SageMaker / Client / update_model_package
update_model_package#
- SageMaker.Client.update_model_package(**kwargs)#
Updates a versioned model.
See also: AWS API Documentation
Request Syntax
response = client.update_model_package( ModelPackageArn='string', ModelApprovalStatus='Approved'|'Rejected'|'PendingManualApproval', ApprovalDescription='string', CustomerMetadataProperties={ 'string': 'string' }, CustomerMetadataPropertiesToRemove=[ 'string', ], AdditionalInferenceSpecificationsToAdd=[ { 'Name': 'string', 'Description': 'string', 'Containers': [ { 'ContainerHostname': 'string', 'Image': 'string', 'ImageDigest': 'string', 'ModelDataUrl': 'string', 'ModelDataSource': { 'S3DataSource': { 'S3Uri': 'string', 'S3DataType': 'S3Prefix'|'S3Object', 'CompressionType': 'None'|'Gzip', 'ModelAccessConfig': { 'AcceptEula': True|False } } }, 'ProductId': 'string', 'Environment': { 'string': 'string' }, 'ModelInput': { 'DataInputConfig': 'string' }, 'Framework': 'string', 'FrameworkVersion': 'string', 'NearestModelName': 'string', 'AdditionalS3DataSource': { 'S3DataType': 'S3Object'|'S3Prefix', 'S3Uri': 'string', 'CompressionType': 'None'|'Gzip' } }, ], 'SupportedTransformInstanceTypes': [ 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge', ], 'SupportedRealtimeInferenceInstanceTypes': [ 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.dl1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge', ], 'SupportedContentTypes': [ 'string', ], 'SupportedResponseMIMETypes': [ 'string', ] }, ], InferenceSpecification={ 'Containers': [ { 'ContainerHostname': 'string', 'Image': 'string', 'ImageDigest': 'string', 'ModelDataUrl': 'string', 'ModelDataSource': { 'S3DataSource': { 'S3Uri': 'string', 'S3DataType': 'S3Prefix'|'S3Object', 'CompressionType': 'None'|'Gzip', 'ModelAccessConfig': { 'AcceptEula': True|False } } }, 'ProductId': 'string', 'Environment': { 'string': 'string' }, 'ModelInput': { 'DataInputConfig': 'string' }, 'Framework': 'string', 'FrameworkVersion': 'string', 'NearestModelName': 'string', 'AdditionalS3DataSource': { 'S3DataType': 'S3Object'|'S3Prefix', 'S3Uri': 'string', 'CompressionType': 'None'|'Gzip' } }, ], 'SupportedTransformInstanceTypes': [ 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge', ], 'SupportedRealtimeInferenceInstanceTypes': [ 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.dl1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge', ], 'SupportedContentTypes': [ 'string', ], 'SupportedResponseMIMETypes': [ 'string', ] }, SourceUri='string' )
- Parameters:
ModelPackageArn (string) –
[REQUIRED]
The Amazon Resource Name (ARN) of the model package.
ModelApprovalStatus (string) – The approval status of the model.
ApprovalDescription (string) – A description for the approval status of the model.
CustomerMetadataProperties (dict) –
The metadata properties associated with the model package versions.
(string) –
(string) –
CustomerMetadataPropertiesToRemove (list) –
The metadata properties associated with the model package versions to remove.
(string) –
AdditionalInferenceSpecificationsToAdd (list) –
An array of additional Inference Specification objects to be added to the existing array additional Inference Specification. Total number of additional Inference Specifications can not exceed 15. Each additional Inference Specification specifies artifacts based on this model package that can be used on inference endpoints. Generally used with SageMaker Neo to store the compiled artifacts.
(dict) –
A structure of additional Inference Specification. Additional Inference Specification specifies details about inference jobs that can be run with models based on this model package
Name (string) – [REQUIRED]
A unique name to identify the additional inference specification. The name must be unique within the list of your additional inference specifications for a particular model package.
Description (string) –
A description of the additional Inference specification
Containers (list) – [REQUIRED]
The Amazon ECR registry path of the Docker image that contains the inference code.
(dict) –
Describes the Docker container for the model package.
ContainerHostname (string) –
The DNS host name for the Docker container.
Image (string) – [REQUIRED]
The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.
If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both
registry/repository[:tag]
andregistry/repository[@digest]
image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.ImageDigest (string) –
An MD5 hash of the training algorithm that identifies the Docker image used for training.
ModelDataUrl (string) –
The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single
gzip
compressed tar archive (.tar.gz
suffix).Note
The model artifacts must be in an S3 bucket that is in the same region as the model package.
ModelDataSource (dict) –
Specifies the location of ML model data to deploy during endpoint creation.
S3DataSource (dict) –
Specifies the S3 location of ML model data to deploy.
S3Uri (string) – [REQUIRED]
Specifies the S3 path of ML model data to deploy.
S3DataType (string) – [REQUIRED]
Specifies the type of ML model data to deploy.
