'MemoryUtilization': ...
                },
                'EndpointConfiguration': {
                    'EndpointName': 'string',
                    'VariantName': 'string',
                    'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge',
                    'InitialInstanceCount': 123
                },
                'ModelConfiguration': {
                    'InferenceSpecificationName': 'string',
                    'EnvironmentParameters': [
                        {
                            'Key': 'string',
                            'ValueType': 'string',
                            'Value': 'string'
                        },
                    ],
                    'CompilationJobName': 'string'
                },
                'FailureReason': 'string'
            }
        },
    ],

}

Response Structure

  • (dict) --

    • Steps (list) --

      A list of all subtask details in Inference Recommender.

      • (dict) --

        A returned array object for the Steps response field in the ListInferenceRecommendationsJobSteps API command.

        • StepType (string) --

          The type of the subtask.

          BENCHMARK : Evaluate the performance of your model on different instance types.

        • JobName (string) --

          The name of the Inference Recommender job.

        • Status (string) --

          The current status of the benchmark.

        • InferenceBenchmark (dict) --

          The details for a specific benchmark.

          • Metrics (dict) --

            The metrics of recommendations.

            • CostPerHour (float) --

              Defines the cost per hour for the instance.

            • CostPerInference (float) --

              Defines the cost per inference for the instance .

            • MaxInvocations (integer) --

              The expected maximum number of requests per minute for the instance.

            • ModelLatency (integer) --

              The expected model latency at maximum invocation per minute for the instance.

            • CpuUtilization (float) --

              The expected CPU utilization at maximum invocations per minute for the instance.

              NaN indicates that the value is not available.

            • MemoryUtilization (float) --

              The expected memory utilization at maximum invocations per minute for the instance.

              NaN indicates that the value is not available.

          • EndpointConfiguration (dict) --

            The endpoint configuration made by Inference Recommender during a recommendation job.

            • EndpointName (string) --

              The name of the endpoint made during a recommendation job.

            • VariantName (string) --

              The name of the production variant (deployed model) made during a recommendation job.

            • InstanceType (string) --

              The instance type recommended by Amazon SageMaker Inference Recommender.

            • InitialInstanceCount (integer) --

              The number of instances recommended to launch initially.

          • ModelConfiguration (dict) --

            Defines the model configuration. Includes the specification name and environment parameters.

            • InferenceSpecificationName (string) --

              The inference specification name in the model package version.

            • EnvironmentParameters (list) --

              Defines the environment parameters that includes key, value types, and values.

              • (dict) --

                A list of environment parameters suggested by the Amazon SageMaker Inference Recommender.

                • Key (string) --

                  The environment key suggested by the Amazon SageMaker Inference Recommender.

                • ValueType (string) --

                  The value type suggested by the Amazon SageMaker Inference Recommender.

                • Value (string) --

                  The value suggested by the Amazon SageMaker Inference Recommender.

            • CompilationJobName (string) --

              The name of the compilation job used to create the recommended model artifacts.

          • FailureReason (string) --

            The reason why a benchmark failed.

class SageMaker.Paginator.ListInferenceRecommendationsJobs
paginator = client.get_paginator('list_inference_recommendations_jobs')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_inference_recommendations_jobs().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    NameContains='string',
    StatusEquals='PENDING'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOPPING'|'STOPPED',
    SortBy='Name'|'CreationTime'|'Status',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • CreationTimeAfter (datetime) -- A filter that returns only jobs created after the specified time (timestamp).
  • CreationTimeBefore (datetime) -- A filter that returns only jobs created before the specified time (timestamp).
  • LastModifiedTimeAfter (datetime) -- A filter that returns only jobs that were last modified after the specified time (timestamp).
  • LastModifiedTimeBefore (datetime) -- A filter that returns only jobs that were last modified before the specified time (timestamp).
  • NameContains (string) -- A string in the job name. This filter returns only recommendations whose name contains the specified string.
  • StatusEquals (string) -- A filter that retrieves only inference recommendations jobs with a specific status.
  • SortBy (string) -- The parameter by which to sort the results.
  • SortOrder (string) -- The sort order for the results.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'InferenceRecommendationsJobs': [
        {
            'JobName': 'string',
            'JobDescription': 'string',
            'JobType': 'Default'|'Advanced',
            'JobArn': 'string',
            'Status': 'PENDING'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOPPING'|'STOPPED',
            'CreationTime': datetime(2015, 1, 1),
            'CompletionTime': datetime(2015, 1, 1),
            'RoleArn': 'string',
            'LastModifiedTime': datetime(2015, 1, 1),
            'FailureReason': 'string'
        },
    ],

}

Response Structure

  • (dict) --

    • InferenceRecommendationsJobs (list) --

      The recommendations created from the Amazon SageMaker Inference Recommender job.

      • (dict) --

        A structure that contains a list of recommendation jobs.

        • JobName (string) --

          The name of the job.

        • JobDescription (string) --

          The job description.

        • JobType (string) --

          The recommendation job type.

        • JobArn (string) --

          The Amazon Resource Name (ARN) of the recommendation job.

        • Status (string) --

          The status of the job.

        • CreationTime (datetime) --

          A timestamp that shows when the job was created.

        • CompletionTime (datetime) --

          A timestamp that shows when the job completed.

        • RoleArn (string) --

          The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks on your behalf.

        • LastModifiedTime (datetime) --

          A timestamp that shows when the job was last modified.

        • FailureReason (string) --

          If the job fails, provides information why the job failed.

class SageMaker.Paginator.ListLabelingJobs
paginator = client.get_paginator('list_labeling_jobs')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_labeling_jobs().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    NameContains='string',
    SortBy='Name'|'CreationTime'|'Status',
    SortOrder='Ascending'|'Descending',
    StatusEquals='Initializing'|'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • CreationTimeAfter (datetime) -- A filter that returns only labeling jobs created after the specified time (timestamp).
  • CreationTimeBefore (datetime) -- A filter that returns only labeling jobs created before the specified time (timestamp).
  • LastModifiedTimeAfter (datetime) -- A filter that returns only labeling jobs modified after the specified time (timestamp).
  • LastModifiedTimeBefore (datetime) -- A filter that returns only labeling jobs modified before the specified time (timestamp).
  • NameContains (string) -- A string in the labeling job name. This filter returns only labeling jobs whose name contains the specified string.
  • SortBy (string) -- The field to sort results by. The default is CreationTime .
  • SortOrder (string) -- The sort order for results. The default is Ascending .
  • StatusEquals (string) -- A filter that retrieves only labeling jobs with a specific status.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'LabelingJobSummaryList': [
        {
            'LabelingJobName': 'string',
            'LabelingJobArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'LabelingJobStatus': 'Initializing'|'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
            'LabelCounters': {
                'TotalLabeled': 123,
                'HumanLabeled': 123,
                'MachineLabeled': 123,
                'FailedNonRetryableError': 123,
                'Unlabeled': 123
            },
            'WorkteamArn': 'string',
            'PreHumanTaskLambdaArn': 'string',
            'AnnotationConsolidationLambdaArn': 'string',
            'FailureReason': 'string',
            'LabelingJobOutput': {
                'OutputDatasetS3Uri': 'string',
                'FinalActiveLearningModelArn': 'string'
            },
            'InputConfig': {
                'DataSource': {
                    'S3DataSource': {
                        'ManifestS3Uri': 'string'
                    },
                    'SnsDataSource': {
                        'SnsTopicArn': 'string'
                    }
                },
                'DataAttributes': {
                    'ContentClassifiers': [
                        'FreeOfPersonallyIdentifiableInformation'|'FreeOfAdultContent',
                    ]
                }
            }
        },
    ],

}

Response Structure

  • (dict) --

    • LabelingJobSummaryList (list) --

      An array of LabelingJobSummary objects, each describing a labeling job.

      • (dict) --

        Provides summary information about a labeling job.

        • LabelingJobName (string) --

          The name of the labeling job.

        • LabelingJobArn (string) --

          The Amazon Resource Name (ARN) assigned to the labeling job when it was created.

        • CreationTime (datetime) --

          The date and time that the job was created (timestamp).

        • LastModifiedTime (datetime) --

          The date and time that the job was last modified (timestamp).

        • LabelingJobStatus (string) --

          The current status of the labeling job.

        • LabelCounters (dict) --

          Counts showing the progress of the labeling job.

          • TotalLabeled (integer) --

            The total number of objects labeled.

          • HumanLabeled (integer) --

            The total number of objects labeled by a human worker.

          • MachineLabeled (integer) --

            The total number of objects labeled by automated data labeling.

          • FailedNonRetryableError (integer) --

            The total number of objects that could not be labeled due to an error.

          • Unlabeled (integer) --

            The total number of objects not yet labeled.

        • WorkteamArn (string) --

          The Amazon Resource Name (ARN) of the work team assigned to the job.

        • PreHumanTaskLambdaArn (string) --

          The Amazon Resource Name (ARN) of a Lambda function. The function is run before each data object is sent to a worker.

        • AnnotationConsolidationLambdaArn (string) --

          The Amazon Resource Name (ARN) of the Lambda function used to consolidate the annotations from individual workers into a label for a data object. For more information, see Annotation Consolidation.

        • FailureReason (string) --

          If the LabelingJobStatus field is Failed , this field contains a description of the error.

        • LabelingJobOutput (dict) --

          The location of the output produced by the labeling job.

          • OutputDatasetS3Uri (string) --

            The Amazon S3 bucket location of the manifest file for labeled data.

          • FinalActiveLearningModelArn (string) --

            The Amazon Resource Name (ARN) for the most recent SageMaker model trained as part of automated data labeling.

        • InputConfig (dict) --

          Input configuration for the labeling job.

          • DataSource (dict) --

            The location of the input data.

            • S3DataSource (dict) --

              The Amazon S3 location of the input data objects.

              • ManifestS3Uri (string) --

                The Amazon S3 location of the manifest file that describes the input data objects.

                The input manifest file referenced in ManifestS3Uri must contain one of the following keys: source-ref or source . The value of the keys are interpreted as follows:

                • source-ref : The source of the object is the Amazon S3 object specified in the value. Use this value when the object is a binary object, such as an image.
                • source : The source of the object is the value. Use this value when the object is a text value.

                If you are a new user of Ground Truth, it is recommended you review Use an Input Manifest File in the Amazon SageMaker Developer Guide to learn how to create an input manifest file.

            • SnsDataSource (dict) --

              An Amazon SNS data source used for streaming labeling jobs. To learn more, see Send Data to a Streaming Labeling Job.

              • SnsTopicArn (string) --

                The Amazon SNS input topic Amazon Resource Name (ARN). Specify the ARN of the input topic you will use to send new data objects to a streaming labeling job.

          • DataAttributes (dict) --

            Attributes of the data specified by the customer.

            • ContentClassifiers (list) --

              Declares that your content is free of personally identifiable information or adult content. SageMaker may restrict the Amazon Mechanical Turk workers that can view your task based on this information.

              • (string) --

class SageMaker.Paginator.ListLabelingJobsForWorkteam
paginator = client.get_paginator('list_labeling_jobs_for_workteam')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_labeling_jobs_for_workteam().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    WorkteamArn='string',
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    JobReferenceCodeContains='string',
    SortBy='CreationTime',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • WorkteamArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of the work team for which you want to see labeling jobs for.

  • CreationTimeAfter (datetime) -- A filter that returns only labeling jobs created after the specified time (timestamp).
  • CreationTimeBefore (datetime) -- A filter that returns only labeling jobs created before the specified time (timestamp).
  • JobReferenceCodeContains (string) -- A filter the limits jobs to only the ones whose job reference code contains the specified string.
  • SortBy (string) -- The field to sort results by. The default is CreationTime .
  • SortOrder (string) -- The sort order for results. The default is Ascending .
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'LabelingJobSummaryList': [
        {
            'LabelingJobName': 'string',
            'JobReferenceCode': 'string',
            'WorkRequesterAccountId': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LabelCounters': {
                'HumanLabeled': 123,
                'PendingHuman': 123,
                'Total': 123
            },
            'NumberOfHumanWorkersPerDataObject': 123
        },
    ],

}

Response Structure

  • (dict) --

    • LabelingJobSummaryList (list) --

      An array of LabelingJobSummary objects, each describing a labeling job.

      • (dict) --

        Provides summary information for a work team.

        • LabelingJobName (string) --

          The name of the labeling job that the work team is assigned to.

        • JobReferenceCode (string) --

          A unique identifier for a labeling job. You can use this to refer to a specific labeling job.

        • WorkRequesterAccountId (string) --

          The Amazon Web Services account ID of the account used to start the labeling job.

        • CreationTime (datetime) --

          The date and time that the labeling job was created.

        • LabelCounters (dict) --

          Provides information about the progress of a labeling job.

          • HumanLabeled (integer) --

            The total number of data objects labeled by a human worker.

          • PendingHuman (integer) --

            The total number of data objects that need to be labeled by a human worker.

          • Total (integer) --

            The total number of tasks in the labeling job.

        • NumberOfHumanWorkersPerDataObject (integer) --

          The configured number of workers per data object.

class SageMaker.Paginator.ListLineageGroups
paginator = client.get_paginator('list_lineage_groups')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_lineage_groups().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    CreatedAfter=datetime(2015, 1, 1),
    CreatedBefore=datetime(2015, 1, 1),
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • CreatedAfter (datetime) -- A timestamp to filter against lineage groups created after a certain point in time.
  • CreatedBefore (datetime) -- A timestamp to filter against lineage groups created before a certain point in time.
  • SortBy (string) -- The parameter by which to sort the results. The default is CreationTime .
  • SortOrder (string) -- The sort order for the results. The default is Ascending .
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'LineageGroupSummaries': [
        {
            'LineageGroupArn': 'string',
            'LineageGroupName': 'string',
            'DisplayName': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],

}

Response Structure

  • (dict) --

    • LineageGroupSummaries (list) --

      A list of lineage groups and their properties.

      • (dict) --

        Lists a summary of the properties of a lineage group. A lineage group provides a group of shareable lineage entity resources.

        • LineageGroupArn (string) --

          The Amazon Resource Name (ARN) of the lineage group resource.

        • LineageGroupName (string) --

          The name or Amazon Resource Name (ARN) of the lineage group.

        • DisplayName (string) --

          The display name of the lineage group summary.

        • CreationTime (datetime) --

          The creation time of the lineage group summary.

