create_app
(**kwargs)¶Creates a running app for the specified UserProfile. This operation is automatically invoked by Amazon SageMaker Studio upon access to the associated Domain, and when new kernel configurations are selected by the user. A user may have multiple Apps active simultaneously.
See also: AWS API Documentation
Request Syntax
response = client.create_app(
DomainId='string',
UserProfileName='string',
AppType='JupyterServer'|'KernelGateway'|'TensorBoard'|'RStudioServerPro'|'RSessionGateway',
AppName='string',
Tags=[
{
'Key': 'string',
'Value': 'string'
},
],
ResourceSpec={
'SageMakerImageArn': 'string',
'SageMakerImageVersionArn': 'string',
'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge',
'LifecycleConfigArn': 'string'
},
SpaceName='string'
)
[REQUIRED]
The domain ID.
SpaceName
must be set.[REQUIRED]
The type of app.
[REQUIRED]
The name of the app.
Each tag consists of a key and an optional value. Tag keys must be unique per resource.
A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.
You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.
For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.
The tag key. Tag keys must be unique per resource.
The tag value.
The instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
Note
The value of InstanceType
passed as part of the ResourceSpec
in the CreateApp
call overrides the value passed as part of the ResourceSpec
configured for the user profile or the domain. If InstanceType
is not specified in any of those three ResourceSpec
values for a KernelGateway
app, the CreateApp
call fails with a request validation error.
The ARN of the SageMaker image that the image version belongs to.
The ARN of the image version created on the instance.
The instance type that the image version runs on.
Note
JupyterServer apps only support thesystem
value.
For KernelGateway apps , the system
value is translated to ml.t3.medium
. KernelGateway apps also support all other values for available instance types.
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
UserProfileName
must be set.dict
Response Syntax
{
'AppArn': 'string'
}
Response Structure
(dict) --
AppArn (string) --
The Amazon Resource Name (ARN) of the app.
Exceptions
SageMaker.Client.exceptions.ResourceLimitExceeded
SageMaker.Client.exceptions.ResourceInUse