If you choose
S3Prefix
,S3Uri
identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix as part of the ML model data to deploy. A valid key name prefix identified byS3Uri
always ends with a forward slash (/).If you choose
S3Object
,S3Uri
identifies an object that is the ML model data to deploy.CompressionType (string) – [REQUIRED]
Specifies how the ML model data is prepared.
If you choose
Gzip
and chooseS3Object
as the value ofS3DataType
,S3Uri
identifies an object that is a gzip-compressed TAR archive. SageMaker will attempt to decompress and untar the object during model deployment.If you choose
None
and choooseS3Object
as the value ofS3DataType
,S3Uri
identifies an object that represents an uncompressed ML model to deploy.If you choose None and choose
S3Prefix
as the value ofS3DataType
,S3Uri
identifies a key name prefix, under which all objects represents the uncompressed ML model to deploy.If you choose None, then SageMaker will follow rules below when creating model data files under /opt/ml/model directory for use by your inference code:
If you choose
S3Object
as the value ofS3DataType
, then SageMaker will split the key of the S3 object referenced byS3Uri
by slash (/), and use the last part as the filename of the file holding the content of the S3 object.If you choose
S3Prefix
as the value ofS3DataType
, then for each S3 object under the key name pefix referenced byS3Uri
, SageMaker will trim its key by the prefix, and use the remainder as the path (relative to/opt/ml/model
) of the file holding the content of the S3 object. SageMaker will split the remainder by slash (/), using intermediate parts as directory names and the last part as filename of the file holding the content of the S3 object.Do not use any of the following as file names or directory names:
An empty or blank string
A string which contains null bytes
A string longer than 255 bytes
A single dot (
.
)A double dot (
..
)
Ambiguous file names will result in model deployment failure. For example, if your uncompressed ML model consists of two S3 objects
s3://mybucket/model/weights
ands3://mybucket/model/weights/part1
and you specifys3://mybucket/model/
as the value ofS3Uri
andS3Prefix
as the value ofS3DataType
, then it will result in name clash between/opt/ml/model/weights
(a regular file) and/opt/ml/model/weights/
(a directory).Do not organize the model artifacts in S3 console using folders. When you create a folder in S3 console, S3 creates a 0-byte object with a key set to the folder name you provide. They key of the 0-byte object ends with a slash (/) which violates SageMaker restrictions on model artifact file names, leading to model deployment failure.
ModelAccessConfig (dict) –
Specifies the access configuration file for the ML model. You can explicitly accept the model end-user license agreement (EULA) within the
ModelAccessConfig
. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.AcceptEula (boolean) – [REQUIRED]
Specifies agreement to the model end-user license agreement (EULA). The
AcceptEula
value must be explicitly defined asTrue
in order to accept the EULA that this model requires. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.
ProductId (string) –
The Amazon Web Services Marketplace product ID of the model package.
Environment (dict) –
The environment variables to set in the Docker container. Each key and value in the
Environment
string to string map can have length of up to 1024. We support up to 16 entries in the map.(string) –
(string) –
ModelInput (dict) –
A structure with Model Input details.
DataInputConfig (string) – [REQUIRED]
The input configuration object for the model.
Framework (string) –
The machine learning framework of the model package container image.
FrameworkVersion (string) –
The framework version of the Model Package Container Image.
NearestModelName (string) –
The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling
ListModelMetadata
.AdditionalS3DataSource (dict) –
The additional data source that is used during inference in the Docker container for your model package.
S3DataType (string) – [REQUIRED]
The data type of the additional data source that you specify for use in inference or training.
S3Uri (string) – [REQUIRED]
The uniform resource identifier (URI) used to identify an additional data source used in inference or training.
CompressionType (string) –
The type of compression used for an additional data source used in inference or training. Specify
None
if your additional data source is not compressed.
SupportedTransformInstanceTypes (list) –
A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.
(string) –
SupportedRealtimeInferenceInstanceTypes (list) –
A list of the instance types that are used to generate inferences in real-time.
(string) –
SupportedContentTypes (list) –
The supported MIME types for the input data.
(string) –
SupportedResponseMIMETypes (list) –
The supported MIME types for the output data.
(string) –
InferenceSpecification (dict) –
Specifies details about inference jobs that you can run with models based on this model package, including the following information:
The Amazon ECR paths of containers that contain the inference code and model artifacts.
The instance types that the model package supports for transform jobs and real-time endpoints used for inference.
The input and output content formats that the model package supports for inference.
Containers (list) – [REQUIRED]
The Amazon ECR registry path of the Docker image that contains the inference code.
(dict) –
Describes the Docker container for the model package.
ContainerHostname (string) –
The DNS host name for the Docker container.
Image (string) – [REQUIRED]
The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.
If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both
registry/repository[:tag]
andregistry/repository[@digest]
image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.ImageDigest (string) –
An MD5 hash of the training algorithm that identifies the Docker image used for training.
ModelDataUrl (string) –
The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single
gzip
compressed tar archive (.tar.gz
suffix).Note
The model artifacts must be in an S3 bucket that is in the same region as the model package.