        • LastModifiedTime (datetime) --

          The last modified time of the lineage group summary.

class SageMaker.Paginator.ListModelBiasJobDefinitions
paginator = client.get_paginator('list_model_bias_job_definitions')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_model_bias_job_definitions().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    EndpointName='string',
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    NameContains='string',
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1),
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • EndpointName (string) -- Name of the endpoint to monitor for model bias.
  • SortBy (string) -- Whether to sort results by the Name or CreationTime field. The default is CreationTime .
  • SortOrder (string) -- Whether to sort the results in Ascending or Descending order. The default is Descending .
  • NameContains (string) -- Filter for model bias jobs whose name contains a specified string.
  • CreationTimeBefore (datetime) -- A filter that returns only model bias jobs created before a specified time.
  • CreationTimeAfter (datetime) -- A filter that returns only model bias jobs created after a specified time.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'JobDefinitionSummaries': [
        {
            'MonitoringJobDefinitionName': 'string',
            'MonitoringJobDefinitionArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'EndpointName': 'string'
        },
    ],

}

Response Structure

  • (dict) --

    • JobDefinitionSummaries (list) --

      A JSON array in which each element is a summary for a model bias jobs.

      • (dict) --

        Summary information about a monitoring job.

        • MonitoringJobDefinitionName (string) --

          The name of the monitoring job.

        • MonitoringJobDefinitionArn (string) --

          The Amazon Resource Name (ARN) of the monitoring job.

        • CreationTime (datetime) --

          The time that the monitoring job was created.

        • EndpointName (string) --

          The name of the endpoint that the job monitors.

class SageMaker.Paginator.ListModelCardExportJobs
paginator = client.get_paginator('list_model_card_export_jobs')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_model_card_export_jobs().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    ModelCardName='string',
    ModelCardVersion=123,
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    ModelCardExportJobNameContains='string',
    StatusEquals='InProgress'|'Completed'|'Failed',
    SortBy='Name'|'CreationTime'|'Status',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • ModelCardName (string) --

    [REQUIRED]

    List export jobs for the model card with the specified name.

  • ModelCardVersion (integer) -- List export jobs for the model card with the specified version.
  • CreationTimeAfter (datetime) -- Only list model card export jobs that were created after the time specified.
  • CreationTimeBefore (datetime) -- Only list model card export jobs that were created before the time specified.
  • ModelCardExportJobNameContains (string) -- Only list model card export jobs with names that contain the specified string.
  • StatusEquals (string) -- Only list model card export jobs with the specified status.
  • SortBy (string) -- Sort model card export jobs by either name or creation time. Sorts by creation time by default.
  • SortOrder (string) -- Sort model card export jobs by ascending or descending order.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'ModelCardExportJobSummaries': [
        {
            'ModelCardExportJobName': 'string',
            'ModelCardExportJobArn': 'string',
            'Status': 'InProgress'|'Completed'|'Failed',
            'ModelCardName': 'string',
            'ModelCardVersion': 123,
            'CreatedAt': datetime(2015, 1, 1),
            'LastModifiedAt': datetime(2015, 1, 1)
        },
    ],

}

Response Structure

  • (dict) --

    • ModelCardExportJobSummaries (list) --

      The summaries of the listed model card export jobs.

      • (dict) --

        The summary of the Amazon SageMaker Model Card export job.

        • ModelCardExportJobName (string) --

          The name of the model card export job.

        • ModelCardExportJobArn (string) --

          The Amazon Resource Name (ARN) of the model card export job.

        • Status (string) --

          The completion status of the model card export job.

        • ModelCardName (string) --

          The name of the model card that the export job exports.

        • ModelCardVersion (integer) --

          The version of the model card that the export job exports.

        • CreatedAt (datetime) --

          The date and time that the model card export job was created.

        • LastModifiedAt (datetime) --

          The date and time that the model card export job was last modified..

class SageMaker.Paginator.ListModelCardVersions
paginator = client.get_paginator('list_model_card_versions')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_model_card_versions().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    ModelCardName='string',
    ModelCardStatus='Draft'|'PendingReview'|'Approved'|'Archived',
    SortBy='Version',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • CreationTimeAfter (datetime) -- Only list model card versions that were created after the time specified.
  • CreationTimeBefore (datetime) -- Only list model card versions that were created before the time specified.
  • ModelCardName (string) --

    [REQUIRED]

    List model card versions for the model card with the specified name.

  • ModelCardStatus (string) -- Only list model card versions with the specified approval status.
  • SortBy (string) -- Sort listed model card versions by version. Sorts by version by default.
  • SortOrder (string) -- Sort model card versions by ascending or descending order.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'ModelCardVersionSummaryList': [
        {
            'ModelCardName': 'string',
            'ModelCardArn': 'string',
            'ModelCardStatus': 'Draft'|'PendingReview'|'Approved'|'Archived',
            'ModelCardVersion': 123,
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],

}

Response Structure

  • (dict) --

    • ModelCardVersionSummaryList (list) --

      The summaries of the listed versions of the model card.

      • (dict) --

        A summary of a specific version of the model card.

        • ModelCardName (string) --

          The name of the model card.

        • ModelCardArn (string) --

          The Amazon Resource Name (ARN) of the model card.

        • ModelCardStatus (string) --

          The approval status of the model card version within your organization. Different organizations might have different criteria for model card review and approval.

          • Draft : The model card is a work in progress.
          • PendingReview : The model card is pending review.
          • Approved : The model card is approved.
          • Archived : The model card is archived. No more updates should be made to the model card, but it can still be exported.
        • ModelCardVersion (integer) --

          A version of the model card.

        • CreationTime (datetime) --

          The date and time that the model card version was created.

        • LastModifiedTime (datetime) --

          The time date and time that the model card version was last modified.

class SageMaker.Paginator.ListModelCards
paginator = client.get_paginator('list_model_cards')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_model_cards().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    NameContains='string',
    ModelCardStatus='Draft'|'PendingReview'|'Approved'|'Archived',
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • CreationTimeAfter (datetime) -- Only list model cards that were created after the time specified.
  • CreationTimeBefore (datetime) -- Only list model cards that were created before the time specified.
  • NameContains (string) -- Only list model cards with names that contain the specified string.
  • ModelCardStatus (string) -- Only list model cards with the specified approval status.
  • SortBy (string) -- Sort model cards by either name or creation time. Sorts by creation time by default.
  • SortOrder (string) -- Sort model cards by ascending or descending order.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'ModelCardSummaries': [
        {
            'ModelCardName': 'string',
            'ModelCardArn': 'string',
            'ModelCardStatus': 'Draft'|'PendingReview'|'Approved'|'Archived',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],

}

Response Structure

  • (dict) --

    • ModelCardSummaries (list) --

      The summaries of the listed model cards.

      • (dict) --

        A summary of the model card.

        • ModelCardName (string) --

          The name of the model card.

        • ModelCardArn (string) --

          The Amazon Resource Name (ARN) of the model card.

        • ModelCardStatus (string) --

          The approval status of the model card within your organization. Different organizations might have different criteria for model card review and approval.

          • Draft : The model card is a work in progress.
          • PendingReview : The model card is pending review.
          • Approved : The model card is approved.
          • Archived : The model card is archived. No more updates should be made to the model card, but it can still be exported.
        • CreationTime (datetime) --

          The date and time that the model card was created.

        • LastModifiedTime (datetime) --

          The date and time that the model card was last modified.

class SageMaker.Paginator.ListModelExplainabilityJobDefinitions
paginator = client.get_paginator('list_model_explainability_job_definitions')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_model_explainability_job_definitions().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    EndpointName='string',
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    NameContains='string',
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1),
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • EndpointName (string) -- Name of the endpoint to monitor for model explainability.
  • SortBy (string) -- Whether to sort results by the Name or CreationTime field. The default is CreationTime .
  • SortOrder (string) -- Whether to sort the results in Ascending or Descending order. The default is Descending .
  • NameContains (string) -- Filter for model explainability jobs whose name contains a specified string.
  • CreationTimeBefore (datetime) -- A filter that returns only model explainability jobs created before a specified time.
  • CreationTimeAfter (datetime) -- A filter that returns only model explainability jobs created after a specified time.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'JobDefinitionSummaries': [
        {
            'MonitoringJobDefinitionName': 'string',
            'MonitoringJobDefinitionArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'EndpointName': 'string'
        },
    ],

}

Response Structure

  • (dict) --

    • JobDefinitionSummaries (list) --

      A JSON array in which each element is a summary for a explainability bias jobs.

      • (dict) --

        Summary information about a monitoring job.

        • MonitoringJobDefinitionName (string) --

          The name of the monitoring job.

        • MonitoringJobDefinitionArn (string) --

          The Amazon Resource Name (ARN) of the monitoring job.

        • CreationTime (datetime) --

          The time that the monitoring job was created.

        • EndpointName (string) --

          The name of the endpoint that the job monitors.

class SageMaker.Paginator.ListModelMetadata
paginator = client.get_paginator('list_model_metadata')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_model_metadata().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    SearchExpression={
        'Filters': [
            {
                'Name': 'Domain'|'Framework'|'Task'|'FrameworkVersion',
                'Value': 'string'
            },
        ]
    },
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • SearchExpression (dict) --

    One or more filters that searches for the specified resource or resources in a search. All resource objects that satisfy the expression's condition are included in the search results. Specify the Framework, FrameworkVersion, Domain or Task to filter supported. Filter names and values are case-sensitive.

    • Filters (list) --

      A list of filter objects.

      • (dict) --

        Part of the search expression. You can specify the name and value (domain, task, framework, framework version, task, and model).

        • Name (string) -- [REQUIRED]

          The name of the of the model to filter by.

        • Value (string) -- [REQUIRED]

          The value to filter the model metadata.

  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'ModelMetadataSummaries': [
        {
            'Domain': 'string',
            'Framework': 'string',
            'Task': 'string',
            'Model': 'string',
            'FrameworkVersion': 'string'
        },
    ],

}

Response Structure

  • (dict) --

    • ModelMetadataSummaries (list) --

      A structure that holds model metadata.

      • (dict) --

        A summary of the model metadata.

        • Domain (string) --

          The machine learning domain of the model.

        • Framework (string) --

          The machine learning framework of the model.

        • Task (string) --

          The machine learning task of the model.

        • Model (string) --

          The name of the model.

        • FrameworkVersion (string) --

          The framework version of the model.

class SageMaker.Paginator.ListModelPackageGroups
paginator = client.get_paginator('list_model_package_groups')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_model_package_groups().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    NameContains='string',
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • CreationTimeAfter (datetime) -- A filter that returns only model groups created after the specified time.
  • CreationTimeBefore (datetime) -- A filter that returns only model groups created before the specified time.
  • NameContains (string) -- A string in the model group name. This filter returns only model groups whose name contains the specified string.
  • SortBy (string) -- The field to sort results by. The default is CreationTime .
  • SortOrder (string) -- The sort order for results. The default is Ascending .
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'ModelPackageGroupSummaryList': [
        {
            'ModelPackageGroupName': 'string',
            'ModelPackageGroupArn': 'string',
            'ModelPackageGroupDescription': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'ModelPackageGroupStatus': 'Pending'|'InProgress'|'Completed'|'Failed'|'Deleting'|'DeleteFailed'
        },
    ],

}

Response Structure

  • (dict) --

    • ModelPackageGroupSummaryList (list) --

      A list of summaries of the model groups in your Amazon Web Services account.

      • (dict) --

        Summary information about a model group.

        • ModelPackageGroupName (string) --

          The name of the model group.

        • ModelPackageGroupArn (string) --

          The Amazon Resource Name (ARN) of the model group.

        • ModelPackageGroupDescription (string) --

          A description of the model group.

        • CreationTime (datetime) --

          The time that the model group was created.

        • ModelPackageGroupStatus (string) --

          The status of the model group.

class SageMaker.Paginator.ListModelPackages
paginator = client.get_paginator('list_model_packages')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_model_packages().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    NameContains='string',
    ModelApprovalStatus='Approved'|'Rejected'|'PendingManualApproval',
    ModelPackageGroupName='string',
    ModelPackageType='Versioned'|'Unversioned'|'Both',
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • CreationTimeAfter (datetime) -- A filter that returns only model packages created after the specified time (timestamp).
  • CreationTimeBefore (datetime) -- A filter that returns only model packages created before the specified time (timestamp).
  • NameContains (string) -- A string in the model package name. This filter returns only model packages whose name contains the specified string.
  • ModelApprovalStatus (string) -- A filter that returns only the model packages with the specified approval status.
  • ModelPackageGroupName (string) -- A filter that returns only model versions that belong to the specified model group.
  • ModelPackageType (string) --

    A filter that returns only the model packages of the specified type. This can be one of the following values.

    • UNVERSIONED - List only unversioined models. This is the default value if no ModelPackageType is specified.
    • VERSIONED - List only versioned models.
    • BOTH - List both versioned and unversioned models.
  • SortBy (string) -- The parameter by which to sort the results. The default is CreationTime .
  • SortOrder (string) -- The sort order for the results. The default is Ascending .
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'ModelPackageSummaryList': [
        {
            'ModelPackageName': 'string',
            'ModelPackageGroupName': 'string',
            'ModelPackageVersion': 123,
            'ModelPackageArn': 'string',
            'ModelPackageDescription': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'ModelPackageStatus': 'Pending'|'InProgress'|'Completed'|'Failed'|'Deleting',
            'ModelApprovalStatus': 'Approved'|'Rejected'|'PendingManualApproval'
        },
    ],

}

Response Structure

  • (dict) --

    • ModelPackageSummaryList (list) --

      An array of ModelPackageSummary objects, each of which lists a model package.

      • (dict) --

        Provides summary information about a model package.

        • ModelPackageName (string) --

          The name of the model package.

        • ModelPackageGroupName (string) --

          If the model package is a versioned model, the model group that the versioned model belongs to.

        • ModelPackageVersion (integer) --

          If the model package is a versioned model, the version of the model.

        • ModelPackageArn (string) --

          The Amazon Resource Name (ARN) of the model package.

        • ModelPackageDescription (string) --

          A brief description of the model package.

        • CreationTime (datetime) --

          A timestamp that shows when the model package was created.

        • ModelPackageStatus (string) --

          The overall status of the model package.

        • ModelApprovalStatus (string) --

          The approval status of the model. This can be one of the following values.

