Bedrock / Client / get_evaluation_job
get_evaluation_job#
- Bedrock.Client.get_evaluation_job(**kwargs)#
Retrieves the properties associated with a model evaluation job, including the status of the job. For more information, see Model evaluation.
See also: AWS API Documentation
Request Syntax
response = client.get_evaluation_job( jobIdentifier='string' )
- Parameters:
jobIdentifier (string) –
[REQUIRED]
The Amazon Resource Name (ARN) of the model evaluation job.
- Return type:
dict
- Returns:
Response Syntax
{ 'jobName': 'string', 'status': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped'|'Deleting', 'jobArn': 'string', 'jobDescription': 'string', 'roleArn': 'string', 'customerEncryptionKeyId': 'string', 'jobType': 'Human'|'Automated', 'evaluationConfig': { 'automated': { 'datasetMetricConfigs': [ { 'taskType': 'Summarization'|'Classification'|'QuestionAndAnswer'|'Generation'|'Custom', 'dataset': { 'name': 'string', 'datasetLocation': { 's3Uri': 'string' } }, 'metricNames': [ 'string', ] }, ] }, 'human': { 'humanWorkflowConfig': { 'flowDefinitionArn': 'string', 'instructions': 'string' }, 'customMetrics': [ { 'name': 'string', 'description': 'string', 'ratingMethod': 'string' }, ], 'datasetMetricConfigs': [ { 'taskType': 'Summarization'|'Classification'|'QuestionAndAnswer'|'Generation'|'Custom', 'dataset': { 'name': 'string', 'datasetLocation': { 's3Uri': 'string' } }, 'metricNames': [ 'string', ] }, ] } }, 'inferenceConfig': { 'models': [ { 'bedrockModel': { 'modelIdentifier': 'string', 'inferenceParams': 'string' } }, ] }, 'outputDataConfig': { 's3Uri': 'string' }, 'creationTime': datetime(2015, 1, 1), 'lastModifiedTime': datetime(2015, 1, 1), 'failureMessages': [ 'string', ] }
Response Structure
(dict) –
jobName (string) –
The name of the model evaluation job.
status (string) –
The status of the model evaluation job.
jobArn (string) –
The Amazon Resource Name (ARN) of the model evaluation job.
jobDescription (string) –
The description of the model evaluation job.
roleArn (string) –
The Amazon Resource Name (ARN) of the IAM service role used in the model evaluation job.
customerEncryptionKeyId (string) –
The Amazon Resource Name (ARN) of the customer managed key specified when the model evaluation job was created.
jobType (string) –
The type of model evaluation job.
evaluationConfig (dict) –
Contains details about the type of model evaluation job, the metrics used, the task type selected, the datasets used, and any custom metrics you defined.
Note
This is a Tagged Union structure. Only one of the following top level keys will be set:
automated,human. If a client receives an unknown member it will setSDK_UNKNOWN_MEMBERas the top level key, which maps to the name or tag of the unknown member. The structure ofSDK_UNKNOWN_MEMBERis as follows:'SDK_UNKNOWN_MEMBER': {'name': 'UnknownMemberName'}
automated (dict) –
Used to specify an automated model evaluation job. See
AutomatedEvaluationConfigto view the required parameters.datasetMetricConfigs (list) –
Specifies the required elements for an automatic model evaluation job.
(dict) –
Defines the built-in prompt datasets, built-in metric names and custom metric names, and the task type.
taskType (string) –
The task type you want the model to carry out.
dataset (dict) –
Specifies the prompt dataset.
name (string) –
Used to specify supported built-in prompt datasets. Valid values are
Builtin.Bold,Builtin.BoolQ,Builtin.NaturalQuestions,Builtin.Gigaword,Builtin.RealToxicityPrompts,Builtin.TriviaQA,Builtin.T-Rex,Builtin.WomensEcommerceClothingReviewsandBuiltin.Wikitext2.datasetLocation (dict) –
For custom prompt datasets, you must specify the location in Amazon S3 where the prompt dataset is saved.
Note
This is a Tagged Union structure. Only one of the following top level keys will be set:
s3Uri. If a client receives an unknown member it will setSDK_UNKNOWN_MEMBERas the top level key, which maps to the name or tag of the unknown member. The structure ofSDK_UNKNOWN_MEMBERis as follows:'SDK_UNKNOWN_MEMBER': {'name': 'UnknownMemberName'}
s3Uri (string) –
The S3 URI of the S3 bucket specified in the job.
metricNames (list) –
The names of the metrics used. For automated model evaluation jobs valid values are
"Builtin.Accuracy","Builtin.Robustness", and"Builtin.Toxicity". In human-based model evaluation jobs the array of strings must match thenameparameter specified inHumanEvaluationCustomMetric.(string) –
human (dict) –
Used to specify a model evaluation job that uses human workers.See
HumanEvaluationConfigto view the required parameters.humanWorkflowConfig (dict) –
The parameters of the human workflow.
flowDefinitionArn (string) –
The Amazon Resource Number (ARN) for the flow definition
instructions (string) –
Instructions for the flow definition
customMetrics (list) –
A
HumanEvaluationCustomMetricobject. It contains the names the metrics, how the metrics are to be evaluated, an optional description.(dict) –
In a model evaluation job that uses human workers you must define the name of the metric, and how you want that metric rated
ratingMethod, and an optional description of the metric.name (string) –
The name of the metric. Your human evaluators will see this name in the evaluation UI.
description (string) –
An optional description of the metric. Use this parameter to provide more details about the metric.
ratingMethod (string) –
Choose how you want your human workers to evaluation your model. Valid values for rating methods are
ThumbsUpDown,IndividualLikertScale,ComparisonLikertScale,ComparisonChoice, andComparisonRank
datasetMetricConfigs (list) –
Use to specify the metrics, task, and prompt dataset to be used in your model evaluation job.
(dict) –
Defines the built-in prompt datasets, built-in metric names and custom metric names, and the task type.
taskType (string) –
The task type you want the model to carry out.
dataset (dict) –
Specifies the prompt dataset.
name (string) –
Used to specify supported built-in prompt datasets. Valid values are
Builtin.Bold,Builtin.BoolQ,Builtin.NaturalQuestions,Builtin.Gigaword,Builtin.RealToxicityPrompts,Builtin.TriviaQA,Builtin.T-Rex,Builtin.WomensEcommerceClothingReviewsandBuiltin.Wikitext2.datasetLocation (dict) –
For custom prompt datasets, you must specify the location in Amazon S3 where the prompt dataset is saved.
Note
This is a Tagged Union structure. Only one of the following top level keys will be set:
s3Uri. If a client receives an unknown member it