ECS / Client / register_task_definition
register_task_definition#
- ECS.Client.register_task_definition(**kwargs)#
- Registers a new task definition from the supplied - familyand- containerDefinitions. Optionally, you can add data volumes to your containers with the- volumesparameter. For more information about task definition parameters and defaults, see Amazon ECS Task Definitions in the Amazon Elastic Container Service Developer Guide.- You can specify a role for your task with the - taskRoleArnparameter. When you specify a role for a task, its containers can then use the latest versions of the CLI or SDKs to make API requests to the Amazon Web Services services that are specified in the policy that’s associated with the role. For more information, see IAM Roles for Tasks in the Amazon Elastic Container Service Developer Guide.- You can specify a Docker networking mode for the containers in your task definition with the - networkModeparameter. If you specify the- awsvpcnetwork mode, the task is allocated an elastic network interface, and you must specify a NetworkConfiguration when you create a service or run a task with the task definition. For more information, see Task Networking in the Amazon Elastic Container Service Developer Guide.- See also: AWS API Documentation - Request Syntax- response = client.register_task_definition( family='string', taskRoleArn='string', executionRoleArn='string', networkMode='bridge'|'host'|'awsvpc'|'none', containerDefinitions=[ { 'name': 'string', 'image': 'string', 'repositoryCredentials': { 'credentialsParameter': 'string' }, 'cpu': 123, 'memory': 123, 'memoryReservation': 123, 'links': [ 'string', ], 'portMappings': [ { 'containerPort': 123, 'hostPort': 123, 'protocol': 'tcp'|'udp', 'name': 'string', 'appProtocol': 'http'|'http2'|'grpc', 'containerPortRange': 'string' }, ], 'essential': True|False, 'restartPolicy': { 'enabled': True|False, 'ignoredExitCodes': [ 123, ], 'restartAttemptPeriod': 123 }, 'entryPoint': [ 'string', ], 'command': [ 'string', ], 'environment': [ { 'name': 'string', 'value': 'string' }, ], 'environmentFiles': [ { 'value': 'string', 'type': 's3' }, ], 'mountPoints': [ { 'sourceVolume': 'string', 'containerPath': 'string', 'readOnly': True|False }, ], 'volumesFrom': [ { 'sourceContainer': 'string', 'readOnly': True|False }, ], 'linuxParameters': { 'capabilities': { 'add': [ 'string', ], 'drop': [ 'string', ] }, 'devices': [ { 'hostPath': 'string', 'containerPath': 'string', 'permissions': [ 'read'|'write'|'mknod', ] }, ], 'initProcessEnabled': True|False, 'sharedMemorySize': 123, 'tmpfs': [ { 'containerPath': 'string', 'size': 123, 'mountOptions': [ 'string', ] }, ], 'maxSwap': 123, 'swappiness': 123 }, 'secrets': [ { 'name': 'string', 'valueFrom': 'string' }, ], 'dependsOn': [ { 'containerName': 'string', 'condition': 'START'|'COMPLETE'|'SUCCESS'|'HEALTHY' }, ], 'startTimeout': 123, 'stopTimeout': 123, 'hostname': 'string', 'user': 'string', 'workingDirectory': 'string', 'disableNetworking': True|False, 'privileged': True|False, 'readonlyRootFilesystem': True|False, 'dnsServers': [ 'string', ], 'dnsSearchDomains': [ 'string', ], 'extraHosts': [ { 'hostname': 'string', 'ipAddress': 'string' }, ], 'dockerSecurityOptions': [ 'string', ], 'interactive': True|False, 'pseudoTerminal': True|False, 'dockerLabels': { 'string': 'string' }, 'ulimits': [ { 'name': 'core'|'cpu'|'data'|'fsize'|'locks'|'memlock'|'msgqueue'|'nice'|'nofile'|'nproc'|'rss'|'rtprio'|'rttime'|'sigpending'|'stack', 'softLimit': 123, 'hardLimit': 123 }, ], 'logConfiguration': { 'logDriver': 'json-file'|'syslog'|'journald'|'gelf'|'fluentd'|'awslogs'|'splunk'|'awsfirelens', 'options': { 'string': 'string' }, 'secretOptions': [ { 'name': 'string', 'valueFrom': 'string' }, ] }, 'healthCheck': { 'command': [ 'string', ], 'interval': 123, 'timeout': 123, 'retries': 123, 'startPeriod': 123 }, 'systemControls': [ { 'namespace': 'string', 'value': 'string' }, ], 'resourceRequirements': [ { 'value': 'string', 'type': 'GPU'|'InferenceAccelerator' }, ], 'firelensConfiguration': { 'type': 'fluentd'|'fluentbit', 'options': { 'string': 'string' } }, 'credentialSpecs': [ 'string', ] }, ], volumes=[ { 'name': 'string', 'host': { 'sourcePath': 'string' }, 'dockerVolumeConfiguration': { 'scope': 'task'|'shared', 'autoprovision': True|False, 'driver': 'string', 'driverOpts': { 'string': 'string' }, 'labels': { 'string': 'string' } }, 'efsVolumeConfiguration': { 'fileSystemId': 'string', 'rootDirectory': 'string', 'transitEncryption': 'ENABLED'|'DISABLED', 'transitEncryptionPort': 123, 'authorizationConfig': { 'accessPointId': 'string', 'iam': 'ENABLED'|'DISABLED' } }, 'fsxWindowsFileServerVolumeConfiguration': { 'fileSystemId': 'string', 'rootDirectory': 'string', 'authorizationConfig': { 'credentialsParameter': 'string', 'domain': 'string' } }, 'configuredAtLaunch': True|False }, ], placementConstraints=[ { 'type': 'memberOf', 'expression': 'string' }, ], requiresCompatibilities=[ 'EC2'|'FARGATE'|'EXTERNAL', ], cpu='string', memory='string', tags=[ { 'key': 'string', 'value': 'string' }, ], pidMode='host'|'task', ipcMode='host'|'task'|'none', proxyConfiguration={ 'type': 'APPMESH', 'containerName': 'string', 'properties': [ { 'name': 'string', 'value': 'string' }, ] }, inferenceAccelerators=[ { 'deviceName': 'string', 'deviceType': 'string' }, ], ephemeralStorage={ 'sizeInGiB': 123 }, runtimePlatform={ 'cpuArchitecture': 'X86_64'|'ARM64', 'operatingSystemFamily': 'WINDOWS_SERVER_2019_FULL'|'WINDOWS_SERVER_2019_CORE'|'WINDOWS_SERVER_2016_FULL'|'WINDOWS_SERVER_2004_CORE'|'WINDOWS_SERVER_2022_CORE'|'WINDOWS_SERVER_2022_FULL'|'WINDOWS_SERVER_20H2_CORE'|'LINUX' } ) - Parameters:
- family (string) – - [REQUIRED] - You must specify a - familyfor a task definition. You can use it track multiple versions of the same task definition. The- familyis used as a name for your task definition. Up to 255 letters (uppercase and lowercase), numbers, underscores, and hyphens are allowed.
- taskRoleArn (string) – The short name or full Amazon Resource Name (ARN) of the IAM role that containers in this task can assume. All containers in this task are granted the permissions that are specified in this role. For more information, see IAM Roles for Tasks in the Amazon Elastic Container Service Developer Guide. 
- executionRoleArn (string) – The Amazon Resource Name (ARN) of the task execution role that grants the Amazon ECS container agent permission to make Amazon Web Services API calls on your behalf. For informationabout the required IAM roles for Amazon ECS, see IAM roles for Amazon ECS in the Amazon Elastic Container Service Developer Guide. 
- networkMode (string) – - The Docker networking mode to use for the containers in the task. The valid values are - none,- bridge,- awsvpc, and- host. If no network mode is specified, the default is- bridge.- For Amazon ECS tasks on Fargate, the - awsvpcnetwork mode is required. For Amazon ECS tasks on Amazon EC2 Linux instances, any network mode can be used. For Amazon ECS tasks on Amazon EC2 Windows instances,- <default>or- awsvpccan be used. If the network mode is set to- none, you cannot specify port mappings in your container definitions, and the tasks containers do not have external connectivity. The- hostand- awsvpcnetwork modes offer the highest networking performance for containers because they use the EC2 network stack instead of the virtualized network stack provided by the- bridgemode.- With the - hostand- awsvpcnetwork modes, exposed container ports are mapped directly to the corresponding host port (for the- hostnetwork mode) or the attached elastic network interface port (for the- awsvpcnetwork mode), so you cannot take advantage of dynamic host port mappings.- Warning- When using the - hostnetwork mode, you should not run containers using the root user (UID 0). It is considered best practice to use a non-root user.- If the network mode is - awsvpc, the task is allocated an elastic network interface, and you must specify a NetworkConfiguration value when you create a service or run a task with the task definition. For more information, see Task Networking in the Amazon Elastic Container Service Developer Guide.- If the network mode is - host, you cannot run multiple instantiations of the same task on a single container instance when port mappings are used.
- containerDefinitions (list) – - [REQUIRED] - A list of container definitions in JSON format that describe the different containers that make up your task. - (dict) – - Container definitions are used in task definitions to describe the different containers that are launched as part of a task. - name (string) – - The name of a container. If you’re linking multiple containers together in a task definition, the - nameof one container can be entered in the- linksof another container to connect the containers. Up to 255 letters (uppercase and lowercase), numbers, underscores, and hyphens are allowed. This parameter maps to- namein tthe docker create-container command and the- --nameoption to docker run.
- image (string) – - The image used to start a container. This string is passed directly to the Docker daemon. By default, images in the Docker Hub registry are available. Other repositories are specified with either - repository-url/image:tagor- repository-url/image@digest ``. Up to 255 letters (uppercase and lowercase), numbers, hyphens, underscores, colons, periods, forward slashes, and number signs are allowed. This parameter maps to ``Imagein the docker create-container command and the- IMAGEparameter of docker run.- When a new task starts, the Amazon ECS container agent pulls the latest version of the specified image and tag for the container to use. However, subsequent updates to a repository image aren’t propagated to already running tasks. 
- Images in Amazon ECR repositories can be specified by either using the full - registry/repository:tagor- registry/repository@digest. For example,- 012345678910.dkr.ecr.<region-name>.amazonaws.com/<repository-name>:latestor- 012345678910.dkr.ecr.<region-name>.amazonaws.com/<repository-name>@sha256:94afd1f2e64d908bc90dbca0035a5b567EXAMPLE.
- Images in official repositories on Docker Hub use a single name (for example, - ubuntuor- mongo).
- Images in other repositories on Docker Hub are qualified with an organization name (for example, - amazon/amazon-ecs-agent).
- Images in other online repositories are qualified further by a domain name (for example, - quay.io/assemblyline/ubuntu).
 
- repositoryCredentials (dict) – - The private repository authentication credentials to use. - credentialsParameter (string) – [REQUIRED] - The Amazon Resource Name (ARN) of the secret containing the private repository credentials. - Note- When you use the Amazon ECS API, CLI, or Amazon Web Services SDK, if the secret exists in the same Region as the task that you’re launching then you can use either the full ARN or the name of the secret. When you use the Amazon Web Services Management Console, you must specify the full ARN of the secret. 
 
- cpu (integer) – - The number of - cpuunits reserved for the container. This parameter maps to- CpuSharesin the docker create-container commandand the- --cpu-sharesoption to docker run.- This field is optional for tasks using the Fargate launch type, and the only requirement is that the total amount of CPU reserved for all containers within a task be lower than the task-level - cpuvalue.- Note- You can determine the number of CPU units that are available per EC2 instance type by multiplying the vCPUs listed for that instance type on the Amazon EC2 Instances detail page by 1,024. - Linux containers share unallocated CPU units with other containers on the container instance with the same ratio as their allocated amount. For example, if you run a single-container task on a single-core instance type with 512 CPU units specified for that container, and that’s the only task running on the container instance, that container could use the full 1,024 CPU unit share at any given time. However, if you launched another copy of the same task on that container instance, each task is guaranteed a minimum of 512 CPU units when needed. Moreover, each container could float to higher CPU usage if the other container was not using it. If both tasks were 100% active all of the time, they would be limited to 512 CPU units. - On Linux container instances, the Docker daemon on the container instance uses the CPU value to calculate the relative CPU share ratios for running containers. The minimum valid CPU share value that the Linux kernel allows is 2, and the maximum valid CPU share value that the Linux kernel allows is 262144. However, the CPU parameter isn’t required, and you can use CPU values below 2 or above 262144 in your container definitions. For CPU values below 2 (including null) or above 262144, the behavior varies based on your Amazon ECS container agent version: - Agent versions less than or equal to 1.1.0: Null and zero CPU values are passed to Docker as 0, which Docker then converts to 1,024 CPU shares. CPU values of 1 are passed to Docker as 1, which the Linux kernel converts to two CPU shares. 
- Agent versions greater than or equal to 1.2.0: Null, zero, and CPU values of 1 are passed to Docker as 2. 
- Agent versions greater than or equal to 1.84.0: CPU values greater than 256 vCPU are passed to Docker as 256, which is equivalent to 262144 CPU shares. 
 - On Windows container instances, the CPU limit is enforced as an absolute limit, or a quota. Windows containers only have access to the specified amount of CPU that’s described in the task definition. A null or zero CPU value is passed to Docker as - 0, which Windows interprets as 1% of one CPU.
- memory (integer) – - The amount (in MiB) of memory to present to the container. If your container attempts to exceed the memory specified here, the container is killed. The total amount of memory reserved for all containers within a task must be lower than the task - memoryvalue, if one is specified. This parameter maps to- Memoryin thethe docker create-container command and the- --memoryoption to docker run.- If using the Fargate launch type, this parameter is optional. - If using the EC2 launch type, you must specify either a task-level memory value or a container-level memory value. If you specify both a container-level - memoryand- memoryReservationvalue,- memorymust be greater than- memoryReservation. If you specify- memoryReservation, then that value is subtracted from the available memory resources for the container instance where the container is placed. Otherwise, the value of- memoryis used.- The Docker 20.10.0 or later daemon reserves a minimum of 6 MiB of memory for a container. So, don’t specify less than 6 MiB of memory for your containers. - The Docker 19.03.13-ce or earlier daemon reserves a minimum of 4 MiB of memory for a container. So, don’t specify less than 4 MiB of memory for your containers. 
- memoryReservation (integer) – - The soft limit (in MiB) of memory to reserve for the container. When system memory is under heavy contention, Docker attempts to keep the container memory to this soft limit. However, your container can consume more memory when it needs to, up to either the hard limit specified with the - memoryparameter (if applicable), or all of the available memory on the container instance, whichever comes first. This parameter maps to- MemoryReservationin the the docker create-container command and the- --memory-reservationoption to docker run.- If a task-level memory value is not specified, you must specify a non-zero integer for one or both of - memoryor- memoryReservationin a container definition. If you specify both,- memorymust be greater than- memoryReservation. If you specify- memoryReservation, then that value is subtracted from the available memory resources for the container instance where the container is placed. Otherwise, the value of- memoryis used.- For example, if your container normally uses 128 MiB of memory, but occasionally bursts to 256 MiB of memory for short periods of time, you can set a - memoryReservationof 128 MiB, and a- memoryhard limit of 300 MiB. This configuration would allow the container to only reserve 128 MiB of memory from the remaining resources on the container instance, but also allow the container to consume more memory resources when needed.- The Docker 20.10.0 or later daemon reserves a minimum of 6 MiB of memory for a container. So, don’t specify less than 6 MiB of memory for your containers. - The Docker 19.03.13-ce or earlier daemon reserves a minimum of 4 MiB of memory for a container. So, don’t specify less than 4 MiB of memory for your containers. 
- links (list) – - The - linksparameter allows containers to communicate with each other without the need for port mappings. This parameter is only supported if the network mode of a task definition is- bridge. The- name:internalNameconstruct is analogous to- name:aliasin Docker links. Up to 255 letters (uppercase and lowercase), numbers, underscores, and hyphens are allowed.. This parameter maps to- Linksin the docker create-container command and the- --linkoption to docker run.- Note- This parameter is not supported for Windows containers. - Warning- Containers that are collocated on a single container instance may be able to communicate with each other without requiring links or host port mappings. Network isolation is achieved on the container instance using security groups and VPC settings. - (string) – 
 
