BedrockRuntime / Client / converse_stream
converse_stream#
- BedrockRuntime.Client.converse_stream(**kwargs)#
Sends messages to the specified Amazon Bedrock model and returns the response in a stream.
ConverseStream
provides a consistent API that works with all Amazon Bedrock models that support messages. This allows you to write code once and use it with different models. Should a model have unique inference parameters, you can also pass those unique parameters to the model. For more information, see Run inference in the Bedrock User Guide.To find out if a model supports streaming, call GetFoundationModel and check the
responseStreamingSupported
field in the response.For example code, see Invoke model with streaming code example in the Amazon Bedrock User Guide.
This operation requires permission for the
bedrock:InvokeModelWithResponseStream
action.See also: AWS API Documentation
Request Syntax
response = client.converse_stream( modelId='string', messages=[ { 'role': 'user'|'assistant', 'content': [ { 'text': 'string', 'image': { 'format': 'png'|'jpeg'|'gif'|'webp', 'source': { 'bytes': b'bytes' } }, 'toolUse': { 'toolUseId': 'string', 'name': 'string', 'input': {...}|[...]|123|123.4|'string'|True|None }, 'toolResult': { 'toolUseId': 'string', 'content': [ { 'json': {...}|[...]|123|123.4|'string'|True|None, 'text': 'string', 'image': { 'format': 'png'|'jpeg'|'gif'|'webp', 'source': { 'bytes': b'bytes' } } }, ], 'status': 'success'|'error' } }, ] }, ], system=[ { 'text': 'string' }, ], inferenceConfig={ 'maxTokens': 123, 'temperature': ..., 'topP': ..., 'stopSequences': [ 'string', ] }, toolConfig={ 'tools': [ { 'toolSpec': { 'name': 'string', 'description': 'string', 'inputSchema': { 'json': {...}|[...]|123|123.4|'string'|True|None } } }, ], 'toolChoice': { 'auto': {} , 'any': {} , 'tool': { 'name': 'string' } } }, additionalModelRequestFields={...}|[...]|123|123.4|'string'|True|None, additionalModelResponseFieldPaths=[ 'string', ] )
- Parameters:
modelId (string) –
[REQUIRED]
The ID for the model.
The
modelId
to provide depends on the type of model that you use:If you use a base model, specify the model ID or its ARN. For a list of model IDs for base models, see Amazon Bedrock base model IDs (on-demand throughput) in the Amazon Bedrock User Guide.
If you use a provisioned model, specify the ARN of the Provisioned Throughput. For more information, see Run inference using a Provisioned Throughput in the Amazon Bedrock User Guide.
If you use a custom model, first purchase Provisioned Throughput for it. Then specify the ARN of the resulting provisioned model. For more information, see Use a custom model in Amazon Bedrock in the Amazon Bedrock User Guide.
messages (list) –
[REQUIRED]
The messages that you want to send to the model.
(dict) –
A message in the Message field. Use to send a message in a call to Converse.
role (string) – [REQUIRED]
The role that the message plays in the message.
content (list) – [REQUIRED]
The message content.
(dict) –
A block of content for a message.
Note
This is a Tagged Union structure. Only one of the following top level keys can be set:
text
,image
,toolUse
,toolResult
.text (string) –
Text to include in the message.
image (dict) –
Image to include in the message.
Note
This field is only supported by Anthropic Claude 3 models.
format (string) – [REQUIRED]
The format of the image.
source (dict) – [REQUIRED]
The source for the image.
Note
This is a Tagged Union structure. Only one of the following top level keys can be set:
bytes
.bytes (bytes) –
The raw image bytes for the image. If you use an AWS SDK, you don’t need to base64 encode the image bytes.
toolUse (dict) –
Information about a tool use request from a model.
toolUseId (string) – [REQUIRED]
The ID for the tool request.
name (string) – [REQUIRED]
The name of the tool that the model wants to use.
input (document) – [REQUIRED]
The input to pass to the tool.
toolResult (dict) –
The result for a tool request that a model makes.
toolUseId (string) – [REQUIRED]
The ID of the tool request that this is the result for.
content (list) – [REQUIRED]
The content for tool result content block.
(dict) –
The tool result content block.
Note
This is a Tagged Union structure. Only one of the following top level keys can be set:
json
,text
,image
.json (document) –
A tool result that is JSON format data.
text (string) –
A tool result that is text.
image (dict) –
A tool result that is an image.
Note
This field is only supported by Anthropic Claude 3 models.
format (string) – [REQUIRED]
The format of the image.
source (dict) – [REQUIRED]
The source for the image.