          • APPROVED - The model is approved
          • REJECTED - The model is rejected.
          • PENDING_MANUAL_APPROVAL - The model is waiting for manual approval.

class SageMaker.Paginator.ListModelQualityJobDefinitions
paginator = client.get_paginator('list_model_quality_job_definitions')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_model_quality_job_definitions().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    EndpointName='string',
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    NameContains='string',
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1),
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • EndpointName (string) -- A filter that returns only model quality monitoring job definitions that are associated with the specified endpoint.
  • SortBy (string) -- The field to sort results by. The default is CreationTime .
  • SortOrder (string) -- The sort order for results. The default is Descending .
  • NameContains (string) -- A string in the transform job name. This filter returns only model quality monitoring job definitions whose name contains the specified string.
  • CreationTimeBefore (datetime) -- A filter that returns only model quality monitoring job definitions created before the specified time.
  • CreationTimeAfter (datetime) -- A filter that returns only model quality monitoring job definitions created after the specified time.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'JobDefinitionSummaries': [
        {
            'MonitoringJobDefinitionName': 'string',
            'MonitoringJobDefinitionArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'EndpointName': 'string'
        },
    ],

}

Response Structure

  • (dict) --

    • JobDefinitionSummaries (list) --

      A list of summaries of model quality monitoring job definitions.

      • (dict) --

        Summary information about a monitoring job.

        • MonitoringJobDefinitionName (string) --

          The name of the monitoring job.

        • MonitoringJobDefinitionArn (string) --

          The Amazon Resource Name (ARN) of the monitoring job.

        • CreationTime (datetime) --

          The time that the monitoring job was created.

        • EndpointName (string) --

          The name of the endpoint that the job monitors.

class SageMaker.Paginator.ListModels
paginator = client.get_paginator('list_models')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_models().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    NameContains='string',
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1),
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • SortBy (string) -- Sorts the list of results. The default is CreationTime .
  • SortOrder (string) -- The sort order for results. The default is Descending .
  • NameContains (string) -- A string in the model name. This filter returns only models whose name contains the specified string.
  • CreationTimeBefore (datetime) -- A filter that returns only models created before the specified time (timestamp).
  • CreationTimeAfter (datetime) -- A filter that returns only models with a creation time greater than or equal to the specified time (timestamp).
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'Models': [
        {
            'ModelName': 'string',
            'ModelArn': 'string',
            'CreationTime': datetime(2015, 1, 1)
        },
    ],

}

Response Structure

  • (dict) --

    • Models (list) --

      An array of ModelSummary objects, each of which lists a model.

      • (dict) --

        Provides summary information about a model.

        • ModelName (string) --

          The name of the model that you want a summary for.

        • ModelArn (string) --

          The Amazon Resource Name (ARN) of the model.

        • CreationTime (datetime) --

          A timestamp that indicates when the model was created.

class SageMaker.Paginator.ListMonitoringAlertHistory
paginator = client.get_paginator('list_monitoring_alert_history')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_monitoring_alert_history().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    MonitoringScheduleName='string',
    MonitoringAlertName='string',
    SortBy='CreationTime'|'Status',
    SortOrder='Ascending'|'Descending',
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1),
    StatusEquals='InAlert'|'OK',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • MonitoringScheduleName (string) -- The name of a monitoring schedule.
  • MonitoringAlertName (string) -- The name of a monitoring alert.
  • SortBy (string) -- The field used to sort results. The default is CreationTime .
  • SortOrder (string) -- The sort order, whether Ascending or Descending , of the alert history. The default is Descending .
  • CreationTimeBefore (datetime) -- A filter that returns only alerts created on or before the specified time.
  • CreationTimeAfter (datetime) -- A filter that returns only alerts created on or after the specified time.
  • StatusEquals (string) -- A filter that retrieves only alerts with a specific status.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'MonitoringAlertHistory': [
        {
            'MonitoringScheduleName': 'string',
            'MonitoringAlertName': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'AlertStatus': 'InAlert'|'OK'
        },
    ],

}

Response Structure

  • (dict) --

    • MonitoringAlertHistory (list) --

      An alert history for a model monitoring schedule.

      • (dict) --

        Provides summary information of an alert's history.

        • MonitoringScheduleName (string) --

          The name of a monitoring schedule.

        • MonitoringAlertName (string) --

          The name of a monitoring alert.

        • CreationTime (datetime) --

          A timestamp that indicates when the first alert transition occurred in an alert history. An alert transition can be from status InAlert to OK , or from OK to InAlert .

        • AlertStatus (string) --

          The current alert status of an alert.

class SageMaker.Paginator.ListMonitoringAlerts
paginator = client.get_paginator('list_monitoring_alerts')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_monitoring_alerts().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    MonitoringScheduleName='string',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • MonitoringScheduleName (string) --

    [REQUIRED]

    The name of a monitoring schedule.

  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'MonitoringAlertSummaries': [
        {
            'MonitoringAlertName': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'AlertStatus': 'InAlert'|'OK',
            'DatapointsToAlert': 123,
            'EvaluationPeriod': 123,
            'Actions': {
                'ModelDashboardIndicator': {
                    'Enabled': True|False
                }
            }
        },
    ],

}

Response Structure

  • (dict) --

    • MonitoringAlertSummaries (list) --

      A JSON array where each element is a summary for a monitoring alert.

      • (dict) --

        Provides summary information about a monitor alert.

        • MonitoringAlertName (string) --

          The name of a monitoring alert.

        • CreationTime (datetime) --

          A timestamp that indicates when a monitor alert was created.

        • LastModifiedTime (datetime) --

          A timestamp that indicates when a monitor alert was last updated.

        • AlertStatus (string) --

          The current status of an alert.

        • DatapointsToAlert (integer) --

          Within EvaluationPeriod , how many execution failures will raise an alert.

        • EvaluationPeriod (integer) --

          The number of most recent monitoring executions to consider when evaluating alert status.

        • Actions (dict) --

          A list of alert actions taken in response to an alert going into InAlert status.

          • ModelDashboardIndicator (dict) --

            An alert action taken to light up an icon on the Model Dashboard when an alert goes into InAlert status.

            • Enabled (boolean) --

              Indicates whether the alert action is turned on.

class SageMaker.Paginator.ListMonitoringExecutions
paginator = client.get_paginator('list_monitoring_executions')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_monitoring_executions().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    MonitoringScheduleName='string',
    EndpointName='string',
    SortBy='CreationTime'|'ScheduledTime'|'Status',
    SortOrder='Ascending'|'Descending',
    ScheduledTimeBefore=datetime(2015, 1, 1),
    ScheduledTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    StatusEquals='Pending'|'Completed'|'CompletedWithViolations'|'InProgress'|'Failed'|'Stopping'|'Stopped',
    MonitoringJobDefinitionName='string',
    MonitoringTypeEquals='DataQuality'|'ModelQuality'|'ModelBias'|'ModelExplainability',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • MonitoringScheduleName (string) -- Name of a specific schedule to fetch jobs for.
  • EndpointName (string) -- Name of a specific endpoint to fetch jobs for.
  • SortBy (string) -- Whether to sort results by Status , CreationTime , ScheduledTime field. The default is CreationTime .
  • SortOrder (string) -- Whether to sort the results in Ascending or Descending order. The default is Descending .
  • ScheduledTimeBefore (datetime) -- Filter for jobs scheduled before a specified time.
  • ScheduledTimeAfter (datetime) -- Filter for jobs scheduled after a specified time.
  • CreationTimeBefore (datetime) -- A filter that returns only jobs created before a specified time.
  • CreationTimeAfter (datetime) -- A filter that returns only jobs created after a specified time.
  • LastModifiedTimeBefore (datetime) -- A filter that returns only jobs modified after a specified time.
  • LastModifiedTimeAfter (datetime) -- A filter that returns only jobs modified before a specified time.
  • StatusEquals (string) -- A filter that retrieves only jobs with a specific status.
  • MonitoringJobDefinitionName (string) -- Gets a list of the monitoring job runs of the specified monitoring job definitions.
  • MonitoringTypeEquals (string) -- A filter that returns only the monitoring job runs of the specified monitoring type.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'MonitoringExecutionSummaries': [
        {
            'MonitoringScheduleName': 'string',
            'ScheduledTime': datetime(2015, 1, 1),
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'MonitoringExecutionStatus': 'Pending'|'Completed'|'CompletedWithViolations'|'InProgress'|'Failed'|'Stopping'|'Stopped',
            'ProcessingJobArn': 'string',
            'EndpointName': 'string',
            'FailureReason': 'string',
            'MonitoringJobDefinitionName': 'string',
            'MonitoringType': 'DataQuality'|'ModelQuality'|'ModelBias'|'ModelExplainability'
        },
    ],

}

Response Structure

  • (dict) --

    • MonitoringExecutionSummaries (list) --

      A JSON array in which each element is a summary for a monitoring execution.

      • (dict) --

        Summary of information about the last monitoring job to run.

        • MonitoringScheduleName (string) --

          The name of the monitoring schedule.

        • ScheduledTime (datetime) --

          The time the monitoring job was scheduled.

        • CreationTime (datetime) --

          The time at which the monitoring job was created.

        • LastModifiedTime (datetime) --

          A timestamp that indicates the last time the monitoring job was modified.

        • MonitoringExecutionStatus (string) --

          The status of the monitoring job.

        • ProcessingJobArn (string) --

          The Amazon Resource Name (ARN) of the monitoring job.

        • EndpointName (string) --

          The name of the endpoint used to run the monitoring job.

        • FailureReason (string) --

          Contains the reason a monitoring job failed, if it failed.

        • MonitoringJobDefinitionName (string) --

          The name of the monitoring job.

        • MonitoringType (string) --

          The type of the monitoring job.

class SageMaker.Paginator.ListMonitoringSchedules
paginator = client.get_paginator('list_monitoring_schedules')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_monitoring_schedules().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    EndpointName='string',
    SortBy='Name'|'CreationTime'|'Status',
    SortOrder='Ascending'|'Descending',
    NameContains='string',
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    StatusEquals='Pending'|'Failed'|'Scheduled'|'Stopped',
    MonitoringJobDefinitionName='string',
    MonitoringTypeEquals='DataQuality'|'ModelQuality'|'ModelBias'|'ModelExplainability',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • EndpointName (string) -- Name of a specific endpoint to fetch schedules for.
  • SortBy (string) -- Whether to sort results by Status , CreationTime , ScheduledTime field. The default is CreationTime .
  • SortOrder (string) -- Whether to sort the results in Ascending or Descending order. The default is Descending .
  • NameContains (string) -- Filter for monitoring schedules whose name contains a specified string.
  • CreationTimeBefore (datetime) -- A filter that returns only monitoring schedules created before a specified time.
  • CreationTimeAfter (datetime) -- A filter that returns only monitoring schedules created after a specified time.
  • LastModifiedTimeBefore (datetime) -- A filter that returns only monitoring schedules modified before a specified time.
  • LastModifiedTimeAfter (datetime) -- A filter that returns only monitoring schedules modified after a specified time.
  • StatusEquals (string) -- A filter that returns only monitoring schedules modified before a specified time.
  • MonitoringJobDefinitionName (string) -- Gets a list of the monitoring schedules for the specified monitoring job definition.
  • MonitoringTypeEquals (string) -- A filter that returns only the monitoring schedules for the specified monitoring type.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'MonitoringScheduleSummaries': [
        {
            'MonitoringScheduleName': 'string',
            'MonitoringScheduleArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'MonitoringScheduleStatus': 'Pending'|'Failed'|'Scheduled'|'Stopped',
            'EndpointName': 'string',
            'MonitoringJobDefinitionName': 'string',
            'MonitoringType': 'DataQuality'|'ModelQuality'|'ModelBias'|'ModelExplainability'
        },
    ],

}

Response Structure

  • (dict) --

    • MonitoringScheduleSummaries (list) --

      A JSON array in which each element is a summary for a monitoring schedule.

      • (dict) --

        Summarizes the monitoring schedule.

        • MonitoringScheduleName (string) --

          The name of the monitoring schedule.

        • MonitoringScheduleArn (string) --

          The Amazon Resource Name (ARN) of the monitoring schedule.

        • CreationTime (datetime) --

          The creation time of the monitoring schedule.

        • LastModifiedTime (datetime) --

          The last time the monitoring schedule was modified.

        • MonitoringScheduleStatus (string) --

          The status of the monitoring schedule.

        • EndpointName (string) --

          The name of the endpoint using the monitoring schedule.

        • MonitoringJobDefinitionName (string) --

          The name of the monitoring job definition that the schedule is for.

        • MonitoringType (string) --

          The type of the monitoring job definition that the schedule is for.

class SageMaker.Paginator.ListNotebookInstanceLifecycleConfigs
paginator = client.get_paginator('list_notebook_instance_lifecycle_configs')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_notebook_instance_lifecycle_configs().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    SortBy='Name'|'CreationTime'|'LastModifiedTime',
    SortOrder='Ascending'|'Descending',
    NameContains='string',
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • SortBy (string) -- Sorts the list of results. The default is CreationTime .
  • SortOrder (string) -- The sort order for results.
  • NameContains (string) -- A string in the lifecycle configuration name. This filter returns only lifecycle configurations whose name contains the specified string.
  • CreationTimeBefore (datetime) -- A filter that returns only lifecycle configurations that were created before the specified time (timestamp).
  • CreationTimeAfter (datetime) -- A filter that returns only lifecycle configurations that were created after the specified time (timestamp).
  • LastModifiedTimeBefore (datetime) -- A filter that returns only lifecycle configurations that were modified before the specified time (timestamp).
  • LastModifiedTimeAfter (datetime) -- A filter that returns only lifecycle configurations that were modified after the specified time (timestamp).
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'NotebookInstanceLifecycleConfigs': [
        {
            'NotebookInstanceLifecycleConfigName': 'string',
            'NotebookInstanceLifecycleConfigArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ]
}

Response Structure

  • (dict) --

    • NotebookInstanceLifecycleConfigs (list) --

      An array of NotebookInstanceLifecycleConfiguration objects, each listing a lifecycle configuration.

      • (dict) --

        Provides a summary of a notebook instance lifecycle configuration.

        • NotebookInstanceLifecycleConfigName (string) --

          The name of the lifecycle configuration.

        • NotebookInstanceLifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the lifecycle configuration.

        • CreationTime (datetime) --

          A timestamp that tells when the lifecycle configuration was created.