- portMappings (list) – - The list of port mappings for the container. Port mappings allow containers to access ports on the host container instance to send or receive traffic. - For task definitions that use the - awsvpcnetwork mode, only specify the- containerPort. The- hostPortcan be left blank or it must be the same value as the- containerPort.- Port mappings on Windows use the - NetNATgateway address rather than- localhost. There’s no loopback for port mappings on Windows, so you can’t access a container’s mapped port from the host itself.- This parameter maps to - PortBindingsin the the docker create-container command and the- --publishoption to docker run. If the network mode of a task definition is set to- none, then you can’t specify port mappings. If the network mode of a task definition is set to- host, then host ports must either be undefined or they must match the container port in the port mapping.- Note- After a task reaches the - RUNNINGstatus, manual and automatic host and container port assignments are visible in the Network Bindings section of a container description for a selected task in the Amazon ECS console. The assignments are also visible in the- networkBindingssection DescribeTasks responses.- (dict) – - Port mappings allow containers to access ports on the host container instance to send or receive traffic. Port mappings are specified as part of the container definition. - If you use containers in a task with the - awsvpcor- hostnetwork mode, specify the exposed ports using- containerPort. The- hostPortcan be left blank or it must be the same value as the- containerPort.- Most fields of this parameter ( - containerPort,- hostPort,- protocol) maps to- PortBindingsin the docker create-container command and the- --publishoption to- docker run. If the network mode of a task definition is set to- host, host ports must either be undefined or match the container port in the port mapping.- Note- You can’t expose the same container port for multiple protocols. If you attempt this, an error is returned. - After a task reaches the - RUNNINGstatus, manual and automatic host and container port assignments are visible in the- networkBindingssection of DescribeTasks API responses.- containerPort (integer) – - The port number on the container that’s bound to the user-specified or automatically assigned host port. - If you use containers in a task with the - awsvpcor- hostnetwork mode, specify the exposed ports using- containerPort.- If you use containers in a task with the - bridgenetwork mode and you specify a container port and not a host port, your container automatically receives a host port in the ephemeral port range. For more information, see- hostPort. Port mappings that are automatically assigned in this way do not count toward the 100 reserved ports limit of a container instance.
- hostPort (integer) – - The port number on the container instance to reserve for your container. - If you specify a - containerPortRange, leave this field empty and the value of the- hostPortis set as follows:- For containers in a task with the - awsvpcnetwork mode, the- hostPortis set to the same value as the- containerPort. This is a static mapping strategy.
- For containers in a task with the - bridgenetwork mode, the Amazon ECS agent finds open ports on the host and automatically binds them to the container ports. This is a dynamic mapping strategy.
 - If you use containers in a task with the - awsvpcor- hostnetwork mode, the- hostPortcan either be left blank or set to the same value as the- containerPort.- If you use containers in a task with the - bridgenetwork mode, you can specify a non-reserved host port for your container port mapping, or you can omit the- hostPort(or set it to- 0) while specifying a- containerPortand your container automatically receives a port in the ephemeral port range for your container instance operating system and Docker version.- The default ephemeral port range for Docker version 1.6.0 and later is listed on the instance under - /proc/sys/net/ipv4/ip_local_port_range. If this kernel parameter is unavailable, the default ephemeral port range from 49153 through 65535 (Linux) or 49152 through 65535 (Windows) is used. Do not attempt to specify a host port in the ephemeral port range as these are reserved for automatic assignment. In general, ports below 32768 are outside of the ephemeral port range.- The default reserved ports are 22 for SSH, the Docker ports 2375 and 2376, and the Amazon ECS container agent ports 51678-51680. Any host port that was previously specified in a running task is also reserved while the task is running. That is, after a task stops, the host port is released. The current reserved ports are displayed in the - remainingResourcesof DescribeContainerInstances output. A container instance can have up to 100 reserved ports at a time. This number includes the default reserved ports. Automatically assigned ports aren’t included in the 100 reserved ports quota.
- protocol (string) – - The protocol used for the port mapping. Valid values are - tcpand- udp. The default is- tcp.- protocolis immutable in a Service Connect service. Updating this field requires a service deletion and redeployment.
- name (string) – - The name that’s used for the port mapping. This parameter only applies to Service Connect. This parameter is the name that you use in the - serviceConnectConfigurationof a service. The name can include up to 64 characters. The characters can include lowercase letters, numbers, underscores (_), and hyphens (-). The name can’t start with a hyphen.- For more information, see Service Connect in the Amazon Elastic Container Service Developer Guide. 
- appProtocol (string) – - The application protocol that’s used for the port mapping. This parameter only applies to Service Connect. We recommend that you set this parameter to be consistent with the protocol that your application uses. If you set this parameter, Amazon ECS adds protocol-specific connection handling to the Service Connect proxy. If you set this parameter, Amazon ECS adds protocol-specific telemetry in the Amazon ECS console and CloudWatch. - If you don’t set a value for this parameter, then TCP is used. However, Amazon ECS doesn’t add protocol-specific telemetry for TCP. - appProtocolis immutable in a Service Connect service. Updating this field requires a service deletion and redeployment.- Tasks that run in a namespace can use short names to connect to services in the namespace. Tasks can connect to services across all of the clusters in the namespace. Tasks connect through a managed proxy container that collects logs and metrics for increased visibility. Only the tasks that Amazon ECS services create are supported with Service Connect. For more information, see Service Connect in the Amazon Elastic Container Service Developer Guide. 
- containerPortRange (string) – - The port number range on the container that’s bound to the dynamically mapped host port range. - The following rules apply when you specify a - containerPortRange:- You must use either the - bridgenetwork mode or the- awsvpcnetwork mode.
- This parameter is available for both the EC2 and Fargate launch types. 
- This parameter is available for both the Linux and Windows operating systems. 
- The container instance must have at least version 1.67.0 of the container agent and at least version 1.67.0-1 of the - ecs-initpackage
- You can specify a maximum of 100 port ranges per container. 
- You do not specify a - hostPortRange. The value of the- hostPortRangeis set as follows:- For containers in a task with the - awsvpcnetwork mode, the- hostPortRangeis set to the same value as the- containerPortRange. This is a static mapping strategy.
- For containers in a task with the - bridgenetwork mode, the Amazon ECS agent finds open host ports from the default ephemeral range and passes it to docker to bind them to the container ports.
 
- The - containerPortRangevalid values are between 1 and 65535.
- A port can only be included in one port mapping per container. 
- You cannot specify overlapping port ranges. 
- The first port in the range must be less than last port in the range. 
- Docker recommends that you turn off the docker-proxy in the Docker daemon config file when you have a large number of ports. For more information, see Issue #11185 on the Github website. For information about how to turn off the docker-proxy in the Docker daemon config file, see Docker daemon in the Amazon ECS Developer Guide. 
 - You can call DescribeTasks to view the - hostPortRangewhich are the host ports that are bound to the container ports.
 
 
- essential (boolean) – - If the - essentialparameter of a container is marked as- true, and that container fails or stops for any reason, all other containers that are part of the task are stopped. If the- essentialparameter of a container is marked as- false, its failure doesn’t affect the rest of the containers in a task. If this parameter is omitted, a container is assumed to be essential.- All tasks must have at least one essential container. If you have an application that’s composed of multiple containers, group containers that are used for a common purpose into components, and separate the different components into multiple task definitions. For more information, see Application Architecture in the Amazon Elastic Container Service Developer Guide. 
- restartPolicy (dict) – - The restart policy for a container. When you set up a restart policy, Amazon ECS can restart the container without needing to replace the task. For more information, see Restart individual containers in Amazon ECS tasks with container restart policies in the Amazon Elastic Container Service Developer Guide. - enabled (boolean) – [REQUIRED] - Specifies whether a restart policy is enabled for the container. 
- ignoredExitCodes (list) – - A list of exit codes that Amazon ECS will ignore and not attempt a restart on. You can specify a maximum of 50 container exit codes. By default, Amazon ECS does not ignore any exit codes. - (integer) – 
 
- restartAttemptPeriod (integer) – - A period of time (in seconds) that the container must run for before a restart can be attempted. A container can be restarted only once every - restartAttemptPeriodseconds. If a container isn’t able to run for this time period and exits early, it will not be restarted. You can set a minimum- restartAttemptPeriodof 60 seconds and a maximum- restartAttemptPeriodof 1800 seconds. By default, a container must run for 300 seconds before it can be restarted.
 
- entryPoint (list) – - Warning- Early versions of the Amazon ECS container agent don’t properly handle - entryPointparameters. If you have problems using- entryPoint, update your container agent or enter your commands and arguments as- commandarray items instead.- The entry point that’s passed to the container. This parameter maps to - Entrypointin tthe docker create-container command and the- --entrypointoption to docker run.- (string) – 
 
- command (list) – - The command that’s passed to the container. This parameter maps to - Cmdin the docker create-container command and the- COMMANDparameter to docker run. If there are multiple arguments, each argument is a separated string in the array.- (string) – 
 
- environment (list) – - The environment variables to pass to a container. This parameter maps to - Envin the docker create-container command and the- --envoption to docker run.- Warning- We don’t recommend that you use plaintext environment variables for sensitive information, such as credential data. - (dict) – - A key-value pair object. - name (string) – - The name of the key-value pair. For environment variables, this is the name of the environment variable. 
- value (string) – - The value of the key-value pair. For environment variables, this is the value of the environment variable. 
 
 
- environmentFiles (list) – - A list of files containing the environment variables to pass to a container. This parameter maps to the - --env-fileoption to docker run.- You can specify up to ten environment files. The file must have a - .envfile extension. Each line in an environment file contains an environment variable in- VARIABLE=VALUEformat. Lines beginning with- #are treated as comments and are ignored.- If there are environment variables specified using the - environmentparameter in a container definition, they take precedence over the variables contained within an environment file. If multiple environment files are specified that contain the same variable, they’re processed from the top down. We recommend that you use unique variable names. For more information, see Specifying Environment Variables in the Amazon Elastic Container Service Developer Guide.- (dict) – - A list of files containing the environment variables to pass to a container. You can specify up to ten environment files. The file must have a - .envfile extension. Each line in an environment file should contain an environment variable in- VARIABLE=VALUEformat. Lines beginning with- #are treated as comments and are ignored.- If there are environment variables specified using the - environmentparameter in a container definition, they take precedence over the variables contained within an environment file. If multiple environment files are specified that contain the same variable, they’re processed from the top down. We recommend that you use unique variable names. For more information, see Use a file to pass environment variables to a container in the Amazon Elastic Container Service Developer Guide.- Environment variable files are objects in Amazon S3 and all Amazon S3 security considerations apply. - You must use the following platforms for the Fargate launch type: - Linux platform version - 1.4.0or later.
- Windows platform version - 1.0.0or later.
 - Consider the following when using the Fargate launch type: - The file is handled like a native Docker env-file. 
- There is no support for shell escape handling. 
- The container entry point interperts the - VARIABLEvalues.
 - value (string) – [REQUIRED] - The Amazon Resource Name (ARN) of the Amazon S3 object containing the environment variable file. 
- type (string) – [REQUIRED] - The file type to use. Environment files are objects in Amazon S3. The only supported value is - s3.
 
 
- mountPoints (list) – - The mount points for data volumes in your container. - This parameter maps to - Volumesin the the docker create-container command and the- --volumeoption to docker run.- Windows containers can mount whole directories on the same drive as - $env:ProgramData. Windows containers can’t mount directories on a different drive, and mount point can’t be across drives.- (dict) – - The details for a volume mount point that’s used in a container definition. - sourceVolume (string) – - The name of the volume to mount. Must be a volume name referenced in the - nameparameter of task definition- volume.
- containerPath (string) – - The path on the container to mount the host volume at. 
- readOnly (boolean) – - If this value is - true, the container has read-only access to the volume. If this value is- false, then the container can write to the volume. The default value is- false.
 
 
- volumesFrom (list) – - Data volumes to mount from another container. This parameter maps to - VolumesFromin tthe docker create-container command and the- --volumes-fromoption to docker run.- (dict) – - Details on a data volume from another container in the same task definition. - sourceContainer (string) – - The name of another container within the same task definition to mount volumes from. 
- readOnly (boolean) – - If this value is - true, the container has read-only access to the volume. If this value is- false, then the container can write to the volume. The default value is- false.
 
 
- linuxParameters (dict) – - Linux-specific modifications that are applied to the container, such as Linux kernel capabilities. For more information see KernelCapabilities. - Note- This parameter is not supported for Windows containers. - capabilities (dict) – - The Linux capabilities for the container that are added to or dropped from the default configuration provided by Docker. - Note- For tasks that use the Fargate launch type, - capabilitiesis supported for all platform versions but the- addparameter is only supported if using platform version 1.4.0 or later.- add (list) – - The Linux capabilities for the container that have been added to the default configuration provided by Docker. This parameter maps to - CapAddin the docker create-container command and the- --cap-addoption to docker run.- Note- Tasks launched on Fargate only support adding the - SYS_PTRACEkernel capability.- Valid values: - "ALL" | "AUDIT_CONTROL" | "AUDIT_WRITE" | "BLOCK_SUSPEND" | "CHOWN" | "DAC_OVERRIDE" | "DAC_READ_SEARCH" | "FOWNER" | "FSETID" | "IPC_LOCK" | "IPC_OWNER" | "KILL" | "LEASE" | "LINUX_IMMUTABLE" | "MAC_ADMIN" | "MAC_OVERRIDE" | "MKNOD" | "NET_ADMIN" | "NET_BIND_SERVICE" | "NET_BROADCAST" | "NET_RAW" | "SETFCAP" | "SETGID" | "SETPCAP" | "SETUID" | "SYS_ADMIN" | "SYS_BOOT" | "SYS_CHROOT" | "SYS_MODULE" | "SYS_NICE" | "SYS_PACCT" | "SYS_PTRACE" | "SYS_RAWIO" | "SYS_RESOURCE" | "SYS_TIME" | "SYS_TTY_CONFIG" | "SYSLOG" | "WAKE_ALARM"- (string) – 
 
- drop (list) – - The Linux capabilities for the container that have been removed from the default configuration provided by Docker. This parameter maps to - CapDropin the docker create-container command and the- --cap-dropoption to docker run.- Valid values: - "ALL" | "AUDIT_CONTROL" | "AUDIT_WRITE" | "BLOCK_SUSPEND" | "CHOWN" | "DAC_OVERRIDE" | "DAC_READ_SEARCH" | "FOWNER" | "FSETID" | "IPC_LOCK" | "IPC_OWNER" | "KILL" | "LEASE" | "LINUX_IMMUTABLE" | "MAC_ADMIN" | "MAC_OVERRIDE" | "MKNOD" | "NET_ADMIN" | "NET_BIND_SERVICE" | "NET_BROADCAST" | "NET_RAW" | "SETFCAP" | "SETGID" | "SETPCAP" | "SETUID" | "SYS_ADMIN" | "SYS_BOOT" | "SYS_CHROOT" | "SYS_MODULE" | "SYS_NICE" | "SYS_PACCT" | "SYS_PTRACE" | "SYS_RAWIO" | "SYS_RESOURCE" | "SYS_TIME" | "SYS_TTY_CONFIG" | "SYSLOG" | "WAKE_ALARM"- (string) – 
 
 
- devices (list) – - Any host devices to expose to the container. This parameter maps to - Devicesin tthe docker create-container command and the- --deviceoption to docker run.- Note- If you’re using tasks that use the Fargate launch type, the - devicesparameter isn’t supported.- (dict) – - An object representing a container instance host device. - hostPath (string) – [REQUIRED] - The path for the device on the host container instance. 
- containerPath (string) – - The path inside the container at which to expose the host device. 
- permissions (list) – - The explicit permissions to provide to the container for the device. By default, the container has permissions for - read,- write, and- mknodfor the device.- (string) – 
 
 
 
- initProcessEnabled (boolean) – - Run an - initprocess inside the container that forwards signals and reaps processes. This parameter maps to the- --initoption to docker run. This parameter requires version 1.25 of the Docker Remote API or greater on your container instance. To check the Docker Remote API version on your container instance, log in to your container instance and run the following command:- sudo docker version --format '{{.Server.APIVersion}}'
- sharedMemorySize (integer) – - The value for the size (in MiB) of the - /dev/shmvolume. This parameter maps to the- --shm-sizeoption to docker run.- Note- If you are using tasks that use the Fargate launch type, the - sharedMemorySizeparameter is not supported.
- tmpfs (list) – - The container path, mount options, and size (in MiB) of the tmpfs mount. This parameter maps to the - --tmpfsoption to docker run.- Note- If you’re using tasks that use the Fargate launch type, the - tmpfsparameter isn’t supported.- (dict) – - The container path, mount options, and size of the tmpfs mount. - containerPath (string) – [REQUIRED] - The absolute file path where the tmpfs volume is to be mounted. 
- size (integer) – [REQUIRED] - The maximum size (in MiB) of the tmpfs volume. 
- mountOptions (list) – - The list of tmpfs volume mount options. - Valid values: - "defaults" | "ro" | "rw" | "suid" | "nosuid" | "dev" | "nodev" | "exec" | "noexec" | "sync" | "async" | "dirsync" | "remount" | "mand" | "nomand" | "atime" | "noatime" | "diratime" | "nodiratime" | "bind" | "rbind" | "unbindable" | "runbindable" | "private" | "rprivate" | "shared" | "rshared" | "slave" | "rslave" | "relatime" | "norelatime" | "strictatime" | "nostrictatime" | "mode" | "uid" | "gid" | "nr_inodes" | "nr_blocks" | "mpol"- (string) – 
 
 
 
- maxSwap (integer) – - The total amount of swap memory (in MiB) a container can use. This parameter will be translated to the - --memory-swapoption to docker run where the value would be the sum of the container memory plus the- maxSwapvalue.- If a - maxSwapvalue of- 0is specified, the container will not use swap. Accepted values are- 0or any positive integer. If the- maxSwapparameter is omitted, the container will use the swap configuration for the container instance it is running on. A- maxSwapvalue must be set for the- swappinessparameter to be used.- Note- If you’re using tasks that use the Fargate launch type, the - maxSwapparameter isn’t supported.- If you’re using tasks on Amazon Linux 2023 the - swappinessparameter isn’t supported.
- swappiness (integer) – - This allows you to tune a container’s memory swappiness behavior. A - swappinessvalue of- 0will cause swapping to not happen unless absolutely necessary. A- swappinessvalue of- 100will cause pages to be swapped very aggressively. Accepted values are whole numbers between- 0and- 100. If the- swappinessparameter is not specified, a default value of- 60is used. If a value is not specified for- maxSwapthen this parameter is ignored. This parameter maps to the- --memory-swappinessoption to docker run.- Note- If you’re using tasks that use the Fargate launch type, the - swappinessparameter isn’t supported.- If you’re using tasks on Amazon Linux 2023 the - swappinessparameter isn’t supported.
 
- secrets (list) – - The secrets to pass to the container. For more information, see Specifying Sensitive Data in the Amazon Elastic Container Service Developer Guide. - (dict) – - An object representing the secret to expose to your container. Secrets can be exposed to a container in the following ways: - To inject sensitive data into your containers as environment variables, use the - secretscontainer definition parameter.
- To reference sensitive information in the log configuration of a container, use the - secretOptionscontainer definition parameter.
 - For more information, see Specifying sensitive data in the Amazon Elastic Container Service Developer Guide. - name (string) – [REQUIRED] - The name of the secret. 
- valueFrom (string) – [REQUIRED] - The secret to expose to the container. The supported values are either the full ARN of the Secrets Manager secret or the full ARN of the parameter in the SSM Parameter Store. - For information about the require Identity and Access Management permissions, see Required IAM permissions for Amazon ECS secrets (for Secrets Manager) or Required IAM permissions for Amazon ECS secrets (for Systems Manager Parameter store) in the Amazon Elastic Container Service Developer Guide. - Note- If the SSM Parameter Store parameter exists in the same Region as the task you’re launching, then you can use either the full ARN or name of the parameter. If the parameter exists in a different Region, then the full ARN must be specified. 
 
 
- dependsOn (list) – - The dependencies defined for container startup and shutdown. A container can contain multiple dependencies on other containers in a task definition. When a dependency is defined for container startup, for container shutdown it is reversed. - For tasks using the EC2 launch type, the container instances require at least version 1.26.0 of the container agent to turn on container dependencies. However, we recommend using the latest container agent version. For information about checking your agent version and updating to the latest version, see Updating the Amazon ECS Container Agent in the Amazon Elastic Container Service Developer Guide. If you’re using an Amazon ECS-optimized Linux AMI, your instance needs at least version 1.26.0-1 of the - ecs-initpackage. If your container instances are launched from version- 20190301or later, then they contain the required versions of the container agent and- ecs-init. For more information, see Amazon ECS-optimized Linux AMI in the Amazon Elastic Container Service Developer Guide.- For tasks using the Fargate launch type, the task or service requires the following platforms: - Linux platform version - 1.3.0or later.
- Windows platform version - 1.0.0or later.
 - (dict) – - The dependencies defined for container startup and shutdown. A container can contain multiple dependencies. When a dependency is defined for container startup, for container shutdown it is reversed. - Your Amazon ECS container instances require at least version 1.26.0 of the container agent to use container dependencies. However, we recommend using the latest container agent version. For information about checking your agent version and updating to the latest version, see Updating the Amazon ECS Container Agent in the Amazon Elastic Container Service Developer Guide. If you’re using an Amazon ECS-optimized Linux AMI, your instance needs at least version 1.26.0-1 of the - ecs-initpackage. If your container instances are launched from version- 20190301or later, then they contain the required versions of the container agent and- ecs-init. For more information, see Amazon ECS-optimized Linux AMI in the Amazon Elastic Container Service Developer Guide.- Note- For tasks that use the Fargate launch type, the task or service requires the following platforms: - Linux platform version - 1.3.0or later.
- Windows platform version - 1.0.0or later.
 - For more information about how to create a container dependency, see Container dependency in the Amazon Elastic Container Service Developer Guide. - containerName (string) – [REQUIRED] - The name of a container. 
- condition (string) – [REQUIRED] - The dependency condition of the container. The following are the available conditions and their behavior: - START- This condition emulates the behavior of links and volumes today. It validates that a dependent container is started before permitting other containers to start.
- COMPLETE- This condition validates that a dependent container runs to completion (exits) before permitting other containers to start. This can be useful for nonessential containers that run a script and then exit. This condition can’t be set on an essential container.
- SUCCESS- This condition is the same as- COMPLETE, but it also requires that the container exits with a- zerostatus. This condition can’t be set on an essential container.
- HEALTHY- This condition validates that the dependent container passes its Docker health check before permitting other containers to start. This requires that the dependent container has health checks configured. This condition is confirmed only at task startup.
 
