SageMaker / Paginator / ListInferenceRecommendationsJobSteps
ListInferenceRecommendationsJobSteps#
- class SageMaker.Paginator.ListInferenceRecommendationsJobSteps#
- paginator = client.get_paginator('list_inference_recommendations_job_steps') - paginate(**kwargs)#
- Creates an iterator that will paginate through responses from - SageMaker.Client.list_inference_recommendations_job_steps().- See also: AWS API Documentation - Request Syntax- response_iterator = paginator.paginate( JobName='string', Status='PENDING'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOPPING'|'STOPPED', StepType='BENCHMARK', PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) - Parameters:
- JobName (string) – - [REQUIRED] - The name for the Inference Recommender job. 
- Status (string) – A filter to return benchmarks of a specified status. If this field is left empty, then all benchmarks are returned. 
- StepType (string) – - A filter to return details about the specified type of subtask. - BENCHMARK: Evaluate the performance of your model on different instance types.
- PaginationConfig (dict) – - A dictionary that provides parameters to control pagination. - MaxItems (integer) – - The total number of items to return. If the total number of items available is more than the value specified in max-items then a - NextTokenwill be provided in the output that you can use to resume pagination.
- PageSize (integer) – - The size of each page. 
- StartingToken (string) – - A token to specify where to start paginating. This is the - NextTokenfrom a previous response.
 
 
- Return type:
- dict 
- Returns:
- Response Syntax- { 'Steps': [ { 'StepType': 'BENCHMARK', 'JobName': 'string', 'Status': 'PENDING'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOPPING'|'STOPPED', 'InferenceBenchmark': { 'Metrics': { 'CostPerHour': ..., 'CostPerInference': ..., 'MaxInvocations': 123, 'ModelLatency': 123, 'CpuUtilization': ..., 'MemoryUtilization': ..., 'ModelSetupTime': 123 }, 'EndpointConfiguration': { 'EndpointName': 'string', 'VariantName': 'string', 'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge', 'InitialInstanceCount': 123, 'ServerlessConfig': { 'MemorySizeInMB': 123, 'MaxConcurrency': 123, 'ProvisionedConcurrency': 123 } }, 'ModelConfiguration': { 'InferenceSpecificationName': 'string', 'EnvironmentParameters': [ { 'Key': 'string', 'ValueType': 'string', 'Value': 'string' }, ], 'CompilationJobName': 'string' }, 'FailureReason': 'string', 'EndpointMetrics': { 'MaxInvocations': 123, 'ModelLatency': 123 }, 'InvocationEndTime': datetime(2015, 1, 1), 'InvocationStartTime': datetime(2015, 1, 1) } }, ], } - Response Structure- (dict) – - Steps (list) – - A list of all subtask details in Inference Recommender. - (dict) – - A returned array object for the - Stepsresponse field in the ListInferenceRecommendationsJobSteps API command.- StepType (string) – - The type of the subtask. - BENCHMARK: Evaluate the performance of your model on different instance types.
- JobName (string) – - The name of the Inference Recommender job. 
- Status (string) – - The current status of the benchmark. 
- InferenceBenchmark (dict) – - The details for a specific benchmark. - Metrics (dict) – - The metrics of recommendations. - CostPerHour (float) – - Defines the cost per hour for the instance. 
- CostPerInference (float) – - Defines the cost per inference for the instance . 
- MaxInvocations (integer) – - The expected maximum number of requests per minute for the instance. 
- ModelLatency (integer) – - The expected model latency at maximum invocation per minute for the instance. 
- CpuUtilization (float) – - The expected CPU utilization at maximum invocations per minute for the instance. - NaNindicates that the value is not available.
- MemoryUtilization (float) – - The expected memory utilization at maximum invocations per minute for the instance. - NaNindicates that the value is not available.
- ModelSetupTime (integer) – - The time it takes to launch new compute resources for a serverless endpoint. The time can vary depending on the model size, how long it takes to download the model, and the start-up time of the container. - NaNindicates that the value is not available.
 
- EndpointConfiguration (dict) – - The endpoint configuration made by Inference Recommender during a recommendation job. - EndpointName (string) – - The name of the endpoint made during a recommendation job. 
- VariantName (string) – - The name of the production variant (deployed model) made during a recommendation job. 
- InstanceType (string) – - The instance type recommended by Amazon SageMaker Inference Recommender. 
- InitialInstanceCount (integer) – - The number of instances recommended to launch initially. 
- ServerlessConfig (dict) – - Specifies the serverless configuration for an endpoint variant. - MemorySizeInMB (integer) – - The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB. 
- MaxConcurrency (integer) – - The maximum number of concurrent invocations your serverless endpoint can process. 
- ProvisionedConcurrency (integer) – - The amount of provisioned concurrency to allocate for the serverless endpoint. Should be less than or equal to - MaxConcurrency.- Note- This field is not supported for serverless endpoint recommendations for Inference Recommender jobs. For more information about creating an Inference Recommender job, see CreateInferenceRecommendationsJobs. 
 
 
- ModelConfiguration (dict) – - Defines the model configuration. Includes the specification name and environment parameters. - InferenceSpecificationName (string) – - The inference specification name in the model package version. 
- EnvironmentParameters (list) – - Defines the environment parameters that includes key, value types, and values. - (dict) – - A list of environment parameters suggested by the Amazon SageMaker Inference Recommender. - Key (string) – - The environment key suggested by the Amazon SageMaker Inference Recommender. 
- ValueType (string) – - The value type suggested by the Amazon SageMaker Inference Recommender. 
- Value (string) – - The value suggested by the Amazon SageMaker Inference Recommender. 
 
 
- CompilationJobName (string) – - The name of the compilation job used to create the recommended model artifacts. 
 
- FailureReason (string) – - The reason why a benchmark failed. 
- EndpointMetrics (dict) – - The metrics for an existing endpoint compared in an Inference Recommender job. - MaxInvocations (integer) – - The expected maximum number of requests per minute for the instance. 
- ModelLatency (integer) – - The expected model latency at maximum invocations per minute for the instance. 
 
- InvocationEndTime (datetime) – - A timestamp that shows when the benchmark completed. 
- InvocationStartTime (datetime) – - A timestamp that shows when the benchmark started.