        • LastModifiedTime (datetime) --

          A timestamp that tells when the lifecycle configuration was last modified.

class SageMaker.Paginator.ListNotebookInstances
paginator = client.get_paginator('list_notebook_instances')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_notebook_instances().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    SortBy='Name'|'CreationTime'|'Status',
    SortOrder='Ascending'|'Descending',
    NameContains='string',
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    StatusEquals='Pending'|'InService'|'Stopping'|'Stopped'|'Failed'|'Deleting'|'Updating',
    NotebookInstanceLifecycleConfigNameContains='string',
    DefaultCodeRepositoryContains='string',
    AdditionalCodeRepositoryEquals='string',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • SortBy (string) -- The field to sort results by. The default is Name .
  • SortOrder (string) -- The sort order for results.
  • NameContains (string) -- A string in the notebook instances' name. This filter returns only notebook instances whose name contains the specified string.
  • CreationTimeBefore (datetime) -- A filter that returns only notebook instances that were created before the specified time (timestamp).
  • CreationTimeAfter (datetime) -- A filter that returns only notebook instances that were created after the specified time (timestamp).
  • LastModifiedTimeBefore (datetime) -- A filter that returns only notebook instances that were modified before the specified time (timestamp).
  • LastModifiedTimeAfter (datetime) -- A filter that returns only notebook instances that were modified after the specified time (timestamp).
  • StatusEquals (string) -- A filter that returns only notebook instances with the specified status.
  • NotebookInstanceLifecycleConfigNameContains (string) -- A string in the name of a notebook instances lifecycle configuration associated with this notebook instance. This filter returns only notebook instances associated with a lifecycle configuration with a name that contains the specified string.
  • DefaultCodeRepositoryContains (string) -- A string in the name or URL of a Git repository associated with this notebook instance. This filter returns only notebook instances associated with a git repository with a name that contains the specified string.
  • AdditionalCodeRepositoryEquals (string) -- A filter that returns only notebook instances with associated with the specified git repository.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'NotebookInstances': [
        {
            'NotebookInstanceName': 'string',
            'NotebookInstanceArn': 'string',
            'NotebookInstanceStatus': 'Pending'|'InService'|'Stopping'|'Stopped'|'Failed'|'Deleting'|'Updating',
            'Url': 'string',
            'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'NotebookInstanceLifecycleConfigName': 'string',
            'DefaultCodeRepository': 'string',
            'AdditionalCodeRepositories': [
                'string',
            ]
        },
    ]
}

Response Structure

  • (dict) --

    • NotebookInstances (list) --

      An array of NotebookInstanceSummary objects, one for each notebook instance.

      • (dict) --

        Provides summary information for an SageMaker notebook instance.

        • NotebookInstanceName (string) --

          The name of the notebook instance that you want a summary for.

        • NotebookInstanceArn (string) --

          The Amazon Resource Name (ARN) of the notebook instance.

        • NotebookInstanceStatus (string) --

          The status of the notebook instance.

        • Url (string) --

          The URL that you use to connect to the Jupyter notebook running in your notebook instance.

        • InstanceType (string) --

          The type of ML compute instance that the notebook instance is running on.

        • CreationTime (datetime) --

          A timestamp that shows when the notebook instance was created.

        • LastModifiedTime (datetime) --

          A timestamp that shows when the notebook instance was last modified.

        • NotebookInstanceLifecycleConfigName (string) --

          The name of a notebook instance lifecycle configuration associated with this notebook instance.

          For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.

        • DefaultCodeRepository (string) --

          The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker Notebook Instances.

        • AdditionalCodeRepositories (list) --

          An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker Notebook Instances.

          • (string) --

class SageMaker.Paginator.ListPipelineExecutionSteps
paginator = client.get_paginator('list_pipeline_execution_steps')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_pipeline_execution_steps().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    PipelineExecutionArn='string',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • PipelineExecutionArn (string) -- The Amazon Resource Name (ARN) of the pipeline execution.
  • SortOrder (string) -- The field by which to sort results. The default is CreatedTime .
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'PipelineExecutionSteps': [
        {
            'StepName': 'string',
            'StepDisplayName': 'string',
            'StepDescription': 'string',
            'StartTime': datetime(2015, 1, 1),
            'EndTime': datetime(2015, 1, 1),
            'StepStatus': 'Starting'|'Executing'|'Stopping'|'Stopped'|'Failed'|'Succeeded',
            'CacheHitResult': {
                'SourcePipelineExecutionArn': 'string'
            },
            'AttemptCount': 123,
            'FailureReason': 'string',
            'Metadata': {
                'TrainingJob': {
                    'Arn': 'string'
                },
                'ProcessingJob': {
                    'Arn': 'string'
                },
                'TransformJob': {
                    'Arn': 'string'
                },
                'TuningJob': {
                    'Arn': 'string'
                },
                'Model': {
                    'Arn': 'string'
                },
                'RegisterModel': {
                    'Arn': 'string'
                },
                'Condition': {
                    'Outcome': 'True'|'False'
                },
                'Callback': {
                    'CallbackToken': 'string',
                    'SqsQueueUrl': 'string',
                    'OutputParameters': [
                        {
                            'Name': 'string',
                            'Value': 'string'
                        },
                    ]
                },
                'Lambda': {
                    'Arn': 'string',
                    'OutputParameters': [
                        {
                            'Name': 'string',
                            'Value': 'string'
                        },
                    ]
                },
                'QualityCheck': {
                    'CheckType': 'string',
                    'BaselineUsedForDriftCheckStatistics': 'string',
                    'BaselineUsedForDriftCheckConstraints': 'string',
                    'CalculatedBaselineStatistics': 'string',
                    'CalculatedBaselineConstraints': 'string',
                    'ModelPackageGroupName': 'string',
                    'ViolationReport': 'string',
                    'CheckJobArn': 'string',
                    'SkipCheck': True|False,
                    'RegisterNewBaseline': True|False
                },
                'ClarifyCheck': {
                    'CheckType': 'string',
                    'BaselineUsedForDriftCheckConstraints': 'string',
                    'CalculatedBaselineConstraints': 'string',
                    'ModelPackageGroupName': 'string',
                    'ViolationReport': 'string',
                    'CheckJobArn': 'string',
                    'SkipCheck': True|False,
                    'RegisterNewBaseline': True|False
                },
                'EMR': {
                    'ClusterId': 'string',
                    'StepId': 'string',
                    'StepName': 'string',
                    'LogFilePath': 'string'
                },
                'Fail': {
                    'ErrorMessage': 'string'
                },
                'AutoMLJob': {
                    'Arn': 'string'
                }
            }
        },
    ],

}

Response Structure

  • (dict) --

    • PipelineExecutionSteps (list) --

      A list of PipeLineExecutionStep objects. Each PipeLineExecutionStep consists of StepName, StartTime, EndTime, StepStatus, and Metadata. Metadata is an object with properties for each job that contains relevant information about the job created by the step.

      • (dict) --

        An execution of a step in a pipeline.

        • StepName (string) --

          The name of the step that is executed.

        • StepDisplayName (string) --

          The display name of the step.

        • StepDescription (string) --

          The description of the step.

        • StartTime (datetime) --

          The time that the step started executing.

        • EndTime (datetime) --

          The time that the step stopped executing.

        • StepStatus (string) --

          The status of the step execution.

        • CacheHitResult (dict) --

          If this pipeline execution step was cached, details on the cache hit.

          • SourcePipelineExecutionArn (string) --

            The Amazon Resource Name (ARN) of the pipeline execution.

        • AttemptCount (integer) --

          The current attempt of the execution step. For more information, see Retry Policy for SageMaker Pipelines steps.

        • FailureReason (string) --

          The reason why the step failed execution. This is only returned if the step failed its execution.

        • Metadata (dict) --

          Metadata to run the pipeline step.

          • TrainingJob (dict) --

            The Amazon Resource Name (ARN) of the training job that was run by this step execution.

            • Arn (string) --

              The Amazon Resource Name (ARN) of the training job that was run by this step execution.

          • ProcessingJob (dict) --

            The Amazon Resource Name (ARN) of the processing job that was run by this step execution.

            • Arn (string) --

              The Amazon Resource Name (ARN) of the processing job.

          • TransformJob (dict) --

            The Amazon Resource Name (ARN) of the transform job that was run by this step execution.

            • Arn (string) --

              The Amazon Resource Name (ARN) of the transform job that was run by this step execution.

          • TuningJob (dict) --

            The Amazon Resource Name (ARN) of the tuning job that was run by this step execution.

            • Arn (string) --

              The Amazon Resource Name (ARN) of the tuning job that was run by this step execution.

          • Model (dict) --

            The Amazon Resource Name (ARN) of the model that was created by this step execution.

            • Arn (string) --

              The Amazon Resource Name (ARN) of the created model.

          • RegisterModel (dict) --

            The Amazon Resource Name (ARN) of the model package that the model was registered to by this step execution.

            • Arn (string) --

              The Amazon Resource Name (ARN) of the model package.

          • Condition (dict) --

            The outcome of the condition evaluation that was run by this step execution.

            • Outcome (string) --

              The outcome of the Condition step evaluation.

          • Callback (dict) --

            The URL of the Amazon SQS queue used by this step execution, the pipeline generated token, and a list of output parameters.

            • CallbackToken (string) --

              The pipeline generated token from the Amazon SQS queue.

            • SqsQueueUrl (string) --

              The URL of the Amazon Simple Queue Service (Amazon SQS) queue used by the callback step.

            • OutputParameters (list) --

              A list of the output parameters of the callback step.

              • (dict) --

                An output parameter of a pipeline step.

                • Name (string) --

                  The name of the output parameter.

                • Value (string) --

                  The value of the output parameter.

          • Lambda (dict) --

            The Amazon Resource Name (ARN) of the Lambda function that was run by this step execution and a list of output parameters.

            • Arn (string) --

              The Amazon Resource Name (ARN) of the Lambda function that was run by this step execution.

            • OutputParameters (list) --

              A list of the output parameters of the Lambda step.

              • (dict) --

                An output parameter of a pipeline step.

                • Name (string) --

                  The name of the output parameter.

                • Value (string) --

                  The value of the output parameter.

          • QualityCheck (dict) --

            The configurations and outcomes of the check step execution. This includes:

            • The type of the check conducted.
            • The Amazon S3 URIs of baseline constraints and statistics files to be used for the drift check.
            • The Amazon S3 URIs of newly calculated baseline constraints and statistics.
            • The model package group name provided.
            • The Amazon S3 URI of the violation report if violations detected.
            • The Amazon Resource Name (ARN) of check processing job initiated by the step execution.
            • The Boolean flags indicating if the drift check is skipped.
            • If step property BaselineUsedForDriftCheck is set the same as CalculatedBaseline .
            • CheckType (string) --

              The type of the Quality check step.

            • BaselineUsedForDriftCheckStatistics (string) --

              The Amazon S3 URI of the baseline statistics file used for the drift check.

            • BaselineUsedForDriftCheckConstraints (string) --

              The Amazon S3 URI of the baseline constraints file used for the drift check.

            • CalculatedBaselineStatistics (string) --

              The Amazon S3 URI of the newly calculated baseline statistics file.

            • CalculatedBaselineConstraints (string) --

              The Amazon S3 URI of the newly calculated baseline constraints file.

            • ModelPackageGroupName (string) --

              The model package group name.

            • ViolationReport (string) --

              The Amazon S3 URI of violation report if violations are detected.

            • CheckJobArn (string) --

              The Amazon Resource Name (ARN) of the Quality check processing job that was run by this step execution.

            • SkipCheck (boolean) --

              This flag indicates if the drift check against the previous baseline will be skipped or not. If it is set to False , the previous baseline of the configured check type must be available.

            • RegisterNewBaseline (boolean) --

              This flag indicates if a newly calculated baseline can be accessed through step properties BaselineUsedForDriftCheckConstraints and BaselineUsedForDriftCheckStatistics . If it is set to False , the previous baseline of the configured check type must also be available. These can be accessed through the BaselineUsedForDriftCheckConstraints and BaselineUsedForDriftCheckStatistics properties.

          • ClarifyCheck (dict) --

            Container for the metadata for a Clarify check step. The configurations and outcomes of the check step execution. This includes:

            • The type of the check conducted,
            • The Amazon S3 URIs of baseline constraints and statistics files to be used for the drift check.
            • The Amazon S3 URIs of newly calculated baseline constraints and statistics.
            • The model package group name provided.
            • The Amazon S3 URI of the violation report if violations detected.
            • The Amazon Resource Name (ARN) of check processing job initiated by the step execution.
            • The boolean flags indicating if the drift check is skipped.
            • If step property BaselineUsedForDriftCheck is set the same as CalculatedBaseline .
            • CheckType (string) --

              The type of the Clarify Check step

            • BaselineUsedForDriftCheckConstraints (string) --

              The Amazon S3 URI of baseline constraints file to be used for the drift check.

            • CalculatedBaselineConstraints (string) --

              The Amazon S3 URI of the newly calculated baseline constraints file.

            • ModelPackageGroupName (string) --

              The model package group name.

            • ViolationReport (string) --

              The Amazon S3 URI of the violation report if violations are detected.

            • CheckJobArn (string) --

              The Amazon Resource Name (ARN) of the check processing job that was run by this step's execution.

            • SkipCheck (boolean) --

              This flag indicates if the drift check against the previous baseline will be skipped or not. If it is set to False , the previous baseline of the configured check type must be available.

            • RegisterNewBaseline (boolean) --

              This flag indicates if a newly calculated baseline can be accessed through step properties BaselineUsedForDriftCheckConstraints and BaselineUsedForDriftCheckStatistics . If it is set to False , the previous baseline of the configured check type must also be available. These can be accessed through the BaselineUsedForDriftCheckConstraints property.

          • EMR (dict) --

            The configurations and outcomes of an Amazon EMR step execution.

            • ClusterId (string) --

              The identifier of the EMR cluster.

            • StepId (string) --

              The identifier of the EMR cluster step.

            • StepName (string) --

              The name of the EMR cluster step.

            • LogFilePath (string) --

              The path to the log file where the cluster step's failure root cause is recorded.

          • Fail (dict) --

            The configurations and outcomes of a Fail step execution.

            • ErrorMessage (string) --

              A message that you define and then is processed and rendered by the Fail step when the error occurs.

          • AutoMLJob (dict) --

            The Amazon Resource Name (ARN) of the AutoML job that was run by this step.

            • Arn (string) --

              The Amazon Resource Name (ARN) of the AutoML job.

class SageMaker.Paginator.ListPipelineExecutions
paginator = client.get_paginator('list_pipeline_executions')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_pipeline_executions().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    PipelineName='string',
    CreatedAfter=datetime(2015, 1, 1),
    CreatedBefore=datetime(2015, 1, 1),
    SortBy='CreationTime'|'PipelineExecutionArn',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • PipelineName (string) --

    [REQUIRED]

    The name of the pipeline.

  • CreatedAfter (datetime) -- A filter that returns the pipeline executions that were created after a specified time.
  • CreatedBefore (datetime) -- A filter that returns the pipeline executions that were created before a specified time.
  • SortBy (string) -- The field by which to sort results. The default is CreatedTime .
  • SortOrder (string) -- The sort order for results.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'PipelineExecutionSummaries': [
        {
            'PipelineExecutionArn': 'string',
            'StartTime': datetime(2015, 1, 1),
            'PipelineExecutionStatus': 'Executing'|'Stopping'|'Stopped'|'Failed'|'Succeeded',
            'PipelineExecutionDescription': 'string',
            'PipelineExecutionDisplayName': 'string',
            'PipelineExecutionFailureReason': 'string'
        },
    ],

}

Response Structure

  • (dict) --

    • PipelineExecutionSummaries (list) --

      Contains a sorted list of pipeline execution summary objects matching the specified filters. Each run summary includes the Amazon Resource Name (ARN) of the pipeline execution, the run date, and the status. This list can be empty.