 
 
- startTimeout (integer) – - Time duration (in seconds) to wait before giving up on resolving dependencies for a container. For example, you specify two containers in a task definition with containerA having a dependency on containerB reaching a - COMPLETE,- SUCCESS, or- HEALTHYstatus. If a- startTimeoutvalue is specified for containerB and it doesn’t reach the desired status within that time then containerA gives up and not start. This results in the task transitioning to a- STOPPEDstate.- Note- When the - ECS_CONTAINER_START_TIMEOUTcontainer agent configuration variable is used, it’s enforced independently from this start timeout value.- For tasks using the Fargate launch type, the task or service requires the following platforms: - Linux platform version - 1.3.0or later.
- Windows platform version - 1.0.0or later.
 - For tasks using the EC2 launch type, your container instances require at least version - 1.26.0of the container agent to use a container start timeout value. However, we recommend using the latest container agent version. For information about checking your agent version and updating to the latest version, see Updating the Amazon ECS Container Agent in the Amazon Elastic Container Service Developer Guide. If you’re using an Amazon ECS-optimized Linux AMI, your instance needs at least version- 1.26.0-1of the- ecs-initpackage. If your container instances are launched from version- 20190301or later, then they contain the required versions of the container agent and- ecs-init. For more information, see Amazon ECS-optimized Linux AMI in the Amazon Elastic Container Service Developer Guide.- The valid values for Fargate are 2-120 seconds. 
- stopTimeout (integer) – - Time duration (in seconds) to wait before the container is forcefully killed if it doesn’t exit normally on its own. - For tasks using the Fargate launch type, the task or service requires the following platforms: - Linux platform version - 1.3.0or later.
- Windows platform version - 1.0.0or later.
 - The max stop timeout value is 120 seconds and if the parameter is not specified, the default value of 30 seconds is used. - For tasks that use the EC2 launch type, if the - stopTimeoutparameter isn’t specified, the value set for the Amazon ECS container agent configuration variable- ECS_CONTAINER_STOP_TIMEOUTis used. If neither the- stopTimeoutparameter or the- ECS_CONTAINER_STOP_TIMEOUTagent configuration variable are set, then the default values of 30 seconds for Linux containers and 30 seconds on Windows containers are used. Your container instances require at least version 1.26.0 of the container agent to use a container stop timeout value. However, we recommend using the latest container agent version. For information about checking your agent version and updating to the latest version, see Updating the Amazon ECS Container Agent in the Amazon Elastic Container Service Developer Guide. If you’re using an Amazon ECS-optimized Linux AMI, your instance needs at least version 1.26.0-1 of the- ecs-initpackage. If your container instances are launched from version- 20190301or later, then they contain the required versions of the container agent and- ecs-init. For more information, see Amazon ECS-optimized Linux AMI in the Amazon Elastic Container Service Developer Guide.- The valid values are 2-120 seconds. 
- hostname (string) – - The hostname to use for your container. This parameter maps to - Hostnamein thethe docker create-container command and the- --hostnameoption to docker run.- Note- The - hostnameparameter is not supported if you’re using the- awsvpcnetwork mode.
- user (string) – - The user to use inside the container. This parameter maps to - Userin the docker create-container command and the- --useroption to docker run.- Warning- When running tasks using the - hostnetwork mode, don’t run containers using the root user (UID 0). We recommend using a non-root user for better security.- You can specify the - userusing the following formats. If specifying a UID or GID, you must specify it as a positive integer.- user
- user:group
- uid
- uid:gid
- user:gid
- uid:group
 - Note- This parameter is not supported for Windows containers. 
- workingDirectory (string) – - The working directory to run commands inside the container in. This parameter maps to - WorkingDirin the docker create-container command and the- --workdiroption to docker run.
- disableNetworking (boolean) – - When this parameter is true, networking is off within the container. This parameter maps to - NetworkDisabledin the docker create-container command.- Note- This parameter is not supported for Windows containers. 
- privileged (boolean) – - When this parameter is true, the container is given elevated privileges on the host container instance (similar to the - rootuser). This parameter maps to- Privilegedin the the docker create-container command and the- --privilegedoption to docker run- Note- This parameter is not supported for Windows containers or tasks run on Fargate. 
- readonlyRootFilesystem (boolean) – - When this parameter is true, the container is given read-only access to its root file system. This parameter maps to - ReadonlyRootfsin the docker create-container command and the- --read-onlyoption to docker run.- Note- This parameter is not supported for Windows containers. 
- dnsServers (list) – - A list of DNS servers that are presented to the container. This parameter maps to - Dnsin the the docker create-container command and the- --dnsoption to docker run.- Note- This parameter is not supported for Windows containers. - (string) – 
 
- dnsSearchDomains (list) – - A list of DNS search domains that are presented to the container. This parameter maps to - DnsSearchin the docker create-container command and the- --dns-searchoption to docker run.- Note- This parameter is not supported for Windows containers. - (string) – 
 
- extraHosts (list) – - A list of hostnames and IP address mappings to append to the - /etc/hostsfile on the container. This parameter maps to- ExtraHostsin the docker create-container command and the- --add-hostoption to docker run.- Note- This parameter isn’t supported for Windows containers or tasks that use the - awsvpcnetwork mode.- (dict) – - Hostnames and IP address entries that are added to the - /etc/hostsfile of a container via the- extraHostsparameter of its ContainerDefinition.- hostname (string) – [REQUIRED] - The hostname to use in the - /etc/hostsentry.
- ipAddress (string) – [REQUIRED] - The IP address to use in the - /etc/hostsentry.
 
 
- dockerSecurityOptions (list) – - A list of strings to provide custom configuration for multiple security systems. This field isn’t valid for containers in tasks using the Fargate launch type. - For Linux tasks on EC2, this parameter can be used to reference custom labels for SELinux and AppArmor multi-level security systems. - For any tasks on EC2, this parameter can be used to reference a credential spec file that configures a container for Active Directory authentication. For more information, see Using gMSAs for Windows Containers and Using gMSAs for Linux Containers in the Amazon Elastic Container Service Developer Guide. - This parameter maps to - SecurityOptin the docker create-container command and the- --security-optoption to docker run.- Note- The Amazon ECS container agent running on a container instance must register with the - ECS_SELINUX_CAPABLE=trueor- ECS_APPARMOR_CAPABLE=trueenvironment variables before containers placed on that instance can use these security options. For more information, see Amazon ECS Container Agent Configuration in the Amazon Elastic Container Service Developer Guide.- Valid values: “no-new-privileges” | “apparmor:PROFILE” | “label:value” | “credentialspec:CredentialSpecFilePath” - (string) – 
 
- interactive (boolean) – - When this parameter is - true, you can deploy containerized applications that require- stdinor a- ttyto be allocated. This parameter maps to- OpenStdinin the docker create-container command and the- --interactiveoption to docker run.
- pseudoTerminal (boolean) – - When this parameter is - true, a TTY is allocated. This parameter maps to- Ttyin tthe docker create-container command and the- --ttyoption to docker run.
- dockerLabels (dict) – - A key/value map of labels to add to the container. This parameter maps to - Labelsin the docker create-container command and the- --labeloption to docker run. This parameter requires version 1.18 of the Docker Remote API or greater on your container instance. To check the Docker Remote API version on your container instance, log in to your container instance and run the following command:- sudo docker version --format '{{.Server.APIVersion}}'- (string) – - (string) – 
 
 
- ulimits (list) – - A list of - ulimitsto set in the container. If a- ulimitvalue is specified in a task definition, it overrides the default values set by Docker. This parameter maps to- Ulimitsin tthe docker create-container command and the- --ulimitoption to docker run. Valid naming values are displayed in the Ulimit data type.- Amazon ECS tasks hosted on Fargate use the default resource limit values set by the operating system with the exception of the - nofileresource limit parameter which Fargate overrides. The- nofileresource limit sets a restriction on the number of open files that a container can use. The default- nofilesoft limit is- 65535and the default hard limit is- 65535.- This parameter requires version 1.18 of the Docker Remote API or greater on your container instance. To check the Docker Remote API version on your container instance, log in to your container instance and run the following command: - sudo docker version --format '{{.Server.APIVersion}}'- Note- This parameter is not supported for Windows containers. - (dict) – - The - ulimitsettings to pass to the container.- Amazon ECS tasks hosted on Fargate use the default resource limit values set by the operating system with the exception of the - nofileresource limit parameter which Fargate overrides. The- nofileresource limit sets a restriction on the number of open files that a container can use. The default- nofilesoft limit is- 65535and the default hard limit is- 65535.- You can specify the - ulimitsettings for a container in a task definition.- name (string) – [REQUIRED] - The - typeof the- ulimit.
- softLimit (integer) – [REQUIRED] - The soft limit for the - ulimittype.
- hardLimit (integer) – [REQUIRED] - The hard limit for the - ulimittype.
 
 
- logConfiguration (dict) – - The log configuration specification for the container. - This parameter maps to - LogConfigin the docker create-container command and the- --log-driveroption to docker run. By default, containers use the same logging driver that the Docker daemon uses. However the container can use a different logging driver than the Docker daemon by specifying a log driver with this parameter in the container definition. To use a different logging driver for a container, the log system must be configured properly on the container instance (or on a different log server for remote logging options).- Note- Amazon ECS currently supports a subset of the logging drivers available to the Docker daemon (shown in the LogConfiguration data type). Additional log drivers may be available in future releases of the Amazon ECS container agent. - This parameter requires version 1.18 of the Docker Remote API or greater on your container instance. To check the Docker Remote API version on your container instance, log in to your container instance and run the following command: - sudo docker version --format '{{.Server.APIVersion}}'- Note- The Amazon ECS container agent running on a container instance must register the logging drivers available on that instance with the - ECS_AVAILABLE_LOGGING_DRIVERSenvironment variable before containers placed on that instance can use these log configuration options. For more information, see Amazon ECS Container Agent Configuration in the Amazon Elastic Container Service Developer Guide.- logDriver (string) – [REQUIRED] - The log driver to use for the container. - For tasks on Fargate, the supported log drivers are - awslogs,- splunk, and- awsfirelens.- For tasks hosted on Amazon EC2 instances, the supported log drivers are - awslogs,- fluentd,- gelf,- json-file,- journald,- syslog,- splunk, and- awsfirelens.- For more information about using the - awslogslog driver, see Send Amazon ECS logs to CloudWatch in the Amazon Elastic Container Service Developer Guide.- For more information about using the - awsfirelenslog driver, see Send Amazon ECS logs to an Amazon Web Services service or Amazon Web Services Partner.- Note- If you have a custom driver that isn’t listed, you can fork the Amazon ECS container agent project that’s available on GitHub and customize it to work with that driver. We encourage you to submit pull requests for changes that you would like to have included. However, we don’t currently provide support for running modified copies of this software. 
- options (dict) – - The configuration options to send to the log driver. This parameter requires version 1.19 of the Docker Remote API or greater on your container instance. To check the Docker Remote API version on your container instance, log in to your container instance and run the following command: - sudo docker version --format '{{.Server.APIVersion}}'- (string) – - (string) – 
 
 
- secretOptions (list) – - The secrets to pass to the log configuration. For more information, see Specifying sensitive data in the Amazon Elastic Container Service Developer Guide. - (dict) – - An object representing the secret to expose to your container. Secrets can be exposed to a container in the following ways: - To inject sensitive data into your containers as environment variables, use the - secretscontainer definition parameter.
- To reference sensitive information in the log configuration of a container, use the - secretOptionscontainer definition parameter.
 - For more information, see Specifying sensitive data in the Amazon Elastic Container Service Developer Guide. - name (string) – [REQUIRED] - The name of the secret. 
- valueFrom (string) – [REQUIRED] - The secret to expose to the container. The supported values are either the full ARN of the Secrets Manager secret or the full ARN of the parameter in the SSM Parameter Store. - For information about the require Identity and Access Management permissions, see Required IAM permissions for Amazon ECS secrets (for Secrets Manager) or Required IAM permissions for Amazon ECS secrets (for Systems Manager Parameter store) in the Amazon Elastic Container Service Developer Guide. - Note- If the SSM Parameter Store parameter exists in the same Region as the task you’re launching, then you can use either the full ARN or name of the parameter. If the parameter exists in a different Region, then the full ARN must be specified. 
 
 
 
- healthCheck (dict) – - The container health check command and associated configuration parameters for the container. This parameter maps to - HealthCheckin the docker create-container command and the- HEALTHCHECKparameter of docker run.- command (list) – [REQUIRED] - A string array representing the command that the container runs to determine if it is healthy. The string array must start with - CMDto run the command arguments directly, or- CMD-SHELLto run the command with the container’s default shell.- When you use the Amazon Web Services Management Console JSON panel, the Command Line Interface, or the APIs, enclose the list of commands in double quotes and brackets. - [ "CMD-SHELL", "curl -f http://localhost/ || exit 1" ]- You don’t include the double quotes and brackets when you use the Amazon Web Services Management Console. - CMD-SHELL, curl -f http://localhost/ || exit 1- An exit code of 0 indicates success, and non-zero exit code indicates failure. For more information, see - HealthCheckin tthe docker create-container command- (string) – 
 
- interval (integer) – - The time period in seconds between each health check execution. You may specify between 5 and 300 seconds. The default value is 30 seconds. 
- timeout (integer) – - The time period in seconds to wait for a health check to succeed before it is considered a failure. You may specify between 2 and 60 seconds. The default value is 5. 
- retries (integer) – - The number of times to retry a failed health check before the container is considered unhealthy. You may specify between 1 and 10 retries. The default value is 3. 
- startPeriod (integer) – - The optional grace period to provide containers time to bootstrap before failed health checks count towards the maximum number of retries. You can specify between 0 and 300 seconds. By default, the - startPeriodis off.- Note- If a health check succeeds within the - startPeriod, then the container is considered healthy and any subsequent failures count toward the maximum number of retries.
 
- systemControls (list) – - A list of namespaced kernel parameters to set in the container. This parameter maps to - Sysctlsin tthe docker create-container command and the- --sysctloption to docker run. For example, you can configure- net.ipv4.tcp_keepalive_timesetting to maintain longer lived connections.- (dict) – - A list of namespaced kernel parameters to set in the container. This parameter maps to - Sysctlsin tthe docker create-container command and the- --sysctloption to docker run. For example, you can configure- net.ipv4.tcp_keepalive_timesetting to maintain longer lived connections.- We don’t recommend that you specify network-related - systemControlsparameters for multiple containers in a single task that also uses either the- awsvpcor- hostnetwork mode. Doing this has the following disadvantages:- For tasks that use the - awsvpcnetwork mode including Fargate, if you set- systemControlsfor any container, it applies to all containers in the task. If you set different- systemControlsfor multiple containers in a single task, the container that’s started last determines which- systemControlstake effect.
- For tasks that use the - hostnetwork mode, the network namespace- systemControlsaren’t supported.
 - If you’re setting an IPC resource namespace to use for the containers in the task, the following conditions apply to your system controls. For more information, see IPC mode. - For tasks that use the - hostIPC mode, IPC namespace- systemControlsaren’t supported.
- For tasks that use the - taskIPC mode, IPC namespace- systemControlsvalues apply to all containers within a task.
 - Note- This parameter is not supported for Windows containers. - Note- This parameter is only supported for tasks that are hosted on Fargate if the tasks are using platform version - 1.4.0or later (Linux). This isn’t supported for Windows containers on Fargate.- namespace (string) – - The namespaced kernel parameter to set a - valuefor.
- value (string) – - The namespaced kernel parameter to set a - valuefor.- Valid IPC namespace values: - "kernel.msgmax" | "kernel.msgmnb" | "kernel.msgmni" | "kernel.sem" | "kernel.shmall" | "kernel.shmmax" | "kernel.shmmni" | "kernel.shm_rmid_forced", and- Sysctlsthat start with- "fs.mqueue.*"- Valid network namespace values: - Sysctlsthat start with- "net.*"- All of these values are supported by Fargate. 
 
 
- resourceRequirements (list) – - The type and amount of a resource to assign to a container. The only supported resource is a GPU. - (dict) – - The type and amount of a resource to assign to a container. The supported resource types are GPUs and Elastic Inference accelerators. For more information, see Working with GPUs on Amazon ECS or Working with Amazon Elastic Inference on Amazon ECS in the Amazon Elastic Container Service Developer Guide - value (string) – [REQUIRED] - The value for the specified resource type. - When the type is - GPU, the value is the number of physical- GPUsthe Amazon ECS container agent reserves for the container. The number of GPUs that’s reserved for all containers in a task can’t exceed the number of available GPUs on the container instance that the task is launched on.- When the type is - InferenceAccelerator, the- valuematches the- deviceNamefor an InferenceAccelerator specified in a task definition.
- type (string) – [REQUIRED] - The type of resource to assign to a container. 
 
