FraudDetector / Client / get_event_prediction
get_event_prediction#
- FraudDetector.Client.get_event_prediction(**kwargs)#
- Evaluates an event against a detector version. If a version ID is not provided, the detector’s ( - ACTIVE) version is used.- See also: AWS API Documentation - Request Syntax- response = client.get_event_prediction( detectorId='string', detectorVersionId='string', eventId='string', eventTypeName='string', entities=[ { 'entityType': 'string', 'entityId': 'string' }, ], eventTimestamp='string', eventVariables={ 'string': 'string' }, externalModelEndpointDataBlobs={ 'string': { 'byteBuffer': b'bytes', 'contentType': 'string' } } ) - Parameters:
- detectorId (string) – - [REQUIRED] - The detector ID. 
- detectorVersionId (string) – The detector version ID. 
- eventId (string) – - [REQUIRED] - The unique ID used to identify the event. 
- eventTypeName (string) – - [REQUIRED] - The event type associated with the detector specified for the prediction. 
- entities (list) – - [REQUIRED] - The entity type (associated with the detector’s event type) and specific entity ID representing who performed the event. If an entity id is not available, use “UNKNOWN.” - (dict) – - The entity details. - entityType (string) – [REQUIRED] - The entity type. 
- entityId (string) – [REQUIRED] - The entity ID. If you do not know the - entityId, you can pass- unknown, which is areserved string literal.
 
 
- eventTimestamp (string) – - [REQUIRED] - Timestamp that defines when the event under evaluation occurred. The timestamp must be specified using ISO 8601 standard in UTC. 
- eventVariables (dict) – - [REQUIRED] - Names of the event type’s variables you defined in Amazon Fraud Detector to represent data elements and their corresponding values for the event you are sending for evaluation. - Warning- You must provide at least one eventVariable - To ensure most accurate fraud prediction and to simplify your data preparation, Amazon Fraud Detector will replace all missing variables or values as follows: - For Amazon Fraud Detector trained models:- If a null value is provided explicitly for a variable or if a variable is missing, model will replace the null value or the missing variable (no variable name in the eventVariables map) with calculated default mean/medians for numeric variables and with special values for categorical variables. - For imported SageMaker models:- If a null value is provided explicitly for a variable, the model and rules will use “null” as the value. If a variable is not provided (no variable name in the eventVariables map), model and rules will use the default value that is provided for the variable. - (string) – - (string) – 
 
 
- externalModelEndpointDataBlobs (dict) – - The Amazon SageMaker model endpoint input data blobs. - (string) – - (dict) – - A pre-formed Amazon SageMaker model input you can include if your detector version includes an imported Amazon SageMaker model endpoint with pass-through input configuration. - byteBuffer (bytes) – - The byte buffer of the Amazon SageMaker model endpoint input data blob. 
- contentType (string) – - The content type of the Amazon SageMaker model endpoint input data blob. 
 
 
 
 
- Return type:
- dict 
- Returns:
- Response Syntax- { 'modelScores': [ { 'modelVersion': { 'modelId': 'string', 'modelType': 'ONLINE_FRAUD_INSIGHTS'|'TRANSACTION_FRAUD_INSIGHTS'|'ACCOUNT_TAKEOVER_INSIGHTS', 'modelVersionNumber': 'string', 'arn': 'string' }, 'scores': { 'string': ... } }, ], 'ruleResults': [ { 'ruleId': 'string', 'outcomes': [ 'string', ] }, ], 'externalModelOutputs': [ { 'externalModel': { 'modelEndpoint': 'string', 'modelSource': 'SAGEMAKER' }, 'outputs': { 'string': 'string' } }, ] } - Response Structure- (dict) – - modelScores (list) – - The model scores. Amazon Fraud Detector generates model scores between 0 and 1000, where 0 is low fraud risk and 1000 is high fraud risk. Model scores are directly related to the false positive rate (FPR). For example, a score of 600 corresponds to an estimated 10% false positive rate whereas a score of 900 corresponds to an estimated 2% false positive rate. - (dict) – - The fraud prediction scores. - modelVersion (dict) – - The model version. - modelId (string) – - The model ID. 
- modelType (string) – - The model type. 
- modelVersionNumber (string) – - The model version number. 
- arn (string) – - The model version ARN. 
 
- scores (dict) – - The model’s fraud prediction scores. - (string) – - (float) – 
 
 
 
 
- ruleResults (list) – - The results from the rules. - (dict) – - The rule results. - ruleId (string) – - The rule ID that was matched, based on the rule execution mode. 
- outcomes (list) – - The outcomes of the matched rule, based on the rule execution mode. - (string) – 
 
 
 
- externalModelOutputs (list) – - The model scores for Amazon SageMaker models. - (dict) – - The fraud prediction scores from Amazon SageMaker model. - externalModel (dict) – - The Amazon SageMaker model. - modelEndpoint (string) – - The endpoint of the Amazon SageMaker model. 
- modelSource (string) – - The source of the model. 
 
- outputs (dict) – - The fraud prediction scores from Amazon SageMaker model. - (string) – - (string) – 
 
 
 
 
 
 
 - Exceptions- FraudDetector.Client.exceptions.ValidationException
- FraudDetector.Client.exceptions.ResourceNotFoundException
- FraudDetector.Client.exceptions.InternalServerException
- FraudDetector.Client.exceptions.ThrottlingException
- FraudDetector.Client.exceptions.AccessDeniedException
- FraudDetector.Client.exceptions.ConflictException
- FraudDetector.Client.exceptions.ResourceUnavailableException