      • (dict) --

        A pipeline execution summary.

        • PipelineExecutionArn (string) --

          The Amazon Resource Name (ARN) of the pipeline execution.

        • StartTime (datetime) --

          The start time of the pipeline execution.

        • PipelineExecutionStatus (string) --

          The status of the pipeline execution.

        • PipelineExecutionDescription (string) --

          The description of the pipeline execution.

        • PipelineExecutionDisplayName (string) --

          The display name of the pipeline execution.

        • PipelineExecutionFailureReason (string) --

          A message generated by SageMaker Pipelines describing why the pipeline execution failed.

class SageMaker.Paginator.ListPipelineParametersForExecution
paginator = client.get_paginator('list_pipeline_parameters_for_execution')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_pipeline_parameters_for_execution().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    PipelineExecutionArn='string',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • PipelineExecutionArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of the pipeline execution.

  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'PipelineParameters': [
        {
            'Name': 'string',
            'Value': 'string'
        },
    ],

}

Response Structure

  • (dict) --

    • PipelineParameters (list) --

      Contains a list of pipeline parameters. This list can be empty.

      • (dict) --

        Assigns a value to a named Pipeline parameter.

        • Name (string) --

          The name of the parameter to assign a value to. This parameter name must match a named parameter in the pipeline definition.

        • Value (string) --

          The literal value for the parameter.

class SageMaker.Paginator.ListPipelines
paginator = client.get_paginator('list_pipelines')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_pipelines().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    PipelineNamePrefix='string',
    CreatedAfter=datetime(2015, 1, 1),
    CreatedBefore=datetime(2015, 1, 1),
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • PipelineNamePrefix (string) -- The prefix of the pipeline name.
  • CreatedAfter (datetime) -- A filter that returns the pipelines that were created after a specified time.
  • CreatedBefore (datetime) -- A filter that returns the pipelines that were created before a specified time.
  • SortBy (string) -- The field by which to sort results. The default is CreatedTime .
  • SortOrder (string) -- The sort order for results.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'PipelineSummaries': [
        {
            'PipelineArn': 'string',
            'PipelineName': 'string',
            'PipelineDisplayName': 'string',
            'PipelineDescription': 'string',
            'RoleArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'LastExecutionTime': datetime(2015, 1, 1)
        },
    ],

}

Response Structure

  • (dict) --

    • PipelineSummaries (list) --

      Contains a sorted list of PipelineSummary objects matching the specified filters. Each PipelineSummary consists of PipelineArn, PipelineName, ExperimentName, PipelineDescription, CreationTime, LastModifiedTime, LastRunTime, and RoleArn. This list can be empty.

      • (dict) --

        A summary of a pipeline.

        • PipelineArn (string) --

          The Amazon Resource Name (ARN) of the pipeline.

        • PipelineName (string) --

          The name of the pipeline.

        • PipelineDisplayName (string) --

          The display name of the pipeline.

        • PipelineDescription (string) --

          The description of the pipeline.

        • RoleArn (string) --

          The Amazon Resource Name (ARN) that the pipeline used to execute.

        • CreationTime (datetime) --

          The creation time of the pipeline.

        • LastModifiedTime (datetime) --

          The time that the pipeline was last modified.

        • LastExecutionTime (datetime) --

          The last time that a pipeline execution began.

class SageMaker.Paginator.ListProcessingJobs
paginator = client.get_paginator('list_processing_jobs')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_processing_jobs().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    NameContains='string',
    StatusEquals='InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
    SortBy='Name'|'CreationTime'|'Status',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • CreationTimeAfter (datetime) -- A filter that returns only processing jobs created after the specified time.
  • CreationTimeBefore (datetime) -- A filter that returns only processing jobs created after the specified time.
  • LastModifiedTimeAfter (datetime) -- A filter that returns only processing jobs modified after the specified time.
  • LastModifiedTimeBefore (datetime) -- A filter that returns only processing jobs modified before the specified time.
  • NameContains (string) -- A string in the processing job name. This filter returns only processing jobs whose name contains the specified string.
  • StatusEquals (string) -- A filter that retrieves only processing jobs with a specific status.
  • SortBy (string) -- The field to sort results by. The default is CreationTime .
  • SortOrder (string) -- The sort order for results. The default is Ascending .
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'ProcessingJobSummaries': [
        {
            'ProcessingJobName': 'string',
            'ProcessingJobArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'ProcessingEndTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'ProcessingJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
            'FailureReason': 'string',
            'ExitMessage': 'string'
        },
    ],

}

Response Structure

  • (dict) --

    • ProcessingJobSummaries (list) --

      An array of ProcessingJobSummary objects, each listing a processing job.

      • (dict) --

        Summary of information about a processing job.

        • ProcessingJobName (string) --

          The name of the processing job.

        • ProcessingJobArn (string) --

          The Amazon Resource Name (ARN) of the processing job..

        • CreationTime (datetime) --

          The time at which the processing job was created.

        • ProcessingEndTime (datetime) --

          The time at which the processing job completed.

        • LastModifiedTime (datetime) --

          A timestamp that indicates the last time the processing job was modified.

        • ProcessingJobStatus (string) --

          The status of the processing job.

        • FailureReason (string) --

          A string, up to one KB in size, that contains the reason a processing job failed, if it failed.

        • ExitMessage (string) --

          An optional string, up to one KB in size, that contains metadata from the processing container when the processing job exits.

class SageMaker.Paginator.ListSpaces
paginator = client.get_paginator('list_spaces')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_spaces().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    SortOrder='Ascending'|'Descending',
    SortBy='CreationTime'|'LastModifiedTime',
    DomainIdEquals='string',
    SpaceNameContains='string',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • SortOrder (string) -- The sort order for the results. The default is Ascending .
  • SortBy (string) -- The parameter by which to sort the results. The default is CreationTime .
  • DomainIdEquals (string) -- A parameter to search for the Domain ID.
  • SpaceNameContains (string) -- A parameter by which to filter the results.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'Spaces': [
        {
            'DomainId': 'string',
            'SpaceName': 'string',
            'Status': 'Deleting'|'Failed'|'InService'|'Pending'|'Updating'|'Update_Failed'|'Delete_Failed',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],

}

Response Structure

  • (dict) --

    • Spaces (list) --

      The list of spaces.

      • (dict) --

        The space's details.

        • DomainId (string) --

          The ID of the associated Domain.

        • SpaceName (string) --

          The name of the space.

        • Status (string) --

          The status.

        • CreationTime (datetime) --

          The creation time.

        • LastModifiedTime (datetime) --

          The last modified time.

class SageMaker.Paginator.ListStageDevices
paginator = client.get_paginator('list_stage_devices')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_stage_devices().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    EdgeDeploymentPlanName='string',
    ExcludeDevicesDeployedInOtherStage=True|False,
    StageName='string',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • EdgeDeploymentPlanName (string) --

    [REQUIRED]

    The name of the edge deployment plan.

  • ExcludeDevicesDeployedInOtherStage (boolean) -- Toggle for excluding devices deployed in other stages.
  • StageName (string) --

    [REQUIRED]

    The name of the stage in the deployment.

  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'DeviceDeploymentSummaries': [
        {
            'EdgeDeploymentPlanArn': 'string',
            'EdgeDeploymentPlanName': 'string',
            'StageName': 'string',
            'DeployedStageName': 'string',
            'DeviceFleetName': 'string',
            'DeviceName': 'string',
            'DeviceArn': 'string',
            'DeviceDeploymentStatus': 'READYTODEPLOY'|'INPROGRESS'|'DEPLOYED'|'FAILED'|'STOPPING'|'STOPPED',
            'DeviceDeploymentStatusMessage': 'string',
            'Description': 'string',
            'DeploymentStartTime': datetime(2015, 1, 1)
        },
    ],

}

Response Structure

  • (dict) --

    • DeviceDeploymentSummaries (list) --

      List of summaries of devices allocated to the stage.

      • (dict) --

        Contains information summarizing device details and deployment status.

        • EdgeDeploymentPlanArn (string) --

          The ARN of the edge deployment plan.

        • EdgeDeploymentPlanName (string) --

          The name of the edge deployment plan.

        • StageName (string) --

          The name of the stage in the edge deployment plan.

        • DeployedStageName (string) --

          The name of the deployed stage.

        • DeviceFleetName (string) --

          The name of the fleet to which the device belongs to.

        • DeviceName (string) --

          The name of the device.

        • DeviceArn (string) --

          The ARN of the device.

        • DeviceDeploymentStatus (string) --

          The deployment status of the device.

        • DeviceDeploymentStatusMessage (string) --

          The detailed error message for the deployoment status result.

        • Description (string) --

          The description of the device.

        • DeploymentStartTime (datetime) --

          The time when the deployment on the device started.

class SageMaker.Paginator.ListStudioLifecycleConfigs
paginator = client.get_paginator('list_studio_lifecycle_configs')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_studio_lifecycle_configs().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    NameContains='string',
    AppTypeEquals='JupyterServer'|'KernelGateway',
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1),
    ModifiedTimeBefore=datetime(2015, 1, 1),
    ModifiedTimeAfter=datetime(2015, 1, 1),
    SortBy='CreationTime'|'LastModifiedTime'|'Name',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • NameContains (string) -- A string in the Lifecycle Configuration name. This filter returns only Lifecycle Configurations whose name contains the specified string.
  • AppTypeEquals (string) -- A parameter to search for the App Type to which the Lifecycle Configuration is attached.
  • CreationTimeBefore (datetime) -- A filter that returns only Lifecycle Configurations created on or before the specified time.
  • CreationTimeAfter (datetime) -- A filter that returns only Lifecycle Configurations created on or after the specified time.
  • ModifiedTimeBefore (datetime) -- A filter that returns only Lifecycle Configurations modified before the specified time.
  • ModifiedTimeAfter (datetime) -- A filter that returns only Lifecycle Configurations modified after the specified time.
  • SortBy (string) -- The property used to sort results. The default value is CreationTime.
  • SortOrder (string) -- The sort order. The default value is Descending.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'StudioLifecycleConfigs': [
        {
            'StudioLifecycleConfigArn': 'string',
            'StudioLifecycleConfigName': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'StudioLifecycleConfigAppType': 'JupyterServer'|'KernelGateway'
        },
    ]
}

Response Structure

  • (dict) --

    • StudioLifecycleConfigs (list) --

      A list of Lifecycle Configurations and their properties.

      • (dict) --

        Details of the Studio Lifecycle Configuration.

        • StudioLifecycleConfigArn (string) --

          The Amazon Resource Name (ARN) of the Lifecycle Configuration.

        • StudioLifecycleConfigName (string) --

          The name of the Studio Lifecycle Configuration.

        • CreationTime (datetime) --

          The creation time of the Studio Lifecycle Configuration.

        • LastModifiedTime (datetime) --

          This value is equivalent to CreationTime because Studio Lifecycle Configurations are immutable.

        • StudioLifecycleConfigAppType (string) --

          The App type to which the Lifecycle Configuration is attached.

class SageMaker.Paginator.ListSubscribedWorkteams
paginator = client.get_paginator('list_subscribed_workteams')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_subscribed_workteams().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    NameContains='string',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • NameContains (string) -- A string in the work team name. This filter returns only work teams whose name contains the specified string.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'SubscribedWorkteams': [
        {
            'WorkteamArn': 'string',
            'MarketplaceTitle': 'string',
            'SellerName': 'string',
            'MarketplaceDescription': 'string',
            'ListingId': 'string'
        },
    ],

}

Response Structure

  • (dict) --

    • SubscribedWorkteams (list) --

      An array of Workteam objects, each describing a work team.

      • (dict) --

        Describes a work team of a vendor that does the a labelling job.

        • WorkteamArn (string) --

          The Amazon Resource Name (ARN) of the vendor that you have subscribed.

        • MarketplaceTitle (string) --

          The title of the service provided by the vendor in the Amazon Marketplace.

        • SellerName (string) --

          The name of the vendor in the Amazon Marketplace.

        • MarketplaceDescription (string) --

          The description of the vendor from the Amazon Marketplace.

        • ListingId (string) --

          Marketplace product listing ID.

class SageMaker.Paginator.ListTags
paginator = client.get_paginator('list_tags')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_tags().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    ResourceArn='string',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • ResourceArn (string) --

    [REQUIRED]

    The Amazon Resource Name (ARN) of the resource whose tags you want to retrieve.

  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'Tags': [
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],

}

Response Structure

  • (dict) --

    • Tags (list) --

      An array of Tag objects, each with a tag key and a value.

      • (dict) --

        A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

        You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

        For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

        • Key (string) --

          The tag key. Tag keys must be unique per resource.

        • Value (string) --

          The tag value.

class SageMaker.Paginator.ListTrainingJobs
paginator = client.get_paginator('list_training_jobs')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_training_jobs().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    NameContains='string',
    StatusEquals='InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
    SortBy='Name'|'CreationTime'|'Status',
    SortOrder='Ascending'|'Descending',
    WarmPoolStatusEquals='Available'|'Terminated'|'Reused'|'InUse',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • CreationTimeAfter (datetime) -- A filter that returns only training jobs created after the specified time (timestamp).
  • CreationTimeBefore (datetime) -- A filter that returns only training jobs created before the specified time (timestamp).
  • LastModifiedTimeAfter (datetime) -- A filter that returns only training jobs modified after the specified time (timestamp).
  • LastModifiedTimeBefore (datetime) -- A filter that returns only training jobs modified before the specified time (timestamp).
  • NameContains (string) -- A string in the training job name. This filter returns only training jobs whose name contains the specified string.
  • StatusEquals (string) -- A filter that retrieves only training jobs with a specific status.
  • SortBy (string) -- The field to sort results by. The default is CreationTime .
  • SortOrder (string) -- The sort order for results. The default is Ascending .
  • WarmPoolStatusEquals (string) -- A filter that retrieves only training jobs with a specific warm pool status.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'TrainingJobSummaries': [
        {
            'TrainingJobName': 'string',
            'TrainingJobArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'TrainingEndTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'TrainingJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
            'WarmPoolStatus': {
                'Status': 'Available'|'Terminated'|'Reused'|'InUse',
                'ResourceRetainedBillableTimeInSeconds': 123,
                'ReusedByJob': 'string'
            }
        },
    ],

}

Response Structure

  • (dict) --

    • TrainingJobSummaries (list) --

      An array of TrainingJobSummary objects, each listing a training job.