 
- firelensConfiguration (dict) – - The FireLens configuration for the container. This is used to specify and configure a log router for container logs. For more information, see Custom Log Routing in the Amazon Elastic Container Service Developer Guide. - type (string) – [REQUIRED] - The log router to use. The valid values are - fluentdor- fluentbit.
- options (dict) – - The options to use when configuring the log router. This field is optional and can be used to specify a custom configuration file or to add additional metadata, such as the task, task definition, cluster, and container instance details to the log event. If specified, the syntax to use is - "options":{"enable-ecs-log-metadata":"true|false","config-file-type:"s3|file","config-file-value":"arn:aws:s3:::mybucket/fluent.conf|filepath"}. For more information, see Creating a task definition that uses a FireLens configuration in the Amazon Elastic Container Service Developer Guide.- Note- Tasks hosted on Fargate only support the - fileconfiguration file type.- (string) – - (string) – 
 
 
 
- credentialSpecs (list) – - A list of ARNs in SSM or Amazon S3 to a credential spec ( - CredSpec) file that configures the container for Active Directory authentication. We recommend that you use this parameter instead of the- dockerSecurityOptions. The maximum number of ARNs is 1.- There are two formats for each ARN. - credentialspecdomainless:MyARN - You use - credentialspecdomainless:MyARNto provide a- CredSpecwith an additional section for a secret in Secrets Manager. You provide the login credentials to the domain in the secret.- Each task that runs on any container instance can join different domains. - You can use this format without joining the container instance to a domain. - credentialspec:MyARN - You use - credentialspec:MyARNto provide a- CredSpecfor a single domain.- You must join the container instance to the domain before you start any tasks that use this task definition. - In both formats, replace - MyARNwith the ARN in SSM or Amazon S3.- If you provide a - credentialspecdomainless:MyARN, the- credspecmust provide a ARN in Secrets Manager for a secret containing the username, password, and the domain to connect to. For better security, the instance isn’t joined to the domain for domainless authentication. Other applications on the instance can’t use the domainless credentials. You can use this parameter to run tasks on the same instance, even it the tasks need to join different domains. For more information, see Using gMSAs for Windows Containers and Using gMSAs for Linux Containers.- (string) – 
 
 
 
- volumes (list) – - A list of volume definitions in JSON format that containers in your task might use. - (dict) – - The data volume configuration for tasks launched using this task definition. Specifying a volume configuration in a task definition is optional. The volume configuration may contain multiple volumes but only one volume configured at launch is supported. Each volume defined in the volume configuration may only specify a - nameand one of either- configuredAtLaunch,- dockerVolumeConfiguration,- efsVolumeConfiguration,- fsxWindowsFileServerVolumeConfiguration, or- host. If an empty volume configuration is specified, by default Amazon ECS uses a host volume. For more information, see Using data volumes in tasks.- name (string) – - The name of the volume. Up to 255 letters (uppercase and lowercase), numbers, underscores, and hyphens are allowed. - When using a volume configured at launch, the - nameis required and must also be specified as the volume name in the- ServiceVolumeConfigurationor- TaskVolumeConfigurationparameter when creating your service or standalone task.- For all other types of volumes, this name is referenced in the - sourceVolumeparameter of the- mountPointsobject in the container definition.- When a volume is using the - efsVolumeConfiguration, the name is required.
- host (dict) – - This parameter is specified when you use bind mount host volumes. The contents of the - hostparameter determine whether your bind mount host volume persists on the host container instance and where it’s stored. If the- hostparameter is empty, then the Docker daemon assigns a host path for your data volume. However, the data isn’t guaranteed to persist after the containers that are associated with it stop running.- Windows containers can mount whole directories on the same drive as - $env:ProgramData. Windows containers can’t mount directories on a different drive, and mount point can’t be across drives. For example, you can mount- C:\my\path:C:\my\pathand- D:\:D:\, but not- D:\my\path:C:\my\pathor- D:\:C:\my\path.- sourcePath (string) – - When the - hostparameter is used, specify a- sourcePathto declare the path on the host container instance that’s presented to the container. If this parameter is empty, then the Docker daemon has assigned a host path for you. If the- hostparameter contains a- sourcePathfile location, then the data volume persists at the specified location on the host container instance until you delete it manually. If the- sourcePathvalue doesn’t exist on the host container instance, the Docker daemon creates it. If the location does exist, the contents of the source path folder are exported.- If you’re using the Fargate launch type, the - sourcePathparameter is not supported.
 
- dockerVolumeConfiguration (dict) – - This parameter is specified when you use Docker volumes. - Windows containers only support the use of the - localdriver. To use bind mounts, specify the- hostparameter instead.- Note- Docker volumes aren’t supported by tasks run on Fargate. - scope (string) – - The scope for the Docker volume that determines its lifecycle. Docker volumes that are scoped to a - taskare automatically provisioned when the task starts and destroyed when the task stops. Docker volumes that are scoped as- sharedpersist after the task stops.
- autoprovision (boolean) – - If this value is - true, the Docker volume is created if it doesn’t already exist.- Note- This field is only used if the - scopeis- shared.
- driver (string) – - The Docker volume driver to use. The driver value must match the driver name provided by Docker because it is used for task placement. If the driver was installed using the Docker plugin CLI, use - docker plugin lsto retrieve the driver name from your container instance. If the driver was installed using another method, use Docker plugin discovery to retrieve the driver name. This parameter maps to- Driverin the docker create-container command and the- xxdriveroption to docker volume create.
- driverOpts (dict) – - A map of Docker driver-specific options passed through. This parameter maps to - DriverOptsin the docker create-volume command and the- xxoptoption to docker volume create.- (string) – - (string) – 
 
 
- labels (dict) – - Custom metadata to add to your Docker volume. This parameter maps to - Labelsin the docker create-container command and the- xxlabeloption to docker volume create.- (string) – - (string) – 
 
 
 
- efsVolumeConfiguration (dict) – - This parameter is specified when you use an Amazon Elastic File System file system for task storage. - fileSystemId (string) – [REQUIRED] - The Amazon EFS file system ID to use. 
- rootDirectory (string) – - The directory within the Amazon EFS file system to mount as the root directory inside the host. If this parameter is omitted, the root of the Amazon EFS volume will be used. Specifying - /will have the same effect as omitting this parameter.- Warning- If an EFS access point is specified in the - authorizationConfig, the root directory parameter must either be omitted or set to- /which will enforce the path set on the EFS access point.
- transitEncryption (string) – - Determines whether to use encryption for Amazon EFS data in transit between the Amazon ECS host and the Amazon EFS server. Transit encryption must be turned on if Amazon EFS IAM authorization is used. If this parameter is omitted, the default value of - DISABLEDis used. For more information, see Encrypting data in transit in the Amazon Elastic File System User Guide.
- transitEncryptionPort (integer) – - The port to use when sending encrypted data between the Amazon ECS host and the Amazon EFS server. If you do not specify a transit encryption port, it will use the port selection strategy that the Amazon EFS mount helper uses. For more information, see EFS mount helper in the Amazon Elastic File System User Guide. 
- authorizationConfig (dict) – - The authorization configuration details for the Amazon EFS file system. - accessPointId (string) – - The Amazon EFS access point ID to use. If an access point is specified, the root directory value specified in the - EFSVolumeConfigurationmust either be omitted or set to- /which will enforce the path set on the EFS access point. If an access point is used, transit encryption must be on in the- EFSVolumeConfiguration. For more information, see Working with Amazon EFS access points in the Amazon Elastic File System User Guide.
- iam (string) – - Determines whether to use the Amazon ECS task role defined in a task definition when mounting the Amazon EFS file system. If it is turned on, transit encryption must be turned on in the - EFSVolumeConfiguration. If this parameter is omitted, the default value of- DISABLEDis used. For more information, see Using Amazon EFS access points in the Amazon Elastic Container Service Developer Guide.
 
 
- fsxWindowsFileServerVolumeConfiguration (dict) – - This parameter is specified when you use Amazon FSx for Windows File Server file system for task storage. - fileSystemId (string) – [REQUIRED] - The Amazon FSx for Windows File Server file system ID to use. 
- rootDirectory (string) – [REQUIRED] - The directory within the Amazon FSx for Windows File Server file system to mount as the root directory inside the host. 
- authorizationConfig (dict) – [REQUIRED] - The authorization configuration details for the Amazon FSx for Windows File Server file system. - credentialsParameter (string) – [REQUIRED] - The authorization credential option to use. The authorization credential options can be provided using either the Amazon Resource Name (ARN) of an Secrets Manager secret or SSM Parameter Store parameter. The ARN refers to the stored credentials. 
- domain (string) – [REQUIRED] - A fully qualified domain name hosted by an Directory Service Managed Microsoft AD (Active Directory) or self-hosted AD on Amazon EC2. 
 
 
- configuredAtLaunch (boolean) – - Indicates whether the volume should be configured at launch time. This is used to create Amazon EBS volumes for standalone tasks or tasks created as part of a service. Each task definition revision may only have one volume configured at launch in the volume configuration. - To configure a volume at launch time, use this task definition revision and specify a - volumeConfigurationsobject when calling the- CreateService,- UpdateService,- RunTaskor- StartTaskAPIs.
 
 
- placementConstraints (list) – - An array of placement constraint objects to use for the task. You can specify a maximum of 10 constraints for each task. This limit includes constraints in the task definition and those specified at runtime. - (dict) – - The constraint on task placement in the task definition. For more information, see Task placement constraints in the Amazon Elastic Container Service Developer Guide. - Note- Task placement constraints aren’t supported for tasks run on Fargate. - type (string) – - The type of constraint. The - MemberOfconstraint restricts selection to be from a group of valid candidates.
- expression (string) – - A cluster query language expression to apply to the constraint. For more information, see Cluster query language in the Amazon Elastic Container Service Developer Guide. 
 
 
- requiresCompatibilities (list) – - The task launch type that Amazon ECS validates the task definition against. A client exception is returned if the task definition doesn’t validate against the compatibilities specified. If no value is specified, the parameter is omitted from the response. - (string) – 
 
- cpu (string) – - The number of CPU units used by the task. It can be expressed as an integer using CPU units (for example, - 1024) or as a string using vCPUs (for example,- 1 vCPUor- 1 vcpu) in a task definition. String values are converted to an integer indicating the CPU units when the task definition is registered.- Note- Task-level CPU and memory parameters are ignored for Windows containers. We recommend specifying container-level resources for Windows containers. - If you’re using the EC2 launch type, this field is optional. Supported values are between - 128CPU units (- 0.125vCPUs) and- 10240CPU units (- 10vCPUs). If you do not specify a value, the parameter is ignored.- If you’re using the Fargate launch type, this field is required and you must use one of the following values, which determines your range of supported values for the - memoryparameter:- The CPU units cannot be less than 1 vCPU when you use Windows containers on Fargate. - 256 (.25 vCPU) - Available - memoryvalues: 512 (0.5 GB), 1024 (1 GB), 2048 (2 GB)
- 512 (.5 vCPU) - Available - memoryvalues: 1024 (1 GB), 2048 (2 GB), 3072 (3 GB), 4096 (4 GB)
- 1024 (1 vCPU) - Available - memoryvalues: 2048 (2 GB), 3072 (3 GB), 4096 (4 GB), 5120 (5 GB), 6144 (6 GB), 7168 (7 GB), 8192 (8 GB)
- 2048 (2 vCPU) - Available - memoryvalues: 4096 (4 GB) and 16384 (16 GB) in increments of 1024 (1 GB)
- 4096 (4 vCPU) - Available - memoryvalues: 8192 (8 GB) and 30720 (30 GB) in increments of 1024 (1 GB)
- 8192 (8 vCPU) - Available - memoryvalues: 16 GB and 60 GB in 4 GB increments This option requires Linux platform- 1.4.0or later.
- 16384 (16vCPU) - Available - memoryvalues: 32GB and 120 GB in 8 GB increments This option requires Linux platform- 1.4.0or later.
 
- memory (string) – - The amount of memory (in MiB) used by the task. It can be expressed as an integer using MiB (for example , - 1024) or as a string using GB (for example,- 1GBor- 1 GB) in a task definition. String values are converted to an integer indicating the MiB when the task definition is registered.- Note- Task-level CPU and memory parameters are ignored for Windows containers. We recommend specifying container-level resources for Windows containers. - If using the EC2 launch type, this field is optional. - If using the Fargate launch type, this field is required and you must use one of the following values. This determines your range of supported values for the - cpuparameter.- The CPU units cannot be less than 1 vCPU when you use Windows containers on Fargate. - 512 (0.5 GB), 1024 (1 GB), 2048 (2 GB) - Available - cpuvalues: 256 (.25 vCPU)
- 1024 (1 GB), 2048 (2 GB), 3072 (3 GB), 4096 (4 GB) - Available - cpuvalues: 512 (.5 vCPU)
- 2048 (2 GB), 3072 (3 GB), 4096 (4 GB), 5120 (5 GB), 6144 (6 GB), 7168 (7 GB), 8192 (8 GB) - Available - cpuvalues: 1024 (1 vCPU)
- Between 4096 (4 GB) and 16384 (16 GB) in increments of 1024 (1 GB) - Available - cpuvalues: 2048 (2 vCPU)
- Between 8192 (8 GB) and 30720 (30 GB) in increments of 1024 (1 GB) - Available - cpuvalues: 4096 (4 vCPU)
- Between 16 GB and 60 GB in 4 GB increments - Available - cpuvalues: 8192 (8 vCPU) This option requires Linux platform- 1.4.0or later.
- Between 32GB and 120 GB in 8 GB increments - Available - cpuvalues: 16384 (16 vCPU) This option requires Linux platform- 1.4.0or later.
 
- tags (list) – - The metadata that you apply to the task definition to help you categorize and organize them. Each tag consists of a key and an optional value. You define both of them. - The following basic restrictions apply to tags: - Maximum number of tags per resource - 50 
- For each resource, each tag key must be unique, and each tag key can have only one value. 
- Maximum key length - 128 Unicode characters in UTF-8 
- Maximum value length - 256 Unicode characters in UTF-8 
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @. 
- Tag keys and values are case-sensitive. 
- Do not use - aws:,- AWS:, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for Amazon Web Services use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.
 - (dict) – - The metadata that you apply to a resource to help you categorize and organize them. Each tag consists of a key and an optional value. You define them. - The following basic restrictions apply to tags: - Maximum number of tags per resource - 50 
- For each resource, each tag key must be unique, and each tag key can have only one value. 
- Maximum key length - 128 Unicode characters in UTF-8 
- Maximum value length - 256 Unicode characters in UTF-8 
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @. 
- Tag keys and values are case-sensitive. 
- Do not use - aws:,- AWS:, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for Amazon Web Services use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.
 - key (string) – - One part of a key-value pair that make up a tag. A - keyis a general label that acts like a category for more specific tag values.
- value (string) – - The optional part of a key-value pair that make up a tag. A - valueacts as a descriptor within a tag category (key).
 
 
- pidMode (string) – - The process namespace to use for the containers in the task. The valid values are - hostor- task. On Fargate for Linux containers, the only valid value is- task. For example, monitoring sidecars might need- pidModeto access information about other containers running in the same task.- If - hostis specified, all containers within the tasks that specified the- hostPID mode on the same container instance share the same process namespace with the host Amazon EC2 instance.- If - taskis specified, all containers within the specified task share the same process namespace.- If no value is specified, the default is a private namespace for each container. - If the - hostPID mode is used, there’s a heightened risk of undesired process namespace exposure.- Note- This parameter is not supported for Windows containers. - Note- This parameter is only supported for tasks that are hosted on Fargate if the tasks are using platform version - 1.4.0or later (Linux). This isn’t supported for Windows containers on Fargate.
- ipcMode (string) – - The IPC resource namespace to use for the containers in the task. The valid values are - host,- task, or- none. If- hostis specified, then all containers within the tasks that specified the- hostIPC mode on the same container instance share the same IPC resources with the host Amazon EC2 instance. If- taskis specified, all containers within the specified task share the same IPC resources. If- noneis specified, then IPC resources within the containers of a task are private and not shared with other containers in a task or on the container instance. If no value is specified, then the IPC resource namespace sharing depends on the Docker daemon setting on the container instance.- If the - hostIPC mode is used, be aware that there is a heightened risk of undesired IPC namespace expose.- If you are setting namespaced kernel parameters using - systemControlsfor the containers in the task, the following will apply to your IPC resource namespace. For more information, see System Controls in the Amazon Elastic Container Service Developer Guide.- For tasks that use the - hostIPC mode, IPC namespace related- systemControlsare not supported.
- For tasks that use the - taskIPC mode, IPC namespace related- systemControlswill apply to all containers within a task.
 - Note- This parameter is not supported for Windows containers or tasks run on Fargate. 
- proxyConfiguration (dict) – - The configuration details for the App Mesh proxy. - For tasks hosted on Amazon EC2 instances, the container instances require at least version - 1.26.0of the container agent and at least version- 1.26.0-1of the- ecs-initpackage to use a proxy configuration. If your container instances are launched from the Amazon ECS-optimized AMI version- 20190301or later, then they contain the required versions of the container agent and- ecs-init. For more information, see Amazon ECS-optimized AMI versions in the Amazon Elastic Container Service Developer Guide.- type (string) – - The proxy type. The only supported value is - APPMESH.
- containerName (string) – [REQUIRED] - The name of the container that will serve as the App Mesh proxy. 
- properties (list) – - The set of network configuration parameters to provide the Container Network Interface (CNI) plugin, specified as key-value pairs. - IgnoredUID- (Required) The user ID (UID) of the proxy container as defined by the- userparameter in a container definition. This is used to ensure the proxy ignores its own traffic. If- IgnoredGIDis specified, this field can be empty.
- IgnoredGID- (Required) The group ID (GID) of the proxy container as defined by the- userparameter in a container definition. This is used to ensure the proxy ignores its own traffic. If- IgnoredUIDis specified, this field can be empty.
- AppPorts- (Required) The list of ports that the application uses. Network traffic to these ports is forwarded to the- ProxyIngressPortand- ProxyEgressPort.
- ProxyIngressPort- (Required) Specifies the port that incoming traffic to the- AppPortsis directed to.
- ProxyEgressPort- (Required) Specifies the port that outgoing traffic from the- AppPortsis directed to.
- EgressIgnoredPorts- (Required) The egress traffic going to the specified ports is ignored and not redirected to the- ProxyEgressPort. It can be an empty list.
- EgressIgnoredIPs- (Required) The egress traffic going to the specified IP addresses is ignored and not redirected to the- ProxyEgressPort. It can be an empty list.
 - (dict) – - A key-value pair object. - name (string) – - The name of the key-value pair. For environment variables, this is the name of the environment variable. 
- value (string) – - The value of the key-value pair. For environment variables, this is the value of the environment variable. 
 
 
 
- inferenceAccelerators (list) – - The Elastic Inference accelerators to use for the containers in the task. - (dict) – - Details on an Elastic Inference accelerator. For more information, see Working with Amazon Elastic Inference on Amazon ECS in the Amazon Elastic Container Service Developer Guide. - deviceName (string) – [REQUIRED] - The Elastic Inference accelerator device name. The - deviceNamemust also be referenced in a container definition as a ResourceRequirement.
- deviceType (string) – [REQUIRED] - The Elastic Inference accelerator type to use. 
 
 
- ephemeralStorage (dict) – - The amount of ephemeral storage to allocate for the task. This parameter is used to expand the total amount of ephemeral storage available, beyond the default amount, for tasks hosted on Fargate. For more information, see Using data volumes in tasks in the Amazon ECS Developer Guide. - Note- For tasks using the Fargate launch type, the task requires the following platforms: - Linux platform version - 1.4.0or later.
- Windows platform version - 1.0.0or later.
 - sizeInGiB (integer) – [REQUIRED] - The total amount, in GiB, of ephemeral storage to set for the task. The minimum supported value is - 20GiB and the maximum supported value is- 200GiB.
 
- runtimePlatform (dict) – - The operating system that your tasks definitions run on. A platform family is specified only for tasks using the Fargate launch type. - cpuArchitecture (string) – - The CPU architecture. - You can run your Linux tasks on an ARM-based platform by setting the value to - ARM64. This option is available for tasks that run on Linux Amazon EC2 instance or Linux containers on Fargate.
- operatingSystemFamily (string) – - The operating system. 
 