Note
This is a Tagged Union structure. Only one of the following top level keys can be set:
bytes
.bytes (bytes) –
The raw image bytes for the image. If you use an AWS SDK, you don’t need to base64 encode the image bytes.
status (string) –
The status for the tool result content block.
Note
This field is only supported Anthropic Claude 3 models.
system (list) –
A system prompt to send to the model.
(dict) –
A system content block
Note
This is a Tagged Union structure. Only one of the following top level keys can be set:
text
.text (string) –
A system prompt for the model.
inferenceConfig (dict) –
Inference parameters to pass to the model.
ConverseStream
supports a base set of inference parameters. If you need to pass additional parameters that the model supports, use theadditionalModelRequestFields
request field.maxTokens (integer) –
The maximum number of tokens to allow in the generated response. The default value is the maximum allowed value for the model that you are using. For more information, see Inference parameters for foundatio{ “messages”: [ { “role”: “user”, “content”: [ { “text”: “what’s the weather in Queens, NY and Austin, TX?” } ] }, { “role”: “assistant”, “content”: [ { “toolUse”: { “toolUseId”: “1”, “name”: “get_weather”, “input”: { “city”: “Queens”, “state”: “NY” } } }, { “toolUse”: { “toolUseId”: “2”, “name”: “get_weather”, “input”: { “city”: “Austin”, “state”: “TX” } } } ] }, { “role”: “user”, “content”: [ { “toolResult”: { “toolUseId”: “2”, “content”: [ { “json”: { “weather”: “40” } } ] } }, { “text”: “…” }, { “toolResult”: { “toolUseId”: “1”, “content”: [ { “text”: “result text” } ] } } ] } ], “toolConfig”: { “tools”: [ { “name”: “get_weather”, “description”: “Get weather”, “inputSchema”: { “type”: “object”, “properties”: { “city”: { “type”: “string”, “description”: “City of location” }, “state”: { “type”: “string”, “description”: “State of location” } }, “required”: [“city”, “state”] } } ] } } n models.
temperature (float) –
The likelihood of the model selecting higher-probability options while generating a response. A lower value makes the model more likely to choose higher-probability options, while a higher value makes the model more likely to choose lower-probability options.
The default value is the default value for the model that you are using. For more information, see Inference parameters for foundation models.
topP (float) –
The percentage of most-likely candidates that the model considers for the next token. For example, if you choose a value of 0.8 for
topP
, the model selects from the top 80% of the probability distribution of tokens that could be next in the sequence.The default value is the default value for the model that you are using. For more information, see Inference parameters for foundation models.
stopSequences (list) –
A list of stop sequences. A stop sequence is a sequence of characters that causes the model to stop generating the response.
(string) –
toolConfig (dict) –
Configuration information for the tools that the model can use when generating a response.
Note
This field is only supported by Anthropic Claude 3 models.
tools (list) – [REQUIRED]
An array of tools that you want to pass to a model.
(dict) –
Information about a tool that you can use with the Converse API.
Note
This is a Tagged Union structure. Only one of the following top level keys can be set:
toolSpec
.toolSpec (dict) –
The specfication for the tool.
name (string) – [REQUIRED]
The name for the tool.
description (string) –
The description for the tool.
inputSchema (dict) – [REQUIRED]
The input schema for the tool in JSON format.
Note
This is a Tagged Union structure. Only one of the following top level keys can be set:
json
.json (document) –
The JSON schema for the tool. For more information, see JSON Schema Reference.
toolChoice (dict) –
If supported by model, forces the model to request a tool.
Note
This is a Tagged Union structure. Only one of the following top level keys can be set:
auto
,any
,tool
.auto (dict) –
The Model automatically decides if a tool should be called or to whether to generate text instead.
any (dict) –
The model must request at least one tool (no text is generated).
tool (dict) –
The Model must request the specified tool.
name (string) – [REQUIRED]
The name of the tool that the model must request.
additionalModelRequestFields (document) – Additional inference parameters that the model supports, beyond the base set of inference parameters that
ConverseStream
supports in theinferenceConfig
field.additionalModelResponseFieldPaths (list) –
Additional model parameters field paths to return in the response.
ConverseStream
returns the requested fields as a JSON Pointer object in theadditionalModelResultFields
field. The following is example JSON foradditionalModelResponseFieldPaths
.[ "/stop_sequence" ]
For information about the JSON Pointer syntax, see the Internet Engineering Task Force (IETF) documentation.