      • (dict) --

        Provides summary information about a training job.

        • TrainingJobName (string) --

          The name of the training job that you want a summary for.

        • TrainingJobArn (string) --

          The Amazon Resource Name (ARN) of the training job.

        • CreationTime (datetime) --

          A timestamp that shows when the training job was created.

        • TrainingEndTime (datetime) --

          A timestamp that shows when the training job ended. This field is set only if the training job has one of the terminal statuses ( Completed , Failed , or Stopped ).

        • LastModifiedTime (datetime) --

          Timestamp when the training job was last modified.

        • TrainingJobStatus (string) --

          The status of the training job.

        • WarmPoolStatus (dict) --

          The status of the warm pool associated with the training job.

          • Status (string) --

            The status of the warm pool.

            • InUse : The warm pool is in use for the training job.
            • Available : The warm pool is available to reuse for a matching training job.
            • Reused : The warm pool moved to a matching training job for reuse.
            • Terminated : The warm pool is no longer available. Warm pools are unavailable if they are terminated by a user, terminated for a patch update, or terminated for exceeding the specified KeepAlivePeriodInSeconds .
          • ResourceRetainedBillableTimeInSeconds (integer) --

            The billable time in seconds used by the warm pool. Billable time refers to the absolute wall-clock time.

            Multiply ResourceRetainedBillableTimeInSeconds by the number of instances ( InstanceCount ) in your training cluster to get the total compute time SageMaker bills you if you run warm pool training. The formula is as follows: ResourceRetainedBillableTimeInSeconds * InstanceCount .

          • ReusedByJob (string) --

            The name of the matching training job that reused the warm pool.

class SageMaker.Paginator.ListTrainingJobsForHyperParameterTuningJob
paginator = client.get_paginator('list_training_jobs_for_hyper_parameter_tuning_job')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_training_jobs_for_hyper_parameter_tuning_job().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    HyperParameterTuningJobName='string',
    StatusEquals='InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
    SortBy='Name'|'CreationTime'|'Status'|'FinalObjectiveMetricValue',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • HyperParameterTuningJobName (string) --

    [REQUIRED]

    The name of the tuning job whose training jobs you want to list.

  • StatusEquals (string) -- A filter that returns only training jobs with the specified status.
  • SortBy (string) --

    The field to sort results by. The default is Name .

    If the value of this field is FinalObjectiveMetricValue , any training jobs that did not return an objective metric are not listed.

  • SortOrder (string) -- The sort order for results. The default is Ascending .
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'TrainingJobSummaries': [
        {
            'TrainingJobDefinitionName': 'string',
            'TrainingJobName': 'string',
            'TrainingJobArn': 'string',
            'TuningJobName': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'TrainingStartTime': datetime(2015, 1, 1),
            'TrainingEndTime': datetime(2015, 1, 1),
            'TrainingJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
            'TunedHyperParameters': {
                'string': 'string'
            },
            'FailureReason': 'string',
            'FinalHyperParameterTuningJobObjectiveMetric': {
                'Type': 'Maximize'|'Minimize',
                'MetricName': 'string',
                'Value': ...
            },
            'ObjectiveStatus': 'Succeeded'|'Pending'|'Failed'
        },
    ],

}

Response Structure

  • (dict) --

    • TrainingJobSummaries (list) --

      A list of TrainingJobSummary objects that describe the training jobs that the ListTrainingJobsForHyperParameterTuningJob request returned.

      • (dict) --

        The container for the summary information about a training job.

        • TrainingJobDefinitionName (string) --

          The training job definition name.

        • TrainingJobName (string) --

          The name of the training job.

        • TrainingJobArn (string) --

          The Amazon Resource Name (ARN) of the training job.

        • TuningJobName (string) --

          The HyperParameter tuning job that launched the training job.

        • CreationTime (datetime) --

          The date and time that the training job was created.

        • TrainingStartTime (datetime) --

          The date and time that the training job started.

        • TrainingEndTime (datetime) --

          Specifies the time when the training job ends on training instances. You are billed for the time interval between the value of TrainingStartTime and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when SageMaker detects a job failure.

        • TrainingJobStatus (string) --

          The status of the training job.

        • TunedHyperParameters (dict) --

          A list of the hyperparameters for which you specified ranges to search.

          • (string) --
            • (string) --
        • FailureReason (string) --

          The reason that the training job failed.

        • FinalHyperParameterTuningJobObjectiveMetric (dict) --

          The FinalHyperParameterTuningJobObjectiveMetric object that specifies the value of the objective metric of the tuning job that launched this training job.

          • Type (string) --

            Whether to minimize or maximize the objective metric. Valid values are Minimize and Maximize.

          • MetricName (string) --

            The name of the objective metric.

          • Value (float) --

            The value of the objective metric.

        • ObjectiveStatus (string) --

          The status of the objective metric for the training job:

          • Succeeded: The final objective metric for the training job was evaluated by the hyperparameter tuning job and used in the hyperparameter tuning process.
          • Pending: The training job is in progress and evaluation of its final objective metric is pending.
          • Failed: The final objective metric for the training job was not evaluated, and was not used in the hyperparameter tuning process. This typically occurs when the training job failed or did not emit an objective metric.

class SageMaker.Paginator.ListTransformJobs
paginator = client.get_paginator('list_transform_jobs')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_transform_jobs().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    NameContains='string',
    StatusEquals='InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
    SortBy='Name'|'CreationTime'|'Status',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • CreationTimeAfter (datetime) -- A filter that returns only transform jobs created after the specified time.
  • CreationTimeBefore (datetime) -- A filter that returns only transform jobs created before the specified time.
  • LastModifiedTimeAfter (datetime) -- A filter that returns only transform jobs modified after the specified time.
  • LastModifiedTimeBefore (datetime) -- A filter that returns only transform jobs modified before the specified time.
  • NameContains (string) -- A string in the transform job name. This filter returns only transform jobs whose name contains the specified string.
  • StatusEquals (string) -- A filter that retrieves only transform jobs with a specific status.
  • SortBy (string) -- The field to sort results by. The default is CreationTime .
  • SortOrder (string) -- The sort order for results. The default is Descending .
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'TransformJobSummaries': [
        {
            'TransformJobName': 'string',
            'TransformJobArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'TransformEndTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'TransformJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
            'FailureReason': 'string'
        },
    ],

}

Response Structure

  • (dict) --

    • TransformJobSummaries (list) --

      An array of TransformJobSummary objects.

      • (dict) --

        Provides a summary of a transform job. Multiple TransformJobSummary objects are returned as a list after in response to a ListTransformJobs call.

        • TransformJobName (string) --

          The name of the transform job.

        • TransformJobArn (string) --

          The Amazon Resource Name (ARN) of the transform job.

        • CreationTime (datetime) --

          A timestamp that shows when the transform Job was created.

        • TransformEndTime (datetime) --

          Indicates when the transform job ends on compute instances. For successful jobs and stopped jobs, this is the exact time recorded after the results are uploaded. For failed jobs, this is when Amazon SageMaker detected that the job failed.

        • LastModifiedTime (datetime) --

          Indicates when the transform job was last modified.

        • TransformJobStatus (string) --

          The status of the transform job.

        • FailureReason (string) --

          If the transform job failed, the reason it failed.

class SageMaker.Paginator.ListTrialComponents
paginator = client.get_paginator('list_trial_components')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_trial_components().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    ExperimentName='string',
    TrialName='string',
    SourceArn='string',
    CreatedAfter=datetime(2015, 1, 1),
    CreatedBefore=datetime(2015, 1, 1),
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • ExperimentName (string) -- A filter that returns only components that are part of the specified experiment. If you specify ExperimentName , you can't filter by SourceArn or TrialName .
  • TrialName (string) -- A filter that returns only components that are part of the specified trial. If you specify TrialName , you can't filter by ExperimentName or SourceArn .
  • SourceArn (string) -- A filter that returns only components that have the specified source Amazon Resource Name (ARN). If you specify SourceArn , you can't filter by ExperimentName or TrialName .
  • CreatedAfter (datetime) -- A filter that returns only components created after the specified time.
  • CreatedBefore (datetime) -- A filter that returns only components created before the specified time.
  • SortBy (string) -- The property used to sort results. The default value is CreationTime .
  • SortOrder (string) -- The sort order. The default value is Descending .
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'TrialComponentSummaries': [
        {
            'TrialComponentName': 'string',
            'TrialComponentArn': 'string',
            'DisplayName': 'string',
            'TrialComponentSource': {
                'SourceArn': 'string',
                'SourceType': 'string'
            },
            'Status': {
                'PrimaryStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
                'Message': 'string'
            },
            'StartTime': datetime(2015, 1, 1),
            'EndTime': datetime(2015, 1, 1),
            'CreationTime': datetime(2015, 1, 1),
            'CreatedBy': {
                'UserProfileArn': 'string',
                'UserProfileName': 'string',
                'DomainId': 'string'
            },
            'LastModifiedTime': datetime(2015, 1, 1),
            'LastModifiedBy': {
                'UserProfileArn': 'string',
                'UserProfileName': 'string',
                'DomainId': 'string'
            }
        },
    ],

}

Response Structure

  • (dict) --

    • TrialComponentSummaries (list) --

      A list of the summaries of your trial components.

      • (dict) --

        A summary of the properties of a trial component. To get all the properties, call the DescribeTrialComponent API and provide the TrialComponentName .

        • TrialComponentName (string) --

          The name of the trial component.

        • TrialComponentArn (string) --

          The Amazon Resource Name (ARN) of the trial component.

        • DisplayName (string) --

          The name of the component as displayed. If DisplayName isn't specified, TrialComponentName is displayed.

        • TrialComponentSource (dict) --

          The Amazon Resource Name (ARN) and job type of the source of a trial component.

          • SourceArn (string) --

            The source Amazon Resource Name (ARN).

          • SourceType (string) --

            The source job type.

        • Status (dict) --

          The status of the component. States include:

          • InProgress
          • Completed
          • Failed
          • PrimaryStatus (string) --

            The status of the trial component.

          • Message (string) --

            If the component failed, a message describing why.

        • StartTime (datetime) --

          When the component started.

        • EndTime (datetime) --

          When the component ended.

        • CreationTime (datetime) --

          When the component was created.

        • CreatedBy (dict) --

          Who created the trial component.

          • UserProfileArn (string) --

            The Amazon Resource Name (ARN) of the user's profile.

          • UserProfileName (string) --

            The name of the user's profile.

          • DomainId (string) --

            The domain associated with the user.

        • LastModifiedTime (datetime) --

          When the component was last modified.

        • LastModifiedBy (dict) --

          Who last modified the component.

          • UserProfileArn (string) --

            The Amazon Resource Name (ARN) of the user's profile.

          • UserProfileName (string) --

            The name of the user's profile.

          • DomainId (string) --

            The domain associated with the user.

class SageMaker.Paginator.ListTrials
paginator = client.get_paginator('list_trials')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_trials().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    ExperimentName='string',
    TrialComponentName='string',
    CreatedAfter=datetime(2015, 1, 1),
    CreatedBefore=datetime(2015, 1, 1),
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • ExperimentName (string) -- A filter that returns only trials that are part of the specified experiment.
  • TrialComponentName (string) -- A filter that returns only trials that are associated with the specified trial component.
  • CreatedAfter (datetime) -- A filter that returns only trials created after the specified time.
  • CreatedBefore (datetime) -- A filter that returns only trials created before the specified time.
  • SortBy (string) -- The property used to sort results. The default value is CreationTime .
  • SortOrder (string) -- The sort order. The default value is Descending .
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'TrialSummaries': [
        {
            'TrialArn': 'string',
            'TrialName': 'string',
            'DisplayName': 'string',
            'TrialSource': {
                'SourceArn': 'string',
                'SourceType': 'string'
            },
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],

}

Response Structure

  • (dict) --

    • TrialSummaries (list) --

      A list of the summaries of your trials.

      • (dict) --

        A summary of the properties of a trial. To get the complete set of properties, call the DescribeTrial API and provide the TrialName .

        • TrialArn (string) --

          The Amazon Resource Name (ARN) of the trial.

        • TrialName (string) --

          The name of the trial.

        • DisplayName (string) --

          The name of the trial as displayed. If DisplayName isn't specified, TrialName is displayed.

        • TrialSource (dict) --

          The source of the trial.

          • SourceArn (string) --

            The Amazon Resource Name (ARN) of the source.

          • SourceType (string) --

            The source job type.

        • CreationTime (datetime) --

          When the trial was created.

        • LastModifiedTime (datetime) --

          When the trial was last modified.

class SageMaker.Paginator.ListUserProfiles
paginator = client.get_paginator('list_user_profiles')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_user_profiles().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    SortOrder='Ascending'|'Descending',
    SortBy='CreationTime'|'LastModifiedTime',
    DomainIdEquals='string',
    UserProfileNameContains='string',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • SortOrder (string) -- The sort order for the results. The default is Ascending.
  • SortBy (string) -- The parameter by which to sort the results. The default is CreationTime.
  • DomainIdEquals (string) -- A parameter by which to filter the results.
  • UserProfileNameContains (string) -- A parameter by which to filter the results.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'UserProfiles': [
        {
            'DomainId': 'string',
            'UserProfileName': 'string',
            'Status': 'Deleting'|'Failed'|'InService'|'Pending'|'Updating'|'Update_Failed'|'Delete_Failed',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],

}

Response Structure

  • (dict) --

    • UserProfiles (list) --

      The list of user profiles.

      • (dict) --

        The user profile details.

        • DomainId (string) --

          The domain ID.

        • UserProfileName (string) --

          The user profile name.

        • Status (string) --

          The status.

        • CreationTime (datetime) --

          The creation time.