 
- Return type:
- dict 
- Returns:
- Response Syntax- { 'taskDefinition': { 'taskDefinitionArn': 'string', 'containerDefinitions': [ { 'name': 'string', 'image': 'string', 'repositoryCredentials': { 'credentialsParameter': 'string' }, 'cpu': 123, 'memory': 123, 'memoryReservation': 123, 'links': [ 'string', ], 'portMappings': [ { 'containerPort': 123, 'hostPort': 123, 'protocol': 'tcp'|'udp', 'name': 'string', 'appProtocol': 'http'|'http2'|'grpc', 'containerPortRange': 'string' }, ], 'essential': True|False, 'restartPolicy': { 'enabled': True|False, 'ignoredExitCodes': [ 123, ], 'restartAttemptPeriod': 123 }, 'entryPoint': [ 'string', ], 'command': [ 'string', ], 'environment': [ { 'name': 'string', 'value': 'string' }, ], 'environmentFiles': [ { 'value': 'string', 'type': 's3' }, ], 'mountPoints': [ { 'sourceVolume': 'string', 'containerPath': 'string', 'readOnly': True|False }, ], 'volumesFrom': [ { 'sourceContainer': 'string', 'readOnly': True|False }, ], 'linuxParameters': { 'capabilities': { 'add': [ 'string', ], 'drop': [ 'string', ] }, 'devices': [ { 'hostPath': 'string', 'containerPath': 'string', 'permissions': [ 'read'|'write'|'mknod', ] }, ], 'initProcessEnabled': True|False, 'sharedMemorySize': 123, 'tmpfs': [ { 'containerPath': 'string', 'size': 123, 'mountOptions': [ 'string', ] }, ], 'maxSwap': 123, 'swappiness': 123 }, 'secrets': [ { 'name': 'string', 'valueFrom': 'string' }, ], 'dependsOn': [ { 'containerName': 'string', 'condition': 'START'|'COMPLETE'|'SUCCESS'|'HEALTHY' }, ], 'startTimeout': 123, 'stopTimeout': 123, 'hostname': 'string', 'user': 'string', 'workingDirectory': 'string', 'disableNetworking': True|False, 'privileged': True|False, 'readonlyRootFilesystem': True|False, 'dnsServers': [ 'string', ], 'dnsSearchDomains': [ 'string', ], 'extraHosts': [ { 'hostname': 'string', 'ipAddress': 'string' }, ], 'dockerSecurityOptions': [ 'string', ], 'interactive': True|False, 'pseudoTerminal': True|False, 'dockerLabels': { 'string': 'string' }, 'ulimits': [ { 'name': 'core'|'cpu'|'data'|'fsize'|'locks'|'memlock'|'msgqueue'|'nice'|'nofile'|'nproc'|'rss'|'rtprio'|'rttime'|'sigpending'|'stack', 'softLimit': 123, 'hardLimit': 123 }, ], 'logConfiguration': { 'logDriver': 'json-file'|'syslog'|'journald'|'gelf'|'fluentd'|'awslogs'|'splunk'|'awsfirelens', 'options': { 'string': 'string' }, 'secretOptions': [ { 'name': 'string', 'valueFrom': 'string' }, ] }, 'healthCheck': { 'command': [ 'string', ], 'interval': 123, 'timeout': 123, 'retries': 123, 'startPeriod': 123 }, 'systemControls': [ { 'namespace': 'string', 'value': 'string' }, ], 'resourceRequirements': [ { 'value': 'string', 'type': 'GPU'|'InferenceAccelerator' }, ], 'firelensConfiguration': { 'type': 'fluentd'|'fluentbit', 'options': { 'string': 'string' } }, 'credentialSpecs': [ 'string', ] }, ], 'family': 'string', 'taskRoleArn': 'string', 'executionRoleArn': 'string', 'networkMode': 'bridge'|'host'|'awsvpc'|'none', 'revision': 123, 'volumes': [ { 'name': 'string', 'host': { 'sourcePath': 'string' }, 'dockerVolumeConfiguration': { 'scope': 'task'|'shared', 'autoprovision': True|False, 'driver': 'string', 'driverOpts': { 'string': 'string' }, 'labels': { 'string': 'string' } }, 'efsVolumeConfiguration': { 'fileSystemId': 'string', 'rootDirectory': 'string', 'transitEncryption': 'ENABLED'|'DISABLED', 'transitEncryptionPort': 123, 'authorizationConfig': { 'accessPointId': 'string', 'iam': 'ENABLED'|'DISABLED' } }, 'fsxWindowsFileServerVolumeConfiguration': { 'fileSystemId': 'string', 'rootDirectory': 'string', 'authorizationConfig': { 'credentialsParameter': 'string', 'domain': 'string' } }, 'configuredAtLaunch': True|False }, ], 'status': 'ACTIVE'|'INACTIVE'|'DELETE_IN_PROGRESS', 'requiresAttributes': [ { 'name': 'string', 'value': 'string', 'targetType': 'container-instance', 'targetId': 'string' }, ], 'placementConstraints': [ { 'type': 'memberOf', 'expression': 'string' }, ], 'compatibilities': [ 'EC2'|'FARGATE'|'EXTERNAL', ], 'runtimePlatform': { 'cpuArchitecture': 'X86_64'|'ARM64', 'operatingSystemFamily': 'WINDOWS_SERVER_2019_FULL'|'WINDOWS_SERVER_2019_CORE'|'WINDOWS_SERVER_2016_FULL'|'WINDOWS_SERVER_2004_CORE'|'WINDOWS_SERVER_2022_CORE'|'WINDOWS_SERVER_2022_FULL'|'WINDOWS_SERVER_20H2_CORE'|'LINUX' }, 'requiresCompatibilities': [ 'EC2'|'FARGATE'|'EXTERNAL', ], 'cpu': 'string', 'memory': 'string', 'inferenceAccelerators': [ { 'deviceName': 'string', 'deviceType': 'string' }, ], 'pidMode': 'host'|'task', 'ipcMode': 'host'|'task'|'none', 'proxyConfiguration': { 'type': 'APPMESH', 'containerName': 'string', 'properties': [ { 'name': 'string', 'value': 'string' }, ] }, 'registeredAt': datetime(2015, 1, 1), 'deregisteredAt': datetime(2015, 1, 1), 'registeredBy': 'string', 'ephemeralStorage': { 'sizeInGiB': 123 } }, 'tags': [ { 'key': 'string', 'value': 'string' }, ] } - Response Structure- (dict) – - taskDefinition (dict) – - The full description of the registered task definition. - taskDefinitionArn (string) – - The full Amazon Resource Name (ARN) of the task definition. 
- containerDefinitions (list) – - A list of container definitions in JSON format that describe the different containers that make up your task. For more information about container definition parameters and defaults, see Amazon ECS Task Definitions in the Amazon Elastic Container Service Developer Guide. - (dict) – - Container definitions are used in task definitions to describe the different containers that are launched as part of a task. - name (string) – - The name of a container. If you’re linking multiple containers together in a task definition, the - nameof one container can be entered in the- linksof another container to connect the containers. Up to 255 letters (uppercase and lowercase), numbers, underscores, and hyphens are allowed. This parameter maps to- namein tthe docker create-container command and the- --nameoption to docker run.
- image (string) – - The image used to start a container. This string is passed directly to the Docker daemon. By default, images in the Docker Hub registry are available. Other repositories are specified with either - repository-url/image:tagor- repository-url/image@digest ``. Up to 255 letters (uppercase and lowercase), numbers, hyphens, underscores, colons, periods, forward slashes, and number signs are allowed. This parameter maps to ``Imagein the docker create-container command and the- IMAGEparameter of docker run.- When a new task starts, the Amazon ECS container agent pulls the latest version of the specified image and tag for the container to use. However, subsequent updates to a repository image aren’t propagated to already running tasks. 
- Images in Amazon ECR repositories can be specified by either using the full - registry/repository:tagor- registry/repository@digest. For example,- 012345678910.dkr.ecr.<region-name>.amazonaws.com/<repository-name>:latestor- 012345678910.dkr.ecr.<region-name>.amazonaws.com/<repository-name>@sha256:94afd1f2e64d908bc90dbca0035a5b567EXAMPLE.
- Images in official repositories on Docker Hub use a single name (for example, - ubuntuor- mongo).
- Images in other repositories on Docker Hub are qualified with an organization name (for example, - amazon/amazon-ecs-agent).
- Images in other online repositories are qualified further by a domain name (for example, - quay.io/assemblyline/ubuntu).
 
- repositoryCredentials (dict) – - The private repository authentication credentials to use. - credentialsParameter (string) – - The Amazon Resource Name (ARN) of the secret containing the private repository credentials. - Note- When you use the Amazon ECS API, CLI, or Amazon Web Services SDK, if the secret exists in the same Region as the task that you’re launching then you can use either the full ARN or the name of the secret. When you use the Amazon Web Services Management Console, you must specify the full ARN of the secret. 
 
- cpu (integer) – - The number of - cpuunits reserved for the container. This parameter maps to- CpuSharesin the docker create-container commandand the- --cpu-sharesoption to docker run.- This field is optional for tasks using the Fargate launch type, and the only requirement is that the total amount of CPU reserved for all containers within a task be lower than the task-level - cpuvalue.- Note- You can determine the number of CPU units that are available per EC2 instance type by multiplying the vCPUs listed for that instance type on the Amazon EC2 Instances detail page by 1,024. - Linux containers share unallocated CPU units with other containers on the container instance with the same ratio as their allocated amount. For example, if you run a single-container task on a single-core instance type with 512 CPU units specified for that container, and that’s the only task running on the container instance, that container could use the full 1,024 CPU unit share at any given time. However, if you launched another copy of the same task on that container instance, each task is guaranteed a minimum of 512 CPU units when needed. Moreover, each container could float to higher CPU usage if the other container was not using it. If both tasks were 100% active all of the time, they would be limited to 512 CPU units. - On Linux container instances, the Docker daemon on the container instance uses the CPU value to calculate the relative CPU share ratios for running containers. The minimum valid CPU share value that the Linux kernel allows is 2, and the maximum valid CPU share value that the Linux kernel allows is 262144. However, the CPU parameter isn’t required, and you can use CPU values below 2 or above 262144 in your container definitions. For CPU values below 2 (including null) or above 262144, the behavior varies based on your Amazon ECS container agent version: - Agent versions less than or equal to 1.1.0: Null and zero CPU values are passed to Docker as 0, which Docker then converts to 1,024 CPU shares. CPU values of 1 are passed to Docker as 1, which the Linux kernel converts to two CPU shares. 
- Agent versions greater than or equal to 1.2.0: Null, zero, and CPU values of 1 are passed to Docker as 2. 
- Agent versions greater than or equal to 1.84.0: CPU values greater than 256 vCPU are passed to Docker as 256, which is equivalent to 262144 CPU shares. 
 - On Windows container instances, the CPU limit is enforced as an absolute limit, or a quota. Windows containers only have access to the specified amount of CPU that’s described in the task definition. A null or zero CPU value is passed to Docker as - 0, which Windows interprets as 1% of one CPU.
- memory (integer) – - The amount (in MiB) of memory to present to the container. If your container attempts to exceed the memory specified here, the container is killed. The total amount of memory reserved for all containers within a task must be lower than the task - memoryvalue, if one is specified. This parameter maps to- Memoryin thethe docker create-container command and the- --memoryoption to docker run.- If using the Fargate launch type, this parameter is optional. - If using the EC2 launch type, you must specify either a task-level memory value or a container-level memory value. If you specify both a container-level - memoryand- memoryReservationvalue,- memorymust be greater than- memoryReservation. If you specify- memoryReservation, then that value is subtracted from the available memory resources for the container instance where the container is placed. Otherwise, the value of- memoryis used.- The Docker 20.10.0 or later daemon reserves a minimum of 6 MiB of memory for a container. So, don’t specify less than 6 MiB of memory for your containers. - The Docker 19.03.13-ce or earlier daemon reserves a minimum of 4 MiB of memory for a container. So, don’t specify less than 4 MiB of memory for your containers. 
- memoryReservation (integer) – - The soft limit (in MiB) of memory to reserve for the container. When system memory is under heavy contention, Docker attempts to keep the container memory to this soft limit. However, your container can consume more memory when it needs to, up to either the hard limit specified with the - memoryparameter (if applicable), or all of the available memory on the container instance, whichever comes first. This parameter maps to- MemoryReservationin the the docker create-container command and the- --memory-reservationoption to docker run.- If a task-level memory value is not specified, you must specify a non-zero integer for one or both of - memoryor- memoryReservationin a container definition. If you specify both,- memorymust be greater than- memoryReservation. If you specify- memoryReservation, then that value is subtracted from the available memory resources for the container instance where the container is placed. Otherwise, the value of- memoryis used.- For example, if your container normally uses 128 MiB of memory, but occasionally bursts to 256 MiB of memory for short periods of time, you can set a - memoryReservationof 128 MiB, and a- memoryhard limit of 300 MiB. This configuration would allow the container to only reserve 128 MiB of memory from the remaining resources on the container instance, but also allow the container to consume more memory resources when needed.- The Docker 20.10.0 or later daemon reserves a minimum of 6 MiB of memory for a container. So, don’t specify less than 6 MiB of memory for your containers. - The Docker 19.03.13-ce or earlier daemon reserves a minimum of 4 MiB of memory for a container. So, don’t specify less than 4 MiB of memory for your containers. 
- links (list) – - The - linksparameter allows containers to communicate with each other without the need for port mappings. This parameter is only supported if the network mode of a task definition is- bridge. The- name:internalNameconstruct is analogous to- name:aliasin Docker links. Up to 255 letters (uppercase and lowercase), numbers, underscores, and hyphens are allowed.. This parameter maps to- Linksin the docker create-container command and the- --linkoption to docker run.- Note- This parameter is not supported for Windows containers. - Warning- Containers that are collocated on a single container instance may be able to communicate with each other without requiring links or host port mappings. Network isolation is achieved on the container instance using security groups and VPC settings. - (string) – 
 
- portMappings (list) – - The list of port mappings for the container. Port mappings allow containers to access ports on the host container instance to send or receive traffic. - For task definitions that use the - awsvpcnetwork mode, only specify the- containerPort. The- hostPortcan be left blank or it must be the same value as the- containerPort.- Port mappings on Windows use the - NetNATgateway address rather than- localhost. There’s no loopback for port mappings on Windows, so you can’t access a container’s mapped port from the host itself.- This parameter maps to - PortBindingsin the the docker create-container command and the- --publishoption to docker run. If the network mode of a task definition is set to- none, then you can’t specify port mappings. If the network mode of a task definition is set to- host, then host ports must either be undefined or they must match the container port in the port mapping.- Note- After a task reaches the - RUNNINGstatus, manual and automatic host and container port assignments are visible in the Network Bindings section of a container description for a selected task in the Amazon ECS console. The assignments are also visible in the- networkBindingssection DescribeTasks responses.- (dict) – - Port mappings allow containers to access ports on the host container instance to send or receive traffic. Port mappings are specified as part of the container definition. - If you use containers in a task with the - awsvpcor- hostnetwork mode, specify the exposed ports using- containerPort. The- hostPortcan be left blank or it must be the same value as the- containerPort.- Most fields of this parameter ( - containerPort,- hostPort,- protocol) maps to- PortBindingsin the docker create-container command and the- --publishoption to- docker run. If the network mode of a task definition is set to- host, host ports must either be undefined or match the container port in the port mapping.- Note- You can’t expose the same container port for multiple protocols. If you attempt this, an error is returned. - After a task reaches the - RUNNINGstatus, manual and automatic host and container port assignments are visible in the- networkBindingssection of DescribeTasks API responses.- containerPort (integer) – - The port number on the container that’s bound to the user-specified or automatically assigned host port. - If you use containers in a task with the - awsvpcor- hostnetwork mode, specify the exposed ports using- containerPort.- If you use containers in a task with the - bridgenetwork mode and you specify a container port and not a host port, your container automatically receives a host port in the ephemeral port range. For more information, see- hostPort. Port mappings that are automatically assigned in this way do not count toward the 100 reserved ports limit of a container instance.
- hostPort (integer) – - The port number on the container instance to reserve for your container. - If you specify a - containerPortRange, leave this field empty and the value of the- hostPortis set as follows:- For containers in a task with the - awsvpcnetwork mode, the- hostPortis set to the same value as the- containerPort. This is a static mapping strategy.
- For containers in a task with the - bridgenetwork mode, the Amazon ECS agent finds open ports on the host and automatically binds them to the container ports. This is a dynamic mapping strategy.
 - If you use containers in a task with the - awsvpcor- hostnetwork mode, the- hostPortcan either be left blank or set to the same value as the- containerPort.- If you use containers in a task with the - bridgenetwork mode, you can specify a non-reserved host port for your container port mapping, or you can omit the- hostPort(or set it to- 0) while specifying a- containerPortand your container automatically receives a port in the ephemeral port range for your container instance operating system and Docker version.- The default ephemeral port range for Docker version 1.6.0 and later is listed on the instance under - /proc/sys/net/ipv4/ip_local_port_range. If this kernel parameter is unavailable, the default ephemeral port range from 49153 through 65535 (Linux) or 49152 through 65535 (Windows) is used. Do not attempt to specify a host port in the ephemeral port range as these are reserved for automatic assignment. In general, ports below 32768 are outside of the ephemeral port range.- The default reserved ports are 22 for SSH, the Docker ports 2375 and 2376, and the Amazon ECS container agent ports 51678-51680. Any host port that was previously specified in a running task is also reserved while the task is running. That is, after a task stops, the host port is released. The current reserved ports are displayed in the - remainingResourcesof DescribeContainerInstances output. A container instance can have up to 100 reserved ports at a time. This number includes the default reserved ports. Automatically assigned ports aren’t included in the 100 reserved ports quota.
- protocol (string) – - The protocol used for the port mapping. Valid values are - tcpand- udp. The default is- tcp.- protocolis immutable in a Service Connect service. Updating this field requires a service deletion and redeployment.
- name (string) – - The name that’s used for the port mapping. This parameter only applies to Service Connect. This parameter is the name that you use in the - serviceConnectConfigurationof a service. The name can include up to 64 characters. The characters can include lowercase letters, numbers, underscores (_), and hyphens (-). The name can’t start with a hyphen.- For more information, see Service Connect in the Amazon Elastic Container Service Developer Guide. 
- appProtocol (string) – - The application protocol that’s used for the port mapping. This parameter only applies to Service Connect. We recommend that you set this parameter to be consistent with the protocol that your application uses. If you set this parameter, Amazon ECS adds protocol-specific connection handling to the Service Connect proxy. If you set this parameter, Amazon ECS adds protocol-specific telemetry in the Amazon ECS console and CloudWatch. - If you don’t set a value for this parameter, then TCP is used. However, Amazon ECS doesn’t add protocol-specific telemetry for TCP. - appProtocolis immutable in a Service Connect service. Updating this field requires a service deletion and redeployment.- Tasks that run in a namespace can use short names to connect to services in the namespace. Tasks can connect to services across all of the clusters in the namespace. Tasks connect through a managed proxy container that collects logs and metrics for increased visibility. Only the tasks that Amazon ECS services create are supported with Service Connect. For more information, see Service Connect in the Amazon Elastic Container Service Developer Guide. 
- containerPortRange (string) – - The port number range on the container that’s bound to the dynamically mapped host port range. - The following rules apply when you specify a - containerPortRange:- You must use either the - bridgenetwork mode or the- awsvpcnetwork mode.
- This parameter is available for both the EC2 and Fargate launch types. 
- This parameter is available for both the Linux and Windows operating systems. 
- The container instance must have at least version 1.67.0 of the container agent and at least version 1.67.0-1 of the - ecs-initpackage
- You can specify a maximum of 100 port ranges per container. 
- You do not specify a - hostPortRange. The value of the- hostPortRangeis set as follows:- For containers in a task with the - awsvpcnetwork mode, the- hostPortRangeis set to the same value as the- containerPortRange. This is a static mapping strategy.
- For containers in a task with the - bridgenetwork mode, the Amazon ECS agent finds open host ports from the default ephemeral range and passes it to docker to bind them to the container ports.
 