ConverseStream
rejects an empty JSON Pointer or incorrectly structured JSON Pointer with a400
error code. if the JSON Pointer is valid, but the requested field is not in the model response, it is ignored byConverseStream
.(string) –
- Return type:
dict
- Returns:
The response of this operation contains an
EventStream
member. When iterated theEventStream
will yield events based on the structure below, where only one of the top level keys will be present for any given event.Response Syntax
{ 'stream': EventStream({ 'messageStart': { 'role': 'user'|'assistant' }, 'contentBlockStart': { 'start': { 'toolUse': { 'toolUseId': 'string', 'name': 'string' } }, 'contentBlockIndex': 123 }, 'contentBlockDelta': { 'delta': { 'text': 'string', 'toolUse': { 'input': 'string' } }, 'contentBlockIndex': 123 }, 'contentBlockStop': { 'contentBlockIndex': 123 }, 'messageStop': { 'stopReason': 'end_turn'|'tool_use'|'max_tokens'|'stop_sequence'|'content_filtered', 'additionalModelResponseFields': {...}|[...]|123|123.4|'string'|True|None }, 'metadata': { 'usage': { 'inputTokens': 123, 'outputTokens': 123, 'totalTokens': 123 }, 'metrics': { 'latencyMs': 123 } }, 'internalServerException': { 'message': 'string' }, 'modelStreamErrorException': { 'message': 'string', 'originalStatusCode': 123, 'originalMessage': 'string' }, 'validationException': { 'message': 'string' }, 'throttlingException': { 'message': 'string' } }) }
Response Structure
(dict) –
stream (
EventStream
) –The output stream that the model generated.
messageStart (dict) –
Message start information.
role (string) –
The role for the message.
contentBlockStart (dict) –
Start information for a content block.
start (dict) –
Start information about a content block start event.
Note
This is a Tagged Union structure. Only one of the following top level keys will be set:
toolUse
. If a client receives an unknown member it will setSDK_UNKNOWN_MEMBER
as the top level key, which maps to the name or tag of the unknown member. The structure ofSDK_UNKNOWN_MEMBER
is as follows:'SDK_UNKNOWN_MEMBER': {'name': 'UnknownMemberName'}
toolUse (dict) –
Information about a tool that the model is requesting to use.
toolUseId (string) –
The ID for the tool request.
name (string) –
The name of the tool that the model is requesting to use.
contentBlockIndex (integer) –
The index for a content block start event.
contentBlockDelta (dict) –
The messages output content block delta.
delta (dict) –
The delta for a content block delta event.
Note
This is a Tagged Union structure. Only one of the following top level keys will be set:
text
,toolUse
. If a client receives an unknown member it will setSDK_UNKNOWN_MEMBER
as the top level key, which maps to the name or tag of the unknown member. The structure ofSDK_UNKNOWN_MEMBER
is as follows:'SDK_UNKNOWN_MEMBER': {'name': 'UnknownMemberName'}
text (string) –
The content text.
toolUse (dict) –
Information about a tool that the model is requesting to use.
input (string) –
The input for a requested tool.
contentBlockIndex (integer) –
The block index for a content block delta event.
contentBlockStop (dict) –
Stop information for a content block.
contentBlockIndex (integer) –
The index for a content block.
messageStop (dict) –
Message stop information.
stopReason (string) –
The reason why the model stopped generating output.
additionalModelResponseFields (document) –
The additional model response fields.
metadata (dict) –
Metadata for the converse output stream.
usage (dict) –
Usage information for the conversation stream event.
inputTokens (integer) –
The number of tokens sent in the request to the model.
outputTokens (integer) –
The number of tokens that the model generated for the request.
totalTokens (integer) –
The total of input tokens and tokens generated by the model.
metrics (dict) –
The metrics for the conversation stream metadata event.
latencyMs (integer) –
The latency for the streaming request, in milliseconds.
internalServerException (dict) –
An internal server error occurred. Retry your request.
message (string) –
modelStreamErrorException (dict) –
A streaming error occurred. Retry your request.
message (string) –
originalStatusCode (integer) –
The original status code.
originalMessage (string) –
The original message.
validationException (dict) –
Input validation failed. Check your request parameters and retry the request.
message (string) –
throttlingException (dict) –
The number of requests exceeds the limit. Resubmit your request later.
message (string) –
Exceptions
BedrockRuntime.Client.exceptions.AccessDeniedException
BedrockRuntime.Client.exceptions.ResourceNotFoundException
BedrockRuntime.Client.exceptions.ThrottlingException
BedrockRuntime.Client.exceptions.ModelTimeoutException
BedrockRuntime.Client.exceptions.InternalServerException
BedrockRuntime.Client.exceptions.ValidationException
BedrockRuntime.Client.exceptions.ModelNotReadyException
BedrockRuntime.Client.exceptions.ModelErrorException