        • LastModifiedTime (datetime) --

          The last modified time.

class SageMaker.Paginator.ListWorkforces
paginator = client.get_paginator('list_workforces')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_workforces().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    SortBy='Name'|'CreateDate',
    SortOrder='Ascending'|'Descending',
    NameContains='string',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • SortBy (string) -- Sort workforces using the workforce name or creation date.
  • SortOrder (string) -- Sort workforces in ascending or descending order.
  • NameContains (string) -- A filter you can use to search for workforces using part of the workforce name.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'Workforces': [
        {
            'WorkforceName': 'string',
            'WorkforceArn': 'string',
            'LastUpdatedDate': datetime(2015, 1, 1),
            'SourceIpConfig': {
                'Cidrs': [
                    'string',
                ]
            },
            'SubDomain': 'string',
            'CognitoConfig': {
                'UserPool': 'string',
                'ClientId': 'string'
            },
            'OidcConfig': {
                'ClientId': 'string',
                'Issuer': 'string',
                'AuthorizationEndpoint': 'string',
                'TokenEndpoint': 'string',
                'UserInfoEndpoint': 'string',
                'LogoutEndpoint': 'string',
                'JwksUri': 'string'
            },
            'CreateDate': datetime(2015, 1, 1),
            'WorkforceVpcConfig': {
                'VpcId': 'string',
                'SecurityGroupIds': [
                    'string',
                ],
                'Subnets': [
                    'string',
                ],
                'VpcEndpointId': 'string'
            },
            'Status': 'Initializing'|'Updating'|'Deleting'|'Failed'|'Active',
            'FailureReason': 'string'
        },
    ],

}

Response Structure

  • (dict) --

    • Workforces (list) --

      A list containing information about your workforce.

      • (dict) --

        A single private workforce, which is automatically created when you create your first private work team. You can create one private work force in each Amazon Web Services Region. By default, any workforce-related API operation used in a specific region will apply to the workforce created in that region. To learn how to create a private workforce, see Create a Private Workforce.

        • WorkforceName (string) --

          The name of the private workforce.

        • WorkforceArn (string) --

          The Amazon Resource Name (ARN) of the private workforce.

        • LastUpdatedDate (datetime) --

          The most recent date that was used to successfully add one or more IP address ranges ( CIDRs ) to a private workforce's allow list.

        • SourceIpConfig (dict) --

          A list of one to ten IP address ranges ( CIDRs ) to be added to the workforce allow list. By default, a workforce isn't restricted to specific IP addresses.

          • Cidrs (list) --

            A list of one to ten Classless Inter-Domain Routing (CIDR) values.

            Maximum: Ten CIDR values

            Note

            The following Length Constraints apply to individual CIDR values in the CIDR value list.

            • (string) --
        • SubDomain (string) --

          The subdomain for your OIDC Identity Provider.

        • CognitoConfig (dict) --

          The configuration of an Amazon Cognito workforce. A single Cognito workforce is created using and corresponds to a single Amazon Cognito user pool.

          • UserPool (string) --

            A user pool is a user directory in Amazon Cognito. With a user pool, your users can sign in to your web or mobile app through Amazon Cognito. Your users can also sign in through social identity providers like Google, Facebook, Amazon, or Apple, and through SAML identity providers.

          • ClientId (string) --

            The client ID for your Amazon Cognito user pool.

        • OidcConfig (dict) --

          The configuration of an OIDC Identity Provider (IdP) private workforce.

          • ClientId (string) --

            The OIDC IdP client ID used to configure your private workforce.

          • Issuer (string) --

            The OIDC IdP issuer used to configure your private workforce.

          • AuthorizationEndpoint (string) --

            The OIDC IdP authorization endpoint used to configure your private workforce.

          • TokenEndpoint (string) --

            The OIDC IdP token endpoint used to configure your private workforce.

          • UserInfoEndpoint (string) --

            The OIDC IdP user information endpoint used to configure your private workforce.

          • LogoutEndpoint (string) --

            The OIDC IdP logout endpoint used to configure your private workforce.

          • JwksUri (string) --

            The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your private workforce.

        • CreateDate (datetime) --

          The date that the workforce is created.

        • WorkforceVpcConfig (dict) --

          The configuration of a VPC workforce.

          • VpcId (string) --

            The ID of the VPC that the workforce uses for communication.

          • SecurityGroupIds (list) --

            The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet.

            • (string) --
          • Subnets (list) --

            The ID of the subnets in the VPC that you want to connect.

            • (string) --
          • VpcEndpointId (string) --

            The IDs for the VPC service endpoints of your VPC workforce when it is created and updated.

        • Status (string) --

          The status of your workforce.

        • FailureReason (string) --

          The reason your workforce failed.

class SageMaker.Paginator.ListWorkteams
paginator = client.get_paginator('list_workteams')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.list_workteams().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    SortBy='Name'|'CreateDate',
    SortOrder='Ascending'|'Descending',
    NameContains='string',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • SortBy (string) -- The field to sort results by. The default is CreationTime .
  • SortOrder (string) -- The sort order for results. The default is Ascending .
  • NameContains (string) -- A string in the work team's name. This filter returns only work teams whose name contains the specified string.
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

{
    'Workteams': [
        {
            'WorkteamName': 'string',
            'MemberDefinitions': [
                {
                    'CognitoMemberDefinition': {
                        'UserPool': 'string',
                        'UserGroup': 'string',
                        'ClientId': 'string'
                    },
                    'OidcMemberDefinition': {
                        'Groups': [
                            'string',
                        ]
                    }
                },
            ],
            'WorkteamArn': 'string',
            'WorkforceArn': 'string',
            'ProductListingIds': [
                'string',
            ],
            'Description': 'string',
            'SubDomain': 'string',
            'CreateDate': datetime(2015, 1, 1),
            'LastUpdatedDate': datetime(2015, 1, 1),
            'NotificationConfiguration': {
                'NotificationTopicArn': 'string'
            }
        },
    ],

}

Response Structure

  • (dict) --

    • Workteams (list) --

      An array of Workteam objects, each describing a work team.

      • (dict) --

        Provides details about a labeling work team.

        • WorkteamName (string) --

          The name of the work team.

        • MemberDefinitions (list) --

          A list of MemberDefinition objects that contains objects that identify the workers that make up the work team.

          Workforces can be created using Amazon Cognito or your own OIDC Identity Provider (IdP). For private workforces created using Amazon Cognito use CognitoMemberDefinition . For workforces created using your own OIDC identity provider (IdP) use OidcMemberDefinition .

          • (dict) --

            Defines an Amazon Cognito or your own OIDC IdP user group that is part of a work team.

            • CognitoMemberDefinition (dict) --

              The Amazon Cognito user group that is part of the work team.

              • UserPool (string) --

                An identifier for a user pool. The user pool must be in the same region as the service that you are calling.

              • UserGroup (string) --

                An identifier for a user group.

              • ClientId (string) --

                An identifier for an application client. You must create the app client ID using Amazon Cognito.

            • OidcMemberDefinition (dict) --

              A list user groups that exist in your OIDC Identity Provider (IdP). One to ten groups can be used to create a single private work team. When you add a user group to the list of Groups , you can add that user group to one or more private work teams. If you add a user group to a private work team, all workers in that user group are added to the work team.

              • Groups (list) --

                A list of comma seperated strings that identifies user groups in your OIDC IdP. Each user group is made up of a group of private workers.

                • (string) --
        • WorkteamArn (string) --

          The Amazon Resource Name (ARN) that identifies the work team.

        • WorkforceArn (string) --

          The Amazon Resource Name (ARN) of the workforce.

        • ProductListingIds (list) --

          The Amazon Marketplace identifier for a vendor's work team.

          • (string) --
        • Description (string) --

          A description of the work team.

        • SubDomain (string) --

          The URI of the labeling job's user interface. Workers open this URI to start labeling your data objects.

        • CreateDate (datetime) --

          The date and time that the work team was created (timestamp).

        • LastUpdatedDate (datetime) --

          The date and time that the work team was last updated (timestamp).

        • NotificationConfiguration (dict) --

          Configures SNS notifications of available or expiring work items for work teams.

          • NotificationTopicArn (string) --

            The ARN for the Amazon SNS topic to which notifications should be published.

class SageMaker.Paginator.Search
paginator = client.get_paginator('search')
paginate(**kwargs)

Creates an iterator that will paginate through responses from SageMaker.Client.search().

See also: AWS API Documentation

Request Syntax

response_iterator = paginator.paginate(
    Resource='TrainingJob'|'Experiment'|'ExperimentTrial'|'ExperimentTrialComponent'|'Endpoint'|'ModelPackage'|'ModelPackageGroup'|'Pipeline'|'PipelineExecution'|'FeatureGroup'|'Project'|'FeatureMetadata'|'HyperParameterTuningJob'|'ModelCard'|'Model',
    SearchExpression={
        'Filters': [
            {
                'Name': 'string',
                'Operator': 'Equals'|'NotEquals'|'GreaterThan'|'GreaterThanOrEqualTo'|'LessThan'|'LessThanOrEqualTo'|'Contains'|'Exists'|'NotExists'|'In',
                'Value': 'string'
            },
        ],
        'NestedFilters': [
            {
                'NestedPropertyName': 'string',
                'Filters': [
                    {
                        'Name': 'string',
                        'Operator': 'Equals'|'NotEquals'|'GreaterThan'|'GreaterThanOrEqualTo'|'LessThan'|'LessThanOrEqualTo'|'Contains'|'Exists'|'NotExists'|'In',
                        'Value': 'string'
                    },
                ]
            },
        ],
        'SubExpressions': [
            {'... recursive ...'},
        ],
        'Operator': 'And'|'Or'
    },
    SortBy='string',
    SortOrder='Ascending'|'Descending',
    PaginationConfig={
        'MaxItems': 123,
        'PageSize': 123,
        'StartingToken': 'string'
    }
)
Parameters
  • Resource (string) --

    [REQUIRED]

    The name of the Amazon SageMaker resource to search for.

  • SearchExpression (dict) --

    A Boolean conditional statement. Resources must satisfy this condition to be included in search results. You must provide at least one subexpression, filter, or nested filter. The maximum number of recursive SubExpressions , NestedFilters , and Filters that can be included in a SearchExpression object is 50.

    • Filters (list) --

      A list of filter objects.

      • (dict) --

        A conditional statement for a search expression that includes a resource property, a Boolean operator, and a value. Resources that match the statement are returned in the results from the Search API.

        If you specify a Value , but not an Operator , Amazon SageMaker uses the equals operator.

        In search, there are several property types:

        Metrics

        To define a metric filter, enter a value using the form "Metrics.<name>" , where <name> is a metric name. For example, the following filter searches for training jobs with an "accuracy" metric greater than "0.9" :

        {

        "Name": "Metrics.accuracy",

        "Operator": "GreaterThan",

        "Value": "0.9"

        }

        HyperParameters

        To define a hyperparameter filter, enter a value with the form "HyperParameters.<name>" . Decimal hyperparameter values are treated as a decimal in a comparison if the specified Value is also a decimal value. If the specified Value is an integer, the decimal hyperparameter values are treated as integers. For example, the following filter is satisfied by training jobs with a "learning_rate" hyperparameter that is less than "0.5" :

        {

        "Name": "HyperParameters.learning_rate",

        "Operator": "LessThan",

        "Value": "0.5"

        }

        Tags

        To define a tag filter, enter a value with the form Tags.<key> .

        • Name (string) -- [REQUIRED]

          A resource property name. For example, TrainingJobName . For valid property names, see SearchRecord. You must specify a valid property for the resource.

        • Operator (string) --

          A Boolean binary operator that is used to evaluate the filter. The operator field contains one of the following values:

          Equals

          The value of Name equals Value .

          NotEquals

          The value of Name doesn't equal Value .

          Exists

          The Name property exists.

          NotExists

          The Name property does not exist.

          GreaterThan

          The value of Name is greater than Value . Not supported for text properties.

          GreaterThanOrEqualTo

          The value of Name is greater than or equal to Value . Not supported for text properties.

          LessThan

          The value of Name is less than Value . Not supported for text properties.

          LessThanOrEqualTo

          The value of Name is less than or equal to Value . Not supported for text properties.

          In

          The value of Name is one of the comma delimited strings in Value . Only supported for text properties.

          Contains

          The value of Name contains the string Value . Only supported for text properties.

          A SearchExpression can include the Contains operator multiple times when the value of Name is one of the following:

          • Experiment.DisplayName
          • Experiment.ExperimentName
          • Experiment.Tags
          • Trial.DisplayName
          • Trial.TrialName
          • Trial.Tags
          • TrialComponent.DisplayName
          • TrialComponent.TrialComponentName
          • TrialComponent.Tags
          • TrialComponent.InputArtifacts
          • TrialComponent.OutputArtifacts

          A SearchExpression can include only one Contains operator for all other values of Name . In these cases, if you include multiple Contains operators in the SearchExpression , the result is the following error message: " 'CONTAINS' operator usage limit of 1 exceeded. "

        • Value (string) --

          A value used with Name and Operator to determine which resources satisfy the filter's condition. For numerical properties, Value must be an integer or floating-point decimal. For timestamp properties, Value must be an ISO 8601 date-time string of the following format: YYYY-mm-dd'T'HH:MM:SS .

    • NestedFilters (list) --

      A list of nested filter objects.

      • (dict) --

        A list of nested Filter objects. A resource must satisfy the conditions of all filters to be included in the results returned from the Search API.

        For example, to filter on a training job's InputDataConfig property with a specific channel name and S3Uri prefix, define the following filters:

        • '{Name:"InputDataConfig.ChannelName", "Operator":"Equals", "Value":"train"}',
        • '{Name:"InputDataConfig.DataSource.S3DataSource.S3Uri", "Operator":"Contains", "Value":"mybucket/catdata"}'
        • NestedPropertyName (string) -- [REQUIRED]

          The name of the property to use in the nested filters. The value must match a listed property name, such as InputDataConfig .

        • Filters (list) -- [REQUIRED]

          A list of filters. Each filter acts on a property. Filters must contain at least one Filters value. For example, a NestedFilters call might include a filter on the PropertyName parameter of the InputDataConfig property: InputDataConfig.DataSource.S3DataSource.S3Uri .

          • (dict) --

            A conditional statement for a search expression that includes a resource property, a Boolean operator, and a value. Resources that match the statement are returned in the results from the Search API.

            If you specify a Value , but not an Operator , Amazon SageMaker uses the equals operator.

            In search, there are several property types:

            Metrics

            To define a metric filter, enter a value using the form "Metrics.<name>" , where <name> is a metric name. For example, the following filter searches for training jobs with an "accuracy" metric greater than "0.9" :

            {

            "Name": "Metrics.accuracy",

            "Operator": "GreaterThan",

            "Value": "0.9"

            }

            HyperParameters

            To define a hyperparameter filter, enter a value with the form "HyperParameters.<name>" . Decimal hyperparameter values are treated as a decimal in a comparison if the specified Value is also a decimal value. If the specified Value is an integer, the decimal hyperparameter values are treated as integers. For example, the following filter is satisfied by training jobs with a "learning_rate" hyperparameter that is less than "0.5" :

            {

            "Name": "HyperParameters.learning_rate",

            "Operator": "LessThan",

            "Value": "0.5"

            }

            Tags

            To define a tag filter, enter a value with the form Tags.<key> .

            • Name (string) -- [REQUIRED]

              A resource property name. For example, TrainingJobName . For valid property names, see SearchRecord. You must specify a valid property for the resource.