- The - containerPortRangevalid values are between 1 and 65535.
- A port can only be included in one port mapping per container. 
- You cannot specify overlapping port ranges. 
- The first port in the range must be less than last port in the range. 
- Docker recommends that you turn off the docker-proxy in the Docker daemon config file when you have a large number of ports. For more information, see Issue #11185 on the Github website. For information about how to turn off the docker-proxy in the Docker daemon config file, see Docker daemon in the Amazon ECS Developer Guide. 
 - You can call DescribeTasks to view the - hostPortRangewhich are the host ports that are bound to the container ports.
 
 
- essential (boolean) – - If the - essentialparameter of a container is marked as- true, and that container fails or stops for any reason, all other containers that are part of the task are stopped. If the- essentialparameter of a container is marked as- false, its failure doesn’t affect the rest of the containers in a task. If this parameter is omitted, a container is assumed to be essential.- All tasks must have at least one essential container. If you have an application that’s composed of multiple containers, group containers that are used for a common purpose into components, and separate the different components into multiple task definitions. For more information, see Application Architecture in the Amazon Elastic Container Service Developer Guide. 
- restartPolicy (dict) – - The restart policy for a container. When you set up a restart policy, Amazon ECS can restart the container without needing to replace the task. For more information, see Restart individual containers in Amazon ECS tasks with container restart policies in the Amazon Elastic Container Service Developer Guide. - enabled (boolean) – - Specifies whether a restart policy is enabled for the container. 
- ignoredExitCodes (list) – - A list of exit codes that Amazon ECS will ignore and not attempt a restart on. You can specify a maximum of 50 container exit codes. By default, Amazon ECS does not ignore any exit codes. - (integer) – 
 
- restartAttemptPeriod (integer) – - A period of time (in seconds) that the container must run for before a restart can be attempted. A container can be restarted only once every - restartAttemptPeriodseconds. If a container isn’t able to run for this time period and exits early, it will not be restarted. You can set a minimum- restartAttemptPeriodof 60 seconds and a maximum- restartAttemptPeriodof 1800 seconds. By default, a container must run for 300 seconds before it can be restarted.
 
- entryPoint (list) – - Warning- Early versions of the Amazon ECS container agent don’t properly handle - entryPointparameters. If you have problems using- entryPoint, update your container agent or enter your commands and arguments as- commandarray items instead.- The entry point that’s passed to the container. This parameter maps to - Entrypointin tthe docker create-container command and the- --entrypointoption to docker run.- (string) – 
 
- command (list) – - The command that’s passed to the container. This parameter maps to - Cmdin the docker create-container command and the- COMMANDparameter to docker run. If there are multiple arguments, each argument is a separated string in the array.- (string) – 
 
- environment (list) – - The environment variables to pass to a container. This parameter maps to - Envin the docker create-container command and the- --envoption to docker run.- Warning- We don’t recommend that you use plaintext environment variables for sensitive information, such as credential data. - (dict) – - A key-value pair object. - name (string) – - The name of the key-value pair. For environment variables, this is the name of the environment variable. 
- value (string) – - The value of the key-value pair. For environment variables, this is the value of the environment variable. 
 
 
- environmentFiles (list) – - A list of files containing the environment variables to pass to a container. This parameter maps to the - --env-fileoption to docker run.- You can specify up to ten environment files. The file must have a - .envfile extension. Each line in an environment file contains an environment variable in- VARIABLE=VALUEformat. Lines beginning with- #are treated as comments and are ignored.- If there are environment variables specified using the - environmentparameter in a container definition, they take precedence over the variables contained within an environment file. If multiple environment files are specified that contain the same variable, they’re processed from the top down. We recommend that you use unique variable names. For more information, see Specifying Environment Variables in the Amazon Elastic Container Service Developer Guide.- (dict) – - A list of files containing the environment variables to pass to a container. You can specify up to ten environment files. The file must have a - .envfile extension. Each line in an environment file should contain an environment variable in- VARIABLE=VALUEformat. Lines beginning with- #are treated as comments and are ignored.- If there are environment variables specified using the - environmentparameter in a container definition, they take precedence over the variables contained within an environment file. If multiple environment files are specified that contain the same variable, they’re processed from the top down. We recommend that you use unique variable names. For more information, see Use a file to pass environment variables to a container in the Amazon Elastic Container Service Developer Guide.- Environment variable files are objects in Amazon S3 and all Amazon S3 security considerations apply. - You must use the following platforms for the Fargate launch type: - Linux platform version - 1.4.0or later.
- Windows platform version - 1.0.0or later.
 - Consider the following when using the Fargate launch type: - The file is handled like a native Docker env-file. 
- There is no support for shell escape handling. 
- The container entry point interperts the - VARIABLEvalues.
 - value (string) – - The Amazon Resource Name (ARN) of the Amazon S3 object containing the environment variable file. 
- type (string) – - The file type to use. Environment files are objects in Amazon S3. The only supported value is - s3.
 
 
- mountPoints (list) – - The mount points for data volumes in your container. - This parameter maps to - Volumesin the the docker create-container command and the- --volumeoption to docker run.- Windows containers can mount whole directories on the same drive as - $env:ProgramData. Windows containers can’t mount directories on a different drive, and mount point can’t be across drives.- (dict) – - The details for a volume mount point that’s used in a container definition. - sourceVolume (string) – - The name of the volume to mount. Must be a volume name referenced in the - nameparameter of task definition- volume.
- containerPath (string) – - The path on the container to mount the host volume at. 
- readOnly (boolean) – - If this value is - true, the container has read-only access to the volume. If this value is- false, then the container can write to the volume. The default value is- false.
 
 
- volumesFrom (list) – - Data volumes to mount from another container. This parameter maps to - VolumesFromin tthe docker create-container command and the- --volumes-fromoption to docker run.- (dict) – - Details on a data volume from another container in the same task definition. - sourceContainer (string) – - The name of another container within the same task definition to mount volumes from. 
- readOnly (boolean) – - If this value is - true, the container has read-only access to the volume. If this value is- false, then the container can write to the volume. The default value is- false.
 
 
- linuxParameters (dict) – - Linux-specific modifications that are applied to the container, such as Linux kernel capabilities. For more information see KernelCapabilities. - Note- This parameter is not supported for Windows containers. - capabilities (dict) – - The Linux capabilities for the container that are added to or dropped from the default configuration provided by Docker. - Note- For tasks that use the Fargate launch type, - capabilitiesis supported for all platform versions but the- addparameter is only supported if using platform version 1.4.0 or later.- add (list) – - The Linux capabilities for the container that have been added to the default configuration provided by Docker. This parameter maps to - CapAddin the docker create-container command and the- --cap-addoption to docker run.- Note- Tasks launched on Fargate only support adding the - SYS_PTRACEkernel capability.- Valid values: - "ALL" | "AUDIT_CONTROL" | "AUDIT_WRITE" | "BLOCK_SUSPEND" | "CHOWN" | "DAC_OVERRIDE" | "DAC_READ_SEARCH" | "FOWNER" | "FSETID" | "IPC_LOCK" | "IPC_OWNER" | "KILL" | "LEASE" | "LINUX_IMMUTABLE" | "MAC_ADMIN" | "MAC_OVERRIDE" | "MKNOD" | "NET_ADMIN" | "NET_BIND_SERVICE" | "NET_BROADCAST" | "NET_RAW" | "SETFCAP" | "SETGID" | "SETPCAP" | "SETUID" | "SYS_ADMIN" | "SYS_BOOT" | "SYS_CHROOT" | "SYS_MODULE" | "SYS_NICE" | "SYS_PACCT" | "SYS_PTRACE" | "SYS_RAWIO" | "SYS_RESOURCE" | "SYS_TIME" | "SYS_TTY_CONFIG" | "SYSLOG" | "WAKE_ALARM"- (string) – 
 
- drop (list) – - The Linux capabilities for the container that have been removed from the default configuration provided by Docker. This parameter maps to - CapDropin the docker create-container command and the- --cap-dropoption to docker run.- Valid values: - "ALL" | "AUDIT_CONTROL" | "AUDIT_WRITE" | "BLOCK_SUSPEND" | "CHOWN" | "DAC_OVERRIDE" | "DAC_READ_SEARCH" | "FOWNER" | "FSETID" | "IPC_LOCK" | "IPC_OWNER" | "KILL" | "LEASE" | "LINUX_IMMUTABLE" | "MAC_ADMIN" | "MAC_OVERRIDE" | "MKNOD" | "NET_ADMIN" | "NET_BIND_SERVICE" | "NET_BROADCAST" | "NET_RAW" | "SETFCAP" | "SETGID" | "SETPCAP" | "SETUID" | "SYS_ADMIN" | "SYS_BOOT" | "SYS_CHROOT" | "SYS_MODULE" | "SYS_NICE" | "SYS_PACCT" | "SYS_PTRACE" | "SYS_RAWIO" | "SYS_RESOURCE" | "SYS_TIME" | "SYS_TTY_CONFIG" | "SYSLOG" | "WAKE_ALARM"- (string) – 
 
 
- devices (list) – - Any host devices to expose to the container. This parameter maps to - Devicesin tthe docker create-container command and the- --deviceoption to docker run.- Note- If you’re using tasks that use the Fargate launch type, the - devicesparameter isn’t supported.- (dict) – - An object representing a container instance host device. - hostPath (string) – - The path for the device on the host container instance. 
- containerPath (string) – - The path inside the container at which to expose the host device. 
- permissions (list) – - The explicit permissions to provide to the container for the device. By default, the container has permissions for - read,- write, and- mknodfor the device.- (string) – 
 
 
 
- initProcessEnabled (boolean) – - Run an - initprocess inside the container that forwards signals and reaps processes. This parameter maps to the- --initoption to docker run. This parameter requires version 1.25 of the Docker Remote API or greater on your container instance. To check the Docker Remote API version on your container instance, log in to your container instance and run the following command:- sudo docker version --format '{{.Server.APIVersion}}'
- sharedMemorySize (integer) – - The value for the size (in MiB) of the - /dev/shmvolume. This parameter maps to the- --shm-sizeoption to docker run.- Note- If you are using tasks that use the Fargate launch type, the - sharedMemorySizeparameter is not supported.
- tmpfs (list) – - The container path, mount options, and size (in MiB) of the tmpfs mount. This parameter maps to the - --tmpfsoption to docker run.- Note- If you’re using tasks that use the Fargate launch type, the - tmpfsparameter isn’t supported.- (dict) – - The container path, mount options, and size of the tmpfs mount. - containerPath (string) – - The absolute file path where the tmpfs volume is to be mounted. 
- size (integer) – - The maximum size (in MiB) of the tmpfs volume. 
- mountOptions (list) – - The list of tmpfs volume mount options. - Valid values: - "defaults" | "ro" | "rw" | "suid" | "nosuid" | "dev" | "nodev" | "exec" | "noexec" | "sync" | "async" | "dirsync" | "remount" | "mand" | "nomand" | "atime" | "noatime" | "diratime" | "nodiratime" | "bind" | "rbind" | "unbindable" | "runbindable" | "private" | "rprivate" | "shared" | "rshared" | "slave" | "rslave" | "relatime" | "norelatime" | "strictatime" | "nostrictatime" | "mode" | "uid" | "gid" | "nr_inodes" | "nr_blocks" | "mpol"- (string) – 
 
 
 
- maxSwap (integer) – - The total amount of swap memory (in MiB) a container can use. This parameter will be translated to the - --memory-swapoption to docker run where the value would be the sum of the container memory plus the- maxSwapvalue.- If a - maxSwapvalue of- 0is specified, the container will not use swap. Accepted values are- 0or any positive integer. If the- maxSwapparameter is omitted, the container will use the swap configuration for the container instance it is running on. A- maxSwapvalue must be set for the- swappinessparameter to be used.- Note- If you’re using tasks that use the Fargate launch type, the - maxSwapparameter isn’t supported.- If you’re using tasks on Amazon Linux 2023 the - swappinessparameter isn’t supported.
- swappiness (integer) – - This allows you to tune a container’s memory swappiness behavior. A - swappinessvalue of- 0will cause swapping to not happen unless absolutely necessary. A- swappinessvalue of- 100will cause pages to be swapped very aggressively. Accepted values are whole numbers between- 0and- 100. If the- swappinessparameter is not specified, a default value of- 60is used. If a value is not specified for- maxSwapthen this parameter is ignored. This parameter maps to the- --memory-swappinessoption to docker run.- Note- If you’re using tasks that use the Fargate launch type, the - swappinessparameter isn’t supported.- If you’re using tasks on Amazon Linux 2023 the - swappinessparameter isn’t supported.
 
- secrets (list) – - The secrets to pass to the container. For more information, see Specifying Sensitive Data in the Amazon Elastic Container Service Developer Guide. - (dict) – - An object representing the secret to expose to your container. Secrets can be exposed to a container in the following ways: - To inject sensitive data into your containers as environment variables, use the - secretscontainer definition parameter.
- To reference sensitive information in the log configuration of a container, use the - secretOptionscontainer definition parameter.
 - For more information, see Specifying sensitive data in the Amazon Elastic Container Service Developer Guide. - name (string) – - The name of the secret. 
- valueFrom (string) – - The secret to expose to the container. The supported values are either the full ARN of the Secrets Manager secret or the full ARN of the parameter in the SSM Parameter Store. - For information about the require Identity and Access Management permissions, see Required IAM permissions for Amazon ECS secrets (for Secrets Manager) or Required IAM permissions for Amazon ECS secrets (for Systems Manager Parameter store) in the Amazon Elastic Container Service Developer Guide. - Note- If the SSM Parameter Store parameter exists in the same Region as the task you’re launching, then you can use either the full ARN or name of the parameter. If the parameter exists in a different Region, then the full ARN must be specified. 
 
 
- dependsOn (list) – - The dependencies defined for container startup and shutdown. A container can contain multiple dependencies on other containers in a task definition. When a dependency is defined for container startup, for container shutdown it is reversed. - For tasks using the EC2 launch type, the container instances require at least version 1.26.0 of the container agent to turn on container dependencies. However, we recommend using the latest container agent version. For information about checking your agent version and updating to the latest version, see Updating the Amazon ECS Container Agent in the Amazon Elastic Container Service Developer Guide. If you’re using an Amazon ECS-optimized Linux AMI, your instance needs at least version 1.26.0-1 of the - ecs-initpackage. If your container instances are launched from version- 20190301or later, then they contain the required versions of the container agent and- ecs-init. For more information, see Amazon ECS-optimized Linux AMI in the Amazon Elastic Container Service Developer Guide.- For tasks using the Fargate launch type, the task or service requires the following platforms: - Linux platform version - 1.3.0or later.
- Windows platform version - 1.0.0or later.
 - (dict) – - The dependencies defined for container startup and shutdown. A container can contain multiple dependencies. When a dependency is defined for container startup, for container shutdown it is reversed. - Your Amazon ECS container instances require at least version 1.26.0 of the container agent to use container dependencies. However, we recommend using the latest container agent version. For information about checking your agent version and updating to the latest version, see Updating the Amazon ECS Container Agent in the Amazon Elastic Container Service Developer Guide. If you’re using an Amazon ECS-optimized Linux AMI, your instance needs at least version 1.26.0-1 of the - ecs-initpackage. If your container instances are launched from version- 20190301or later, then they contain the required versions of the container agent and- ecs-init. For more information, see Amazon ECS-optimized Linux AMI in the Amazon Elastic Container Service Developer Guide.- Note- For tasks that use the Fargate launch type, the task or service requires the following platforms: - Linux platform version - 1.3.0or later.
- Windows platform version - 1.0.0or later.
 - For more information about how to create a container dependency, see Container dependency in the Amazon Elastic Container Service Developer Guide. - containerName (string) – - The name of a container. 
- condition (string) – - The dependency condition of the container. The following are the available conditions and their behavior: - START- This condition emulates the behavior of links and volumes today. It validates that a dependent container is started before permitting other containers to start.
- COMPLETE- This condition validates that a dependent container runs to completion (exits) before permitting other containers to start. This can be useful for nonessential containers that run a script and then exit. This condition can’t be set on an essential container.
- SUCCESS- This condition is the same as- COMPLETE, but it also requires that the container exits with a- zerostatus. This condition can’t be set on an essential container.
- HEALTHY- This condition validates that the dependent container passes its Docker health check before permitting other containers to start. This requires that the dependent container has health checks configured. This condition is confirmed only at task startup.
 
 
 
- startTimeout (integer) – - Time duration (in seconds) to wait before giving up on resolving dependencies for a container. For example, you specify two containers in a task definition with containerA having a dependency on containerB reaching a - COMPLETE,- SUCCESS, or- HEALTHYstatus. If a- startTimeoutvalue is specified for containerB and it doesn’t reach the desired status within that time then containerA gives up and not start. This results in the task transitioning to a- STOPPEDstate.- Note- When the - ECS_CONTAINER_START_TIMEOUTcontainer agent configuration variable is used, it’s enforced independently from this start timeout value.- For tasks using the Fargate launch type, the task or service requires the following platforms: - Linux platform version - 1.3.0or later.
- Windows platform version - 1.0.0or later.
 - For tasks using the EC2 launch type, your container instances require at least version - 1.26.0of the container agent to use a container start timeout value. However, we recommend using the latest container agent version. For information about checking your agent version and updating to the latest version, see Updating the Amazon ECS Container Agent in the Amazon Elastic Container Service Developer Guide. If you’re using an Amazon ECS-optimized Linux AMI, your instance needs at least version- 1.26.0-1of the- ecs-initpackage. If your container instances are launched from version- 20190301or later, then they contain the required versions of the container agent and- ecs-init. For more information, see Amazon ECS-optimized Linux AMI in the Amazon Elastic Container Service Developer Guide.- The valid values for Fargate are 2-120 seconds. 
- stopTimeout (integer) – - Time duration (in seconds) to wait before the container is forcefully killed if it doesn’t exit normally on its own. - For tasks using the Fargate launch type, the task or service requires the following platforms: - Linux platform version - 1.3.0or later.
- Windows platform version - 1.0.0or later.
 - The max stop timeout value is 120 seconds and if the parameter is not specified, the default value of 30 seconds is used. - For tasks that use the EC2 launch type, if the - stopTimeoutparameter isn’t specified, the value set for the Amazon ECS container agent configuration variable- ECS_CONTAINER_STOP_TIMEOUTis used. If neither the- stopTimeoutparameter or the- ECS_CONTAINER_STOP_TIMEOUTagent configuration variable are set, then the default values of 30 seconds for Linux containers and 30 seconds on Windows containers are used. Your container instances require at least version 1.26.0 of the container agent to use a container stop timeout value. However, we recommend using the latest container agent version. For information about checking your agent version and updating to the latest version, see Updating the Amazon ECS Container Agent in the Amazon Elastic Container Service Developer Guide. If you’re using an Amazon ECS-optimized Linux AMI, your instance needs at least version 1.26.0-1 of the- ecs-initpackage. If your container instances are launched from version- 20190301or later, then they contain the required versions of the container agent and- ecs-init. For more information, see Amazon ECS-optimized Linux AMI in the Amazon Elastic Container Service Developer Guide.- The valid values are 2-120 seconds. 
- hostname (string) – - The hostname to use for your container. This parameter maps to - Hostnamein thethe docker create-container command and the- --hostnameoption to docker run.- Note- The - hostnameparameter is not supported if you’re using the- awsvpcnetwork mode.
- user (string) – - The user to use inside the container. This parameter maps to - Userin the docker create-container command and the- --useroption to docker run.- Warning- When running tasks using the - hostnetwork mode, don’t run containers using the root user (UID 0). We recommend using a non-root user for better security.- You can specify the - userusing the following formats. If specifying a UID or GID, you must specify it as a positive integer.- user
- user:group
- uid
- uid:gid
- user:gid
- uid:group
 - Note- This parameter is not supported for Windows containers. 
- workingDirectory (string) – - The working directory to run commands inside the container in. This parameter maps to - WorkingDirin the docker create-container command and the- --workdiroption to docker run.
- disableNetworking (boolean) – - When this parameter is true, networking is off within the container. This parameter maps to - NetworkDisabledin the docker create-container command.- Note- This parameter is not supported for Windows containers. 
- privileged (boolean) – - When this parameter is true, the container is given elevated privileges on the host container instance (similar to the - rootuser). This parameter maps to- Privilegedin the the docker create-container command and the- --privilegedoption to docker run- Note- This parameter is not supported for Windows containers or tasks run on Fargate. 
- readonlyRootFilesystem (boolean) – - When this parameter is true, the container is given read-only access to its root file system. This parameter maps to - ReadonlyRootfsin the docker create-container command and the- --read-onlyoption to docker run.- Note- This parameter is not supported for Windows containers. 
- dnsServers (list) – - A list of DNS servers that are presented to the container. This parameter maps to - Dnsin the the docker create-container command and the- --dnsoption to docker run.- Note- This parameter is not supported for Windows containers. - (string) – 
 
- dnsSearchDomains (list) – - A list of DNS search domains that are presented to the container. This parameter maps to - DnsSearchin the docker create-container command and the- --dns-searchoption to docker run.- Note- This parameter is not supported for Windows containers. - (string) – 
 
- extraHosts (list) – - A list of hostnames and IP address mappings to append to the - /etc/hostsfile on the container. This parameter maps to- ExtraHostsin the docker create-container command and the- --add-hostoption to docker run.- Note- This parameter isn’t supported for Windows containers or tasks that use the - awsvpcnetwork mode.- (dict) – - Hostnames and IP address entries that are added to the - /etc/hostsfile of a container via the- extraHostsparameter of its ContainerDefinition.- hostname (string) – - The hostname to use in the - /etc/hostsentry.
- ipAddress (string) – - The IP address to use in the - /etc/hostsentry.
 