ModelDataSource (dict) –
Specifies the location of ML model data to deploy during endpoint creation.
S3DataSource (dict) –
Specifies the S3 location of ML model data to deploy.
S3Uri (string) – [REQUIRED]
Specifies the S3 path of ML model data to deploy.
S3DataType (string) – [REQUIRED]
Specifies the type of ML model data to deploy.
If you choose
S3Prefix
,S3Uri
identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix as part of the ML model data to deploy. A valid key name prefix identified byS3Uri
always ends with a forward slash (/).If you choose
S3Object
,S3Uri
identifies an object that is the ML model data to deploy.CompressionType (string) – [REQUIRED]
Specifies how the ML model data is prepared.
If you choose
Gzip
and chooseS3Object
as the value ofS3DataType
,S3Uri
identifies an object that is a gzip-compressed TAR archive. SageMaker will attempt to decompress and untar the object during model deployment.If you choose
None
and choooseS3Object
as the value ofS3DataType
,S3Uri
identifies an object that represents an uncompressed ML model to deploy.If you choose None and choose
S3Prefix
as the value ofS3DataType
,S3Uri
identifies a key name prefix, under which all objects represents the uncompressed ML model to deploy.If you choose None, then SageMaker will follow rules below when creating model data files under /opt/ml/model directory for use by your inference code:
If you choose
S3Object
as the value ofS3DataType
, then SageMaker will split the key of the S3 object referenced byS3Uri
by slash (/), and use the last part as the filename of the file holding the content of the S3 object.If you choose
S3Prefix
as the value ofS3DataType
, then for each S3 object under the key name pefix referenced byS3Uri
, SageMaker will trim its key by the prefix, and use the remainder as the path (relative to/opt/ml/model
) of the file holding the content of the S3 object. SageMaker will split the remainder by slash (/), using intermediate parts as directory names and the last part as filename of the file holding the content of the S3 object.Do not use any of the following as file names or directory names:
An empty or blank string
A string which contains null bytes
A string longer than 255 bytes
A single dot (
.
)A double dot (
..
)
Ambiguous file names will result in model deployment failure. For example, if your uncompressed ML model consists of two S3 objects
s3://mybucket/model/weights
ands3://mybucket/model/weights/part1
and you specifys3://mybucket/model/
as the value ofS3Uri
andS3Prefix
as the value ofS3DataType
, then it will result in name clash between/opt/ml/model/weights
(a regular file) and/opt/ml/model/weights/
(a directory).Do not organize the model artifacts in S3 console using folders. When you create a folder in S3 console, S3 creates a 0-byte object with a key set to the folder name you provide. They key of the 0-byte object ends with a slash (/) which violates SageMaker restrictions on model artifact file names, leading to model deployment failure.
ModelAccessConfig (dict) –
Specifies the access configuration file for the ML model. You can explicitly accept the model end-user license agreement (EULA) within the
ModelAccessConfig
. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.AcceptEula (boolean) – [REQUIRED]
Specifies agreement to the model end-user license agreement (EULA). The
AcceptEula
value must be explicitly defined asTrue
in order to accept the EULA that this model requires. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.
ProductId (string) –
The Amazon Web Services Marketplace product ID of the model package.
Environment (dict) –
The environment variables to set in the Docker container. Each key and value in the
Environment
string to string map can have length of up to 1024. We support up to 16 entries in the map.(string) –
(string) –
ModelInput (dict) –
A structure with Model Input details.
DataInputConfig (string) – [REQUIRED]
The input configuration object for the model.
Framework (string) –
The machine learning framework of the model package container image.
FrameworkVersion (string) –
The framework version of the Model Package Container Image.
NearestModelName (string) –
The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling
ListModelMetadata
.AdditionalS3DataSource (dict) –
The additional data source that is used during inference in the Docker container for your model package.
S3DataType (string) – [REQUIRED]
The data type of the additional data source that you specify for use in inference or training.
S3Uri (string) – [REQUIRED]
The uniform resource identifier (URI) used to identify an additional data source used in inference or training.
CompressionType (string) –
The type of compression used for an additional data source used in inference or training. Specify
None
if your additional data source is not compressed.
SupportedTransformInstanceTypes (list) –
A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.
This parameter is required for unversioned models, and optional for versioned models.
(string) –
SupportedRealtimeInferenceInstanceTypes (list) –
A list of the instance types that are used to generate inferences in real-time.
This parameter is required for unversioned models, and optional for versioned models.
(string) –
SupportedContentTypes (list) –
The supported MIME types for the input data.
(string) –
SupportedResponseMIMETypes (list) –
The supported MIME types for the output data.
(string) –
SourceUri (string) – The URI of the source for the model package.
- Return type:
dict
- Returns:
Response Syntax
{ 'ModelPackageArn': 'string' }
Response Structure
(dict) –
ModelPackageArn (string) –
The Amazon Resource Name (ARN) of the model.
Exceptions
SageMaker.Client.exceptions.ConflictException