            • Operator (string) --

              A Boolean binary operator that is used to evaluate the filter. The operator field contains one of the following values:

              Equals

              The value of Name equals Value .

              NotEquals

              The value of Name doesn't equal Value .

              Exists

              The Name property exists.

              NotExists

              The Name property does not exist.

              GreaterThan

              The value of Name is greater than Value . Not supported for text properties.

              GreaterThanOrEqualTo

              The value of Name is greater than or equal to Value . Not supported for text properties.

              LessThan

              The value of Name is less than Value . Not supported for text properties.

              LessThanOrEqualTo

              The value of Name is less than or equal to Value . Not supported for text properties.

              In

              The value of Name is one of the comma delimited strings in Value . Only supported for text properties.

              Contains

              The value of Name contains the string Value . Only supported for text properties.

              A SearchExpression can include the Contains operator multiple times when the value of Name is one of the following:

              • Experiment.DisplayName
              • Experiment.ExperimentName
              • Experiment.Tags
              • Trial.DisplayName
              • Trial.TrialName
              • Trial.Tags
              • TrialComponent.DisplayName
              • TrialComponent.TrialComponentName
              • TrialComponent.Tags
              • TrialComponent.InputArtifacts
              • TrialComponent.OutputArtifacts

              A SearchExpression can include only one Contains operator for all other values of Name . In these cases, if you include multiple Contains operators in the SearchExpression , the result is the following error message: " 'CONTAINS' operator usage limit of 1 exceeded. "

            • Value (string) --

              A value used with Name and Operator to determine which resources satisfy the filter's condition. For numerical properties, Value must be an integer or floating-point decimal. For timestamp properties, Value must be an ISO 8601 date-time string of the following format: YYYY-mm-dd'T'HH:MM:SS .

    • SubExpressions (list) --

      A list of search expression objects.

      • (dict) --

        A multi-expression that searches for the specified resource or resources in a search. All resource objects that satisfy the expression's condition are included in the search results. You must specify at least one subexpression, filter, or nested filter. A SearchExpression can contain up to twenty elements.

        A SearchExpression contains the following components:

        • A list of Filter objects. Each filter defines a simple Boolean expression comprised of a resource property name, Boolean operator, and value.
        • A list of NestedFilter objects. Each nested filter defines a list of Boolean expressions using a list of resource properties. A nested filter is satisfied if a single object in the list satisfies all Boolean expressions.
        • A list of SearchExpression objects. A search expression object can be nested in a list of search expression objects.
        • A Boolean operator: And or Or .
    • Operator (string) --

      A Boolean operator used to evaluate the search expression. If you want every conditional statement in all lists to be satisfied for the entire search expression to be true, specify And . If only a single conditional statement needs to be true for the entire search expression to be true, specify Or . The default value is And .

  • SortBy (string) -- The name of the resource property used to sort the SearchResults . The default is LastModifiedTime .
  • SortOrder (string) -- How SearchResults are ordered. Valid values are Ascending or Descending . The default is Descending .
  • PaginationConfig (dict) --

    A dictionary that provides parameters to control pagination.

    • MaxItems (integer) --

      The total number of items to return. If the total number of items available is more than the value specified in max-items then a NextToken will be provided in the output that you can use to resume pagination.

    • PageSize (integer) --

      The size of each page.

    • StartingToken (string) --

      A token to specify where to start paginating. This is the NextToken from a previous response.

Return type

dict

Returns

Response Syntax

# This section is too large to render.
# Please see the AWS API Documentation linked below.

AWS API Documentation

Response Structure

# This section is too large to render.
# Please see the AWS API Documentation linked below.

AWS API Documentation

Waiters

The available waiters are:

class SageMaker.Waiter.EndpointDeleted
waiter = client.get_waiter('endpoint_deleted')
wait(**kwargs)

Polls SageMaker.Client.describe_endpoint() every 30 seconds until a successful state is reached. An error is returned after 60 failed checks.

See also: AWS API Documentation

Request Syntax

waiter.wait(
    EndpointName='string',
    WaiterConfig={
        'Delay': 123,
        'MaxAttempts': 123
    }
)
Parameters
  • EndpointName (string) --

    [REQUIRED]

    The name of the endpoint.

  • WaiterConfig (dict) --

    A dictionary that provides parameters to control waiting behavior.

    • Delay (integer) --

      The amount of time in seconds to wait between attempts. Default: 30

    • MaxAttempts (integer) --

      The maximum number of attempts to be made. Default: 60

Returns

None

class SageMaker.Waiter.EndpointInService
waiter = client.get_waiter('endpoint_in_service')
wait(**kwargs)

Polls SageMaker.Client.describe_endpoint() every 30 seconds until a successful state is reached. An error is returned after 120 failed checks.

See also: AWS API Documentation

Request Syntax

waiter.wait(
    EndpointName='string',
    WaiterConfig={
        'Delay': 123,
        'MaxAttempts': 123
    }
)
Parameters
  • EndpointName (string) --

    [REQUIRED]

    The name of the endpoint.

  • WaiterConfig (dict) --

    A dictionary that provides parameters to control waiting behavior.

    • Delay (integer) --

      The amount of time in seconds to wait between attempts. Default: 30

    • MaxAttempts (integer) --

      The maximum number of attempts to be made. Default: 120

Returns

None

class SageMaker.Waiter.ImageCreated
waiter = client.get_waiter('image_created')
wait(**kwargs)

Polls SageMaker.Client.describe_image() every 60 seconds until a successful state is reached. An error is returned after 60 failed checks.

See also: AWS API Documentation

Request Syntax

waiter.wait(
    ImageName='string',
    WaiterConfig={
        'Delay': 123,
        'MaxAttempts': 123
    }
)
Parameters
  • ImageName (string) --

    [REQUIRED]

    The name of the image to describe.

  • WaiterConfig (dict) --

    A dictionary that provides parameters to control waiting behavior.

    • Delay (integer) --

      The amount of time in seconds to wait between attempts. Default: 60

    • MaxAttempts (integer) --

      The maximum number of attempts to be made. Default: 60

Returns

None

class SageMaker.Waiter.ImageDeleted
waiter = client.get_waiter('image_deleted')
wait(**kwargs)

Polls SageMaker.Client.describe_image() every 60 seconds until a successful state is reached. An error is returned after 60 failed checks.

See also: AWS API Documentation

Request Syntax

waiter.wait(
    ImageName='string',
    WaiterConfig={
        'Delay': 123,
        'MaxAttempts': 123
    }
)
Parameters
  • ImageName (string) --

    [REQUIRED]

    The name of the image to describe.

  • WaiterConfig (dict) --

    A dictionary that provides parameters to control waiting behavior.

    • Delay (integer) --

      The amount of time in seconds to wait between attempts. Default: 60

    • MaxAttempts (integer) --

      The maximum number of attempts to be made. Default: 60

Returns

None

class SageMaker.Waiter.ImageUpdated
waiter = client.get_waiter('image_updated')
wait(**kwargs)

Polls SageMaker.Client.describe_image() every 60 seconds until a successful state is reached. An error is returned after 60 failed checks.

See also: AWS API Documentation

Request Syntax

waiter.wait(
    ImageName='string',
    WaiterConfig={
        'Delay': 123,
        'MaxAttempts': 123
    }
)
Parameters
  • ImageName (string) --

    [REQUIRED]

    The name of the image to describe.

  • WaiterConfig (dict) --

    A dictionary that provides parameters to control waiting behavior.

    • Delay (integer) --

      The amount of time in seconds to wait between attempts. Default: 60

    • MaxAttempts (integer) --

      The maximum number of attempts to be made. Default: 60

Returns

None

class SageMaker.Waiter.ImageVersionCreated
waiter = client.get_waiter('image_version_created')
wait(**kwargs)

Polls SageMaker.Client.describe_image_version() every 60 seconds until a successful state is reached. An error is returned after 60 failed checks.

See also: AWS API Documentation

Request Syntax

waiter.wait(
    ImageName='string',
    Version=123,
    Alias='string',
    WaiterConfig={
        'Delay': 123,
        'MaxAttempts': 123
    }
)
Parameters
  • ImageName (string) --

    [REQUIRED]

    The name of the image.

  • Version (integer) -- The version of the image. If not specified, the latest version is described.
  • Alias (string) -- The alias of the image version.
  • WaiterConfig (dict) --

    A dictionary that provides parameters to control waiting behavior.

    • Delay (integer) --

      The amount of time in seconds to wait between attempts. Default: 60

    • MaxAttempts (integer) --

      The maximum number of attempts to be made. Default: 60

Returns

None

class SageMaker.Waiter.ImageVersionDeleted
waiter = client.get_waiter('image_version_deleted')
wait(**kwargs)

Polls SageMaker.Client.describe_image_version() every 60 seconds until a successful state is reached. An error is returned after 60 failed checks.

See also: AWS API Documentation

Request Syntax

waiter.wait(
    ImageName='string',
    Version=123,
    Alias='string',
    WaiterConfig={
        'Delay': 123,
        'MaxAttempts': 123
    }
)
Parameters
  • ImageName (string) --

    [REQUIRED]

    The name of the image.

  • Version (integer) -- The version of the image. If not specified, the latest version is described.
  • Alias (string) -- The alias of the image version.
  • WaiterConfig (dict) --

    A dictionary that provides parameters to control waiting behavior.

    • Delay (integer) --

      The amount of time in seconds to wait between attempts. Default: 60

    • MaxAttempts (integer) --

      The maximum number of attempts to be made. Default: 60

Returns

None

class SageMaker.Waiter.NotebookInstanceDeleted
waiter = client.get_waiter('notebook_instance_deleted')
wait(**kwargs)

Polls SageMaker.Client.describe_notebook_instance() every 30 seconds until a successful state is reached. An error is returned after 60 failed checks.

See also: AWS API Documentation

Request Syntax

waiter.wait(
    NotebookInstanceName='string',
    WaiterConfig={
        'Delay': 123,
        'MaxAttempts': 123
    }
)
Parameters
  • NotebookInstanceName (string) --

    [REQUIRED]

    The name of the notebook instance that you want information about.

  • WaiterConfig (dict) --

    A dictionary that provides parameters to control waiting behavior.

    • Delay (integer) --

      The amount of time in seconds to wait between attempts. Default: 30

    • MaxAttempts (integer) --

      The maximum number of attempts to be made. Default: 60

Returns

None

class SageMaker.Waiter.NotebookInstanceInService
waiter = client.get_waiter('notebook_instance_in_service')
wait(**kwargs)

Polls SageMaker.Client.describe_notebook_instance() every 30 seconds until a successful state is reached. An error is returned after 60 failed checks.

See also: AWS API Documentation

Request Syntax

waiter.wait(
    NotebookInstanceName='string',
    WaiterConfig={
        'Delay': 123,
        'MaxAttempts': 123
    }
)
Parameters
  • NotebookInstanceName (string) --

    [REQUIRED]

    The name of the notebook instance that you want information about.

  • WaiterConfig (dict) --

    A dictionary that provides parameters to control waiting behavior.

    • Delay (integer) --

      The amount of time in seconds to wait between attempts. Default: 30

    • MaxAttempts (integer) --

      The maximum number of attempts to be made. Default: 60

Returns

None

class SageMaker.Waiter.NotebookInstanceStopped
waiter = client.get_waiter('notebook_instance_stopped')
wait(**kwargs)

Polls SageMaker.Client.describe_notebook_instance() every 30 seconds until a successful state is reached. An error is returned after 60 failed checks.

See also: AWS API Documentation

Request Syntax

waiter.wait(
    NotebookInstanceName='string',
    WaiterConfig={
        'Delay': 123,
        'MaxAttempts': 123
    }
)
Parameters
  • NotebookInstanceName (string) --

    [REQUIRED]

    The name of the notebook instance that you want information about.

  • WaiterConfig (dict) --

    A dictionary that provides parameters to control waiting behavior.

    • Delay (integer) --

      The amount of time in seconds to wait between attempts. Default: 30

    • MaxAttempts (integer) --

      The maximum number of attempts to be made. Default: 60

Returns

None

class SageMaker.Waiter.ProcessingJobCompletedOrStopped
waiter = client.get_waiter('processing_job_completed_or_stopped')
wait(**kwargs)

Polls SageMaker.Client.describe_processing_job() every 60 seconds until a successful state is reached. An error is returned after 60 failed checks.

See also: AWS API Documentation

Request Syntax

waiter.wait(
    ProcessingJobName='string',
    WaiterConfig={
        'Delay': 123,
        'MaxAttempts': 123
    }
)
Parameters
  • ProcessingJobName (string) --

    [REQUIRED]

    The name of the processing job. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.

  • WaiterConfig (dict) --

    A dictionary that provides parameters to control waiting behavior.

    • Delay (integer) --

      The amount of time in seconds to wait between attempts. Default: 60

    • MaxAttempts (integer) --

      The maximum number of attempts to be made. Default: 60

Returns

None

class SageMaker.Waiter.TrainingJobCompletedOrStopped
waiter = client.get_waiter('training_job_completed_or_stopped')
wait(**kwargs)

Polls SageMaker.Client.describe_training_job() every 120 seconds until a successful state is reached. An error is returned after 180 failed checks.

See also: AWS API Documentation

Request Syntax

waiter.wait(
    TrainingJobName='string',
    WaiterConfig={
        'Delay': 123,
        'MaxAttempts': 123
    }
)
Parameters
  • TrainingJobName (string) --

    [REQUIRED]

    The name of the training job.

  • WaiterConfig (dict) --

    A dictionary that provides parameters to control waiting behavior.

    • Delay (integer) --

      The amount of time in seconds to wait between attempts. Default: 120

    • MaxAttempts (integer) --

      The maximum number of attempts to be made. Default: 180

Returns

None

class SageMaker.Waiter.TransformJobCompletedOrStopped
waiter = client.get_waiter('transform_job_completed_or_stopped')
wait(**kwargs)

Polls SageMaker.Client.describe_transform_job() every 60 seconds until a successful state is reached. An error is returned after 60 failed checks.

See also: AWS API Documentation

Request Syntax

waiter.wait(
    TransformJobName='string',
    WaiterConfig={
        'Delay': 123,
        'MaxAttempts': 123
    }
)
Parameters
  • TransformJobName (string) --

    [REQUIRED]

    The name of the transform job that you want to view details of.

  • WaiterConfig (dict) --

    A dictionary that provides parameters to control waiting behavior.

    • Delay (integer) --

      The amount of time in seconds to wait between attempts. Default: 60

    • MaxAttempts (integer) --

      The maximum number of attempts to be made. Default: 60

Returns

None