 
- dockerSecurityOptions (list) – - A list of strings to provide custom configuration for multiple security systems. This field isn’t valid for containers in tasks using the Fargate launch type. - For Linux tasks on EC2, this parameter can be used to reference custom labels for SELinux and AppArmor multi-level security systems. - For any tasks on EC2, this parameter can be used to reference a credential spec file that configures a container for Active Directory authentication. For more information, see Using gMSAs for Windows Containers and Using gMSAs for Linux Containers in the Amazon Elastic Container Service Developer Guide. - This parameter maps to - SecurityOptin the docker create-container command and the- --security-optoption to docker run.- Note- The Amazon ECS container agent running on a container instance must register with the - ECS_SELINUX_CAPABLE=trueor- ECS_APPARMOR_CAPABLE=trueenvironment variables before containers placed on that instance can use these security options. For more information, see Amazon ECS Container Agent Configuration in the Amazon Elastic Container Service Developer Guide.- Valid values: “no-new-privileges” | “apparmor:PROFILE” | “label:value” | “credentialspec:CredentialSpecFilePath” - (string) – 
 
- interactive (boolean) – - When this parameter is - true, you can deploy containerized applications that require- stdinor a- ttyto be allocated. This parameter maps to- OpenStdinin the docker create-container command and the- --interactiveoption to docker run.
- pseudoTerminal (boolean) – - When this parameter is - true, a TTY is allocated. This parameter maps to- Ttyin tthe docker create-container command and the- --ttyoption to docker run.
- dockerLabels (dict) – - A key/value map of labels to add to the container. This parameter maps to - Labelsin the docker create-container command and the- --labeloption to docker run. This parameter requires version 1.18 of the Docker Remote API or greater on your container instance. To check the Docker Remote API version on your container instance, log in to your container instance and run the following command:- sudo docker version --format '{{.Server.APIVersion}}'- (string) – - (string) – 
 
 
- ulimits (list) – - A list of - ulimitsto set in the container. If a- ulimitvalue is specified in a task definition, it overrides the default values set by Docker. This parameter maps to- Ulimitsin tthe docker create-container command and the- --ulimitoption to docker run. Valid naming values are displayed in the Ulimit data type.- Amazon ECS tasks hosted on Fargate use the default resource limit values set by the operating system with the exception of the - nofileresource limit parameter which Fargate overrides. The- nofileresource limit sets a restriction on the number of open files that a container can use. The default- nofilesoft limit is- 65535and the default hard limit is- 65535.- This parameter requires version 1.18 of the Docker Remote API or greater on your container instance. To check the Docker Remote API version on your container instance, log in to your container instance and run the following command: - sudo docker version --format '{{.Server.APIVersion}}'- Note- This parameter is not supported for Windows containers. - (dict) – - The - ulimitsettings to pass to the container.- Amazon ECS tasks hosted on Fargate use the default resource limit values set by the operating system with the exception of the - nofileresource limit parameter which Fargate overrides. The- nofileresource limit sets a restriction on the number of open files that a container can use. The default- nofilesoft limit is- 65535and the default hard limit is- 65535.- You can specify the - ulimitsettings for a container in a task definition.- name (string) – - The - typeof the- ulimit.
- softLimit (integer) – - The soft limit for the - ulimittype.
- hardLimit (integer) – - The hard limit for the - ulimittype.
 
 
- logConfiguration (dict) – - The log configuration specification for the container. - This parameter maps to - LogConfigin the docker create-container command and the- --log-driveroption to docker run. By default, containers use the same logging driver that the Docker daemon uses. However the container can use a different logging driver than the Docker daemon by specifying a log driver with this parameter in the container definition. To use a different logging driver for a container, the log system must be configured properly on the container instance (or on a different log server for remote logging options).- Note- Amazon ECS currently supports a subset of the logging drivers available to the Docker daemon (shown in the LogConfiguration data type). Additional log drivers may be available in future releases of the Amazon ECS container agent. - This parameter requires version 1.18 of the Docker Remote API or greater on your container instance. To check the Docker Remote API version on your container instance, log in to your container instance and run the following command: - sudo docker version --format '{{.Server.APIVersion}}'- Note- The Amazon ECS container agent running on a container instance must register the logging drivers available on that instance with the - ECS_AVAILABLE_LOGGING_DRIVERSenvironment variable before containers placed on that instance can use these log configuration options. For more information, see Amazon ECS Container Agent Configuration in the Amazon Elastic Container Service Developer Guide.- logDriver (string) – - The log driver to use for the container. - For tasks on Fargate, the supported log drivers are - awslogs,- splunk, and- awsfirelens.- For tasks hosted on Amazon EC2 instances, the supported log drivers are - awslogs,- fluentd,- gelf,- json-file,- journald,- syslog,- splunk, and- awsfirelens.- For more information about using the - awslogslog driver, see Send Amazon ECS logs to CloudWatch in the Amazon Elastic Container Service Developer Guide.- For more information about using the - awsfirelenslog driver, see Send Amazon ECS logs to an Amazon Web Services service or Amazon Web Services Partner.- Note- If you have a custom driver that isn’t listed, you can fork the Amazon ECS container agent project that’s available on GitHub and customize it to work with that driver. We encourage you to submit pull requests for changes that you would like to have included. However, we don’t currently provide support for running modified copies of this software. 
- options (dict) – - The configuration options to send to the log driver. This parameter requires version 1.19 of the Docker Remote API or greater on your container instance. To check the Docker Remote API version on your container instance, log in to your container instance and run the following command: - sudo docker version --format '{{.Server.APIVersion}}'- (string) – - (string) – 
 
 
- secretOptions (list) – - The secrets to pass to the log configuration. For more information, see Specifying sensitive data in the Amazon Elastic Container Service Developer Guide. - (dict) – - An object representing the secret to expose to your container. Secrets can be exposed to a container in the following ways: - To inject sensitive data into your containers as environment variables, use the - secretscontainer definition parameter.
- To reference sensitive information in the log configuration of a container, use the - secretOptionscontainer definition parameter.
 - For more information, see Specifying sensitive data in the Amazon Elastic Container Service Developer Guide. - name (string) – - The name of the secret. 
- valueFrom (string) – - The secret to expose to the container. The supported values are either the full ARN of the Secrets Manager secret or the full ARN of the parameter in the SSM Parameter Store. - For information about the require Identity and Access Management permissions, see Required IAM permissions for Amazon ECS secrets (for Secrets Manager) or Required IAM permissions for Amazon ECS secrets (for Systems Manager Parameter store) in the Amazon Elastic Container Service Developer Guide. - Note- If the SSM Parameter Store parameter exists in the same Region as the task you’re launching, then you can use either the full ARN or name of the parameter. If the parameter exists in a different Region, then the full ARN must be specified. 
 
 
 
- healthCheck (dict) – - The container health check command and associated configuration parameters for the container. This parameter maps to - HealthCheckin the docker create-container command and the- HEALTHCHECKparameter of docker run.- command (list) – - A string array representing the command that the container runs to determine if it is healthy. The string array must start with - CMDto run the command arguments directly, or- CMD-SHELLto run the command with the container’s default shell.- When you use the Amazon Web Services Management Console JSON panel, the Command Line Interface, or the APIs, enclose the list of commands in double quotes and brackets. - [ "CMD-SHELL", "curl -f http://localhost/ || exit 1" ]- You don’t include the double quotes and brackets when you use the Amazon Web Services Management Console. - CMD-SHELL, curl -f http://localhost/ || exit 1- An exit code of 0 indicates success, and non-zero exit code indicates failure. For more information, see - HealthCheckin tthe docker create-container command- (string) – 
 
- interval (integer) – - The time period in seconds between each health check execution. You may specify between 5 and 300 seconds. The default value is 30 seconds. 
- timeout (integer) – - The time period in seconds to wait for a health check to succeed before it is considered a failure. You may specify between 2 and 60 seconds. The default value is 5. 
- retries (integer) – - The number of times to retry a failed health check before the container is considered unhealthy. You may specify between 1 and 10 retries. The default value is 3. 
- startPeriod (integer) – - The optional grace period to provide containers time to bootstrap before failed health checks count towards the maximum number of retries. You can specify between 0 and 300 seconds. By default, the - startPeriodis off.- Note- If a health check succeeds within the - startPeriod, then the container is considered healthy and any subsequent failures count toward the maximum number of retries.
 
- systemControls (list) – - A list of namespaced kernel parameters to set in the container. This parameter maps to - Sysctlsin tthe docker create-container command and the- --sysctloption to docker run. For example, you can configure- net.ipv4.tcp_keepalive_timesetting to maintain longer lived connections.- (dict) – - A list of namespaced kernel parameters to set in the container. This parameter maps to - Sysctlsin tthe docker create-container command and the- --sysctloption to docker run. For example, you can configure- net.ipv4.tcp_keepalive_timesetting to maintain longer lived connections.- We don’t recommend that you specify network-related - systemControlsparameters for multiple containers in a single task that also uses either the- awsvpcor- hostnetwork mode. Doing this has the following disadvantages:- For tasks that use the - awsvpcnetwork mode including Fargate, if you set- systemControlsfor any container, it applies to all containers in the task. If you set different- systemControlsfor multiple containers in a single task, the container that’s started last determines which- systemControlstake effect.
- For tasks that use the - hostnetwork mode, the network namespace- systemControlsaren’t supported.
 - If you’re setting an IPC resource namespace to use for the containers in the task, the following conditions apply to your system controls. For more information, see IPC mode. - For tasks that use the - hostIPC mode, IPC namespace- systemControlsaren’t supported.
- For tasks that use the - taskIPC mode, IPC namespace- systemControlsvalues apply to all containers within a task.
 - Note- This parameter is not supported for Windows containers. - Note- This parameter is only supported for tasks that are hosted on Fargate if the tasks are using platform version - 1.4.0or later (Linux). This isn’t supported for Windows containers on Fargate.- namespace (string) – - The namespaced kernel parameter to set a - valuefor.
- value (string) – - The namespaced kernel parameter to set a - valuefor.- Valid IPC namespace values: - "kernel.msgmax" | "kernel.msgmnb" | "kernel.msgmni" | "kernel.sem" | "kernel.shmall" | "kernel.shmmax" | "kernel.shmmni" | "kernel.shm_rmid_forced", and- Sysctlsthat start with- "fs.mqueue.*"- Valid network namespace values: - Sysctlsthat start with- "net.*"- All of these values are supported by Fargate. 
 
 
- resourceRequirements (list) – - The type and amount of a resource to assign to a container. The only supported resource is a GPU. - (dict) – - The type and amount of a resource to assign to a container. The supported resource types are GPUs and Elastic Inference accelerators. For more information, see Working with GPUs on Amazon ECS or Working with Amazon Elastic Inference on Amazon ECS in the Amazon Elastic Container Service Developer Guide - value (string) – - The value for the specified resource type. - When the type is - GPU, the value is the number of physical- GPUsthe Amazon ECS container agent reserves for the container. The number of GPUs that’s reserved for all containers in a task can’t exceed the number of available GPUs on the container instance that the task is launched on.- When the type is - InferenceAccelerator, the- valuematches the- deviceNamefor an InferenceAccelerator specified in a task definition.
- type (string) – - The type of resource to assign to a container. 
 
 
- firelensConfiguration (dict) – - The FireLens configuration for the container. This is used to specify and configure a log router for container logs. For more information, see Custom Log Routing in the Amazon Elastic Container Service Developer Guide. - type (string) – - The log router to use. The valid values are - fluentdor- fluentbit.
- options (dict) – - The options to use when configuring the log router. This field is optional and can be used to specify a custom configuration file or to add additional metadata, such as the task, task definition, cluster, and container instance details to the log event. If specified, the syntax to use is - "options":{"enable-ecs-log-metadata":"true|false","config-file-type:"s3|file","config-file-value":"arn:aws:s3:::mybucket/fluent.conf|filepath"}. For more information, see Creating a task definition that uses a FireLens configuration in the Amazon Elastic Container Service Developer Guide.- Note- Tasks hosted on Fargate only support the - fileconfiguration file type.- (string) – - (string) – 
 
 
 
- credentialSpecs (list) – - A list of ARNs in SSM or Amazon S3 to a credential spec ( - CredSpec) file that configures the container for Active Directory authentication. We recommend that you use this parameter instead of the- dockerSecurityOptions. The maximum number of ARNs is 1.- There are two formats for each ARN. - credentialspecdomainless:MyARN - You use - credentialspecdomainless:MyARNto provide a- CredSpecwith an additional section for a secret in Secrets Manager. You provide the login credentials to the domain in the secret.- Each task that runs on any container instance can join different domains. - You can use this format without joining the container instance to a domain. - credentialspec:MyARN - You use - credentialspec:MyARNto provide a- CredSpecfor a single domain.- You must join the container instance to the domain before you start any tasks that use this task definition. - In both formats, replace - MyARNwith the ARN in SSM or Amazon S3.- If you provide a - credentialspecdomainless:MyARN, the- credspecmust provide a ARN in Secrets Manager for a secret containing the username, password, and the domain to connect to. For better security, the instance isn’t joined to the domain for domainless authentication. Other applications on the instance can’t use the domainless credentials. You can use this parameter to run tasks on the same instance, even it the tasks need to join different domains. For more information, see Using gMSAs for Windows Containers and Using gMSAs for Linux Containers.- (string) – 
 
 
 
- family (string) – - The name of a family that this task definition is registered to. Up to 255 characters are allowed. Letters (both uppercase and lowercase letters), numbers, hyphens (-), and underscores (_) are allowed. - A family groups multiple versions of a task definition. Amazon ECS gives the first task definition that you registered to a family a revision number of 1. Amazon ECS gives sequential revision numbers to each task definition that you add. 
- taskRoleArn (string) – - The short name or full Amazon Resource Name (ARN) of the Identity and Access Management role that grants containers in the task permission to call Amazon Web Services APIs on your behalf. For informationabout the required IAM roles for Amazon ECS, see IAM roles for Amazon ECS in the Amazon Elastic Container Service Developer Guide. 
- executionRoleArn (string) – - The Amazon Resource Name (ARN) of the task execution role that grants the Amazon ECS container agent permission to make Amazon Web Services API calls on your behalf. For informationabout the required IAM roles for Amazon ECS, see IAM roles for Amazon ECS in the Amazon Elastic Container Service Developer Guide. 
- networkMode (string) – - The Docker networking mode to use for the containers in the task. The valid values are - none,- bridge,- awsvpc, and- host. If no network mode is specified, the default is- bridge.- For Amazon ECS tasks on Fargate, the - awsvpcnetwork mode is required. For Amazon ECS tasks on Amazon EC2 Linux instances, any network mode can be used. For Amazon ECS tasks on Amazon EC2 Windows instances,- <default>or- awsvpccan be used. If the network mode is set to- none, you cannot specify port mappings in your container definitions, and the tasks containers do not have external connectivity. The- hostand- awsvpcnetwork modes offer the highest networking performance for containers because they use the EC2 network stack instead of the virtualized network stack provided by the- bridgemode.- With the - hostand- awsvpcnetwork modes, exposed container ports are mapped directly to the corresponding host port (for the- hostnetwork mode) or the attached elastic network interface port (for the- awsvpcnetwork mode), so you cannot take advantage of dynamic host port mappings.- Warning- When using the - hostnetwork mode, you should not run containers using the root user (UID 0). It is considered best practice to use a non-root user.- If the network mode is - awsvpc, the task is allocated an elastic network interface, and you must specify a NetworkConfiguration value when you create a service or run a task with the task definition. For more information, see Task Networking in the Amazon Elastic Container Service Developer Guide.- If the network mode is - host, you cannot run multiple instantiations of the same task on a single container instance when port mappings are used.
- revision (integer) – - The revision of the task in a particular family. The revision is a version number of a task definition in a family. When you register a task definition for the first time, the revision is - 1. Each time that you register a new revision of a task definition in the same family, the revision value always increases by one. This is even if you deregistered previous revisions in this family.
- volumes (list) – - The list of data volume definitions for the task. For more information, see Using data volumes in tasks in the Amazon Elastic Container Service Developer Guide. - Note- The - hostand- sourcePathparameters aren’t supported for tasks run on Fargate.- (dict) – - The data volume configuration for tasks launched using this task definition. Specifying a volume configuration in a task definition is optional. The volume configuration may contain multiple volumes but only one volume configured at launch is supported. Each volume defined in the volume configuration may only specify a - nameand one of either- configuredAtLaunch,- dockerVolumeConfiguration,- efsVolumeConfiguration,- fsxWindowsFileServerVolumeConfiguration, or- host. If an empty volume configuration is specified, by default Amazon ECS uses a host volume. For more information, see Using data volumes in tasks.- name (string) – - The name of the volume. Up to 255 letters (uppercase and lowercase), numbers, underscores, and hyphens are allowed. - When using a volume configured at launch, the - nameis required and must also be specified as the volume name in the- ServiceVolumeConfigurationor- TaskVolumeConfigurationparameter when creating your service or standalone task.- For all other types of volumes, this name is referenced in the - sourceVolumeparameter of the- mountPointsobject in the container definition.- When a volume is using the - efsVolumeConfiguration, the name is required.
- host (dict) – - This parameter is specified when you use bind mount host volumes. The contents of the - hostparameter determine whether your bind mount host volume persists on the host container instance and where it’s stored. If the- hostparameter is empty, then the Docker daemon assigns a host path for your data volume. However, the data isn’t guaranteed to persist after the containers that are associated with it stop running.- Windows containers can mount whole directories on the same drive as - $env:ProgramData. Windows containers can’t mount directories on a different drive, and mount point can’t be across drives. For example, you can mount- C:\my\path:C:\my\pathand- D:\:D:\, but not- D:\my\path:C:\my\pathor- D:\:C:\my\path.- sourcePath (string) – - When the - hostparameter is used, specify a- sourcePathto declare the path on the host container instance that’s presented to the container. If this parameter is empty, then the Docker daemon has assigned a host path for you. If the- hostparameter contains a- sourcePathfile location, then the data volume persists at the specified location on the host container instance until you delete it manually. If the- sourcePathvalue doesn’t exist on the host container instance, the Docker daemon creates it. If the location does exist, the contents of the source path folder are exported.- If you’re using the Fargate launch type, the - sourcePathparameter is not supported.
 
