SageMaker / Client / update_mlflow_tracking_server
update_mlflow_tracking_server#
- SageMaker.Client.update_mlflow_tracking_server(**kwargs)#
Updates properties of an existing MLflow Tracking Server.
See also: AWS API Documentation
Request Syntax
response = client.update_mlflow_tracking_server( TrackingServerName='string', ArtifactStoreUri='string', TrackingServerSize='Small'|'Medium'|'Large', AutomaticModelRegistration=True|False, WeeklyMaintenanceWindowStart='string' )
- Parameters:
TrackingServerName (string) –
[REQUIRED]
The name of the MLflow Tracking Server to update.
ArtifactStoreUri (string) – The new S3 URI for the general purpose bucket to use as the artifact store for the MLflow Tracking Server.
TrackingServerSize (string) – The new size for the MLflow Tracking Server.
AutomaticModelRegistration (boolean) – Whether to enable or disable automatic registration of new MLflow models to the SageMaker Model Registry. To enable automatic model registration, set this value to
True
. To disable automatic model registration, set this value toFalse
. If not specified,AutomaticModelRegistration
defaults toFalse
WeeklyMaintenanceWindowStart (string) – The new weekly maintenance window start day and time to update. The maintenance window day and time should be in Coordinated Universal Time (UTC) 24-hour standard time. For example: TUE:03:30.
- Return type:
dict
- Returns:
Response Syntax
{ 'TrackingServerArn': 'string' }
Response Structure
(dict) –
TrackingServerArn (string) –
The ARN of the updated MLflow Tracking Server.
Exceptions
SageMaker.Client.exceptions.ResourceNotFound
SageMaker.Client.exceptions.ResourceLimitExceeded
SageMaker.Client.exceptions.ConflictException