- dockerVolumeConfiguration (dict) – - This parameter is specified when you use Docker volumes. - Windows containers only support the use of the - localdriver. To use bind mounts, specify the- hostparameter instead.- Note- Docker volumes aren’t supported by tasks run on Fargate. - scope (string) – - The scope for the Docker volume that determines its lifecycle. Docker volumes that are scoped to a - taskare automatically provisioned when the task starts and destroyed when the task stops. Docker volumes that are scoped as- sharedpersist after the task stops.
- autoprovision (boolean) – - If this value is - true, the Docker volume is created if it doesn’t already exist.- Note- This field is only used if the - scopeis- shared.
- driver (string) – - The Docker volume driver to use. The driver value must match the driver name provided by Docker because it is used for task placement. If the driver was installed using the Docker plugin CLI, use - docker plugin lsto retrieve the driver name from your container instance. If the driver was installed using another method, use Docker plugin discovery to retrieve the driver name. This parameter maps to- Driverin the docker create-container command and the- xxdriveroption to docker volume create.
- driverOpts (dict) – - A map of Docker driver-specific options passed through. This parameter maps to - DriverOptsin the docker create-volume command and the- xxoptoption to docker volume create.- (string) – - (string) – 
 
 
- labels (dict) – - Custom metadata to add to your Docker volume. This parameter maps to - Labelsin the docker create-container command and the- xxlabeloption to docker volume create.- (string) – - (string) – 
 
 
 
- efsVolumeConfiguration (dict) – - This parameter is specified when you use an Amazon Elastic File System file system for task storage. - fileSystemId (string) – - The Amazon EFS file system ID to use. 
- rootDirectory (string) – - The directory within the Amazon EFS file system to mount as the root directory inside the host. If this parameter is omitted, the root of the Amazon EFS volume will be used. Specifying - /will have the same effect as omitting this parameter.- Warning- If an EFS access point is specified in the - authorizationConfig, the root directory parameter must either be omitted or set to- /which will enforce the path set on the EFS access point.
- transitEncryption (string) – - Determines whether to use encryption for Amazon EFS data in transit between the Amazon ECS host and the Amazon EFS server. Transit encryption must be turned on if Amazon EFS IAM authorization is used. If this parameter is omitted, the default value of - DISABLEDis used. For more information, see Encrypting data in transit in the Amazon Elastic File System User Guide.
- transitEncryptionPort (integer) – - The port to use when sending encrypted data between the Amazon ECS host and the Amazon EFS server. If you do not specify a transit encryption port, it will use the port selection strategy that the Amazon EFS mount helper uses. For more information, see EFS mount helper in the Amazon Elastic File System User Guide. 
- authorizationConfig (dict) – - The authorization configuration details for the Amazon EFS file system. - accessPointId (string) – - The Amazon EFS access point ID to use. If an access point is specified, the root directory value specified in the - EFSVolumeConfigurationmust either be omitted or set to- /which will enforce the path set on the EFS access point. If an access point is used, transit encryption must be on in the- EFSVolumeConfiguration. For more information, see Working with Amazon EFS access points in the Amazon Elastic File System User Guide.
- iam (string) – - Determines whether to use the Amazon ECS task role defined in a task definition when mounting the Amazon EFS file system. If it is turned on, transit encryption must be turned on in the - EFSVolumeConfiguration. If this parameter is omitted, the default value of- DISABLEDis used. For more information, see Using Amazon EFS access points in the Amazon Elastic Container Service Developer Guide.
 
 
- fsxWindowsFileServerVolumeConfiguration (dict) – - This parameter is specified when you use Amazon FSx for Windows File Server file system for task storage. - fileSystemId (string) – - The Amazon FSx for Windows File Server file system ID to use. 
- rootDirectory (string) – - The directory within the Amazon FSx for Windows File Server file system to mount as the root directory inside the host. 
- authorizationConfig (dict) – - The authorization configuration details for the Amazon FSx for Windows File Server file system. - credentialsParameter (string) – - The authorization credential option to use. The authorization credential options can be provided using either the Amazon Resource Name (ARN) of an Secrets Manager secret or SSM Parameter Store parameter. The ARN refers to the stored credentials. 
- domain (string) – - A fully qualified domain name hosted by an Directory Service Managed Microsoft AD (Active Directory) or self-hosted AD on Amazon EC2. 
 
 
- configuredAtLaunch (boolean) – - Indicates whether the volume should be configured at launch time. This is used to create Amazon EBS volumes for standalone tasks or tasks created as part of a service. Each task definition revision may only have one volume configured at launch in the volume configuration. - To configure a volume at launch time, use this task definition revision and specify a - volumeConfigurationsobject when calling the- CreateService,- UpdateService,- RunTaskor- StartTaskAPIs.
 
 
- status (string) – - The status of the task definition. 
- requiresAttributes (list) – - The container instance attributes required by your task. When an Amazon EC2 instance is registered to your cluster, the Amazon ECS container agent assigns some standard attributes to the instance. You can apply custom attributes. These are specified as key-value pairs using the Amazon ECS console or the PutAttributes API. These attributes are used when determining task placement for tasks hosted on Amazon EC2 instances. For more information, see Attributes in the Amazon Elastic Container Service Developer Guide. - Note- This parameter isn’t supported for tasks run on Fargate. - (dict) – - An attribute is a name-value pair that’s associated with an Amazon ECS object. Use attributes to extend the Amazon ECS data model by adding custom metadata to your resources. For more information, see Attributes in the Amazon Elastic Container Service Developer Guide. - name (string) – - The name of the attribute. The - namemust contain between 1 and 128 characters. The name may contain letters (uppercase and lowercase), numbers, hyphens (-), underscores (_), forward slashes (/), back slashes (), or periods (.).
- value (string) – - The value of the attribute. The - valuemust contain between 1 and 128 characters. It can contain letters (uppercase and lowercase), numbers, hyphens (-), underscores (_), periods (.), at signs (@), forward slashes (/), back slashes (), colons (:), or spaces. The value can’t start or end with a space.
- targetType (string) – - The type of the target to attach the attribute with. This parameter is required if you use the short form ID for a resource instead of the full ARN. 
- targetId (string) – - The ID of the target. You can specify the short form ID for a resource or the full Amazon Resource Name (ARN). 
 
 
- placementConstraints (list) – - An array of placement constraint objects to use for tasks. - Note- This parameter isn’t supported for tasks run on Fargate. - (dict) – - The constraint on task placement in the task definition. For more information, see Task placement constraints in the Amazon Elastic Container Service Developer Guide. - Note- Task placement constraints aren’t supported for tasks run on Fargate. - type (string) – - The type of constraint. The - MemberOfconstraint restricts selection to be from a group of valid candidates.
- expression (string) – - A cluster query language expression to apply to the constraint. For more information, see Cluster query language in the Amazon Elastic Container Service Developer Guide. 
 
 
- compatibilities (list) – - The task launch types the task definition validated against during task definition registration. For more information, see Amazon ECS launch types in the Amazon Elastic Container Service Developer Guide. - (string) – 
 
- runtimePlatform (dict) – - The operating system that your task definitions are running on. A platform family is specified only for tasks using the Fargate launch type. - When you specify a task in a service, this value must match the - runtimePlatformvalue of the service.- cpuArchitecture (string) – - The CPU architecture. - You can run your Linux tasks on an ARM-based platform by setting the value to - ARM64. This option is available for tasks that run on Linux Amazon EC2 instance or Linux containers on Fargate.
- operatingSystemFamily (string) – - The operating system. 
 
- requiresCompatibilities (list) – - The task launch types the task definition was validated against. The valid values are - EC2,- FARGATE, and- EXTERNAL. For more information, see Amazon ECS launch types in the Amazon Elastic Container Service Developer Guide.- (string) – 
 
- cpu (string) – - The number of - cpuunits used by the task. If you use the EC2 launch type, this field is optional. Any value can be used. If you use the Fargate launch type, this field is required. You must use one of the following values. The value that you choose determines your range of valid values for the- memoryparameter.- If you use the EC2 launch type, this field is optional. Supported values are between - 128CPU units (- 0.125vCPUs) and- 10240CPU units (- 10vCPUs).- The CPU units cannot be less than 1 vCPU when you use Windows containers on Fargate. - 256 (.25 vCPU) - Available - memoryvalues: 512 (0.5 GB), 1024 (1 GB), 2048 (2 GB)
- 512 (.5 vCPU) - Available - memoryvalues: 1024 (1 GB), 2048 (2 GB), 3072 (3 GB), 4096 (4 GB)
- 1024 (1 vCPU) - Available - memoryvalues: 2048 (2 GB), 3072 (3 GB), 4096 (4 GB), 5120 (5 GB), 6144 (6 GB), 7168 (7 GB), 8192 (8 GB)
- 2048 (2 vCPU) - Available - memoryvalues: 4096 (4 GB) and 16384 (16 GB) in increments of 1024 (1 GB)
- 4096 (4 vCPU) - Available - memoryvalues: 8192 (8 GB) and 30720 (30 GB) in increments of 1024 (1 GB)
- 8192 (8 vCPU) - Available - memoryvalues: 16 GB and 60 GB in 4 GB increments This option requires Linux platform- 1.4.0or later.
- 16384 (16vCPU) - Available - memoryvalues: 32GB and 120 GB in 8 GB increments This option requires Linux platform- 1.4.0or later.
 
- memory (string) – - The amount (in MiB) of memory used by the task. - If your tasks runs on Amazon EC2 instances, you must specify either a task-level memory value or a container-level memory value. This field is optional and any value can be used. If a task-level memory value is specified, the container-level memory value is optional. For more information regarding container-level memory and memory reservation, see ContainerDefinition. - If your tasks runs on Fargate, this field is required. You must use one of the following values. The value you choose determines your range of valid values for the - cpuparameter.- 512 (0.5 GB), 1024 (1 GB), 2048 (2 GB) - Available - cpuvalues: 256 (.25 vCPU)
- 1024 (1 GB), 2048 (2 GB), 3072 (3 GB), 4096 (4 GB) - Available - cpuvalues: 512 (.5 vCPU)
- 2048 (2 GB), 3072 (3 GB), 4096 (4 GB), 5120 (5 GB), 6144 (6 GB), 7168 (7 GB), 8192 (8 GB) - Available - cpuvalues: 1024 (1 vCPU)
- Between 4096 (4 GB) and 16384 (16 GB) in increments of 1024 (1 GB) - Available - cpuvalues: 2048 (2 vCPU)
- Between 8192 (8 GB) and 30720 (30 GB) in increments of 1024 (1 GB) - Available - cpuvalues: 4096 (4 vCPU)
- Between 16 GB and 60 GB in 4 GB increments - Available - cpuvalues: 8192 (8 vCPU) This option requires Linux platform- 1.4.0or later.
- Between 32GB and 120 GB in 8 GB increments - Available - cpuvalues: 16384 (16 vCPU) This option requires Linux platform- 1.4.0or later.
 
- inferenceAccelerators (list) – - The Elastic Inference accelerator that’s associated with the task. - (dict) – - Details on an Elastic Inference accelerator. For more information, see Working with Amazon Elastic Inference on Amazon ECS in the Amazon Elastic Container Service Developer Guide. - deviceName (string) – - The Elastic Inference accelerator device name. The - deviceNamemust also be referenced in a container definition as a ResourceRequirement.
- deviceType (string) – - The Elastic Inference accelerator type to use. 
 
 
- pidMode (string) – - The process namespace to use for the containers in the task. The valid values are - hostor- task. On Fargate for Linux containers, the only valid value is- task. For example, monitoring sidecars might need- pidModeto access information about other containers running in the same task.- If - hostis specified, all containers within the tasks that specified the- hostPID mode on the same container instance share the same process namespace with the host Amazon EC2 instance.- If - taskis specified, all containers within the specified task share the same process namespace.- If no value is specified, the default is a private namespace for each container. - If the - hostPID mode is used, there’s a heightened risk of undesired process namespace exposure.- Note- This parameter is not supported for Windows containers. - Note- This parameter is only supported for tasks that are hosted on Fargate if the tasks are using platform version - 1.4.0or later (Linux). This isn’t supported for Windows containers on Fargate.
- ipcMode (string) – - The IPC resource namespace to use for the containers in the task. The valid values are - host,- task, or- none. If- hostis specified, then all containers within the tasks that specified the- hostIPC mode on the same container instance share the same IPC resources with the host Amazon EC2 instance. If- taskis specified, all containers within the specified task share the same IPC resources. If- noneis specified, then IPC resources within the containers of a task are private and not shared with other containers in a task or on the container instance. If no value is specified, then the IPC resource namespace sharing depends on the Docker daemon setting on the container instance.- If the - hostIPC mode is used, be aware that there is a heightened risk of undesired IPC namespace expose.- If you are setting namespaced kernel parameters using - systemControlsfor the containers in the task, the following will apply to your IPC resource namespace. For more information, see System Controls in the Amazon Elastic Container Service Developer Guide.- For tasks that use the - hostIPC mode, IPC namespace related- systemControlsare not supported.
- For tasks that use the - taskIPC mode, IPC namespace related- systemControlswill apply to all containers within a task.
 - Note- This parameter is not supported for Windows containers or tasks run on Fargate. 
- proxyConfiguration (dict) – - The configuration details for the App Mesh proxy. - Your Amazon ECS container instances require at least version 1.26.0 of the container agent and at least version 1.26.0-1 of the - ecs-initpackage to use a proxy configuration. If your container instances are launched from the Amazon ECS optimized AMI version- 20190301or later, they contain the required versions of the container agent and- ecs-init. For more information, see Amazon ECS-optimized Linux AMI in the Amazon Elastic Container Service Developer Guide.- type (string) – - The proxy type. The only supported value is - APPMESH.
- containerName (string) – - The name of the container that will serve as the App Mesh proxy. 
- properties (list) – - The set of network configuration parameters to provide the Container Network Interface (CNI) plugin, specified as key-value pairs. - IgnoredUID- (Required) The user ID (UID) of the proxy container as defined by the- userparameter in a container definition. This is used to ensure the proxy ignores its own traffic. If- IgnoredGIDis specified, this field can be empty.
- IgnoredGID- (Required) The group ID (GID) of the proxy container as defined by the- userparameter in a container definition. This is used to ensure the proxy ignores its own traffic. If- IgnoredUIDis specified, this field can be empty.
- AppPorts- (Required) The list of ports that the application uses. Network traffic to these ports is forwarded to the- ProxyIngressPortand- ProxyEgressPort.
- ProxyIngressPort- (Required) Specifies the port that incoming traffic to the- AppPortsis directed to.
- ProxyEgressPort- (Required) Specifies the port that outgoing traffic from the- AppPortsis directed to.
- EgressIgnoredPorts- (Required) The egress traffic going to the specified ports is ignored and not redirected to the- ProxyEgressPort. It can be an empty list.
- EgressIgnoredIPs- (Required) The egress traffic going to the specified IP addresses is ignored and not redirected to the- ProxyEgressPort. It can be an empty list.
 - (dict) – - A key-value pair object. - name (string) – - The name of the key-value pair. For environment variables, this is the name of the environment variable. 
- value (string) – - The value of the key-value pair. For environment variables, this is the value of the environment variable. 
 
 
 
- registeredAt (datetime) – - The Unix timestamp for the time when the task definition was registered. 
- deregisteredAt (datetime) – - The Unix timestamp for the time when the task definition was deregistered. 
- registeredBy (string) – - The principal that registered the task definition. 
- ephemeralStorage (dict) – - The ephemeral storage settings to use for tasks run with the task definition. - sizeInGiB (integer) – - The total amount, in GiB, of ephemeral storage to set for the task. The minimum supported value is - 20GiB and the maximum supported value is- 200GiB.
 
 
- tags (list) – - The list of tags associated with the task definition. - (dict) – - The metadata that you apply to a resource to help you categorize and organize them. Each tag consists of a key and an optional value. You define them. - The following basic restrictions apply to tags: - Maximum number of tags per resource - 50 
- For each resource, each tag key must be unique, and each tag key can have only one value. 
- Maximum key length - 128 Unicode characters in UTF-8 
- Maximum value length - 256 Unicode characters in UTF-8 
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @. 
- Tag keys and values are case-sensitive. 
- Do not use - aws:,- AWS:, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for Amazon Web Services use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.
 - key (string) – - One part of a key-value pair that make up a tag. A - keyis a general label that acts like a category for more specific tag values.
- value (string) – - The optional part of a key-value pair that make up a tag. A - valueacts as a descriptor within a tag category (key).
 
 
 
 
 - Exceptions- ECS.Client.exceptions.ServerException
- ECS.Client.exceptions.ClientException
- ECS.Client.exceptions.InvalidParameterException
 - Examples- This example registers a task definition to the specified family. - response = client.register_task_definition( containerDefinitions=[ { 'name': 'sleep', 'command': [ 'sleep', '360', ], 'cpu': 10, 'essential': True, 'image': 'busybox', 'memory': 10, }, ], family='sleep360', taskRoleArn='', volumes=[ ], ) print(response) - Expected Output: - { 'taskDefinition': { 'containerDefinitions': [ { 'name': 'sleep', 'command': [ 'sleep', '360', ], 'cpu': 10, 'environment': [ ], 'essential': True, 'image': 'busybox', 'memory': 10, 'mountPoints': [ ], 'portMappings': [ ], 'volumesFrom': [ ], }, ], 'family': 'sleep360', 'revision': 1, 'taskDefinitionArn': 'arn:aws:ecs:us-east-1:<aws_account_id>:task-definition/sleep360:19', 'volumes': [ ], }, 'ResponseMetadata': { '...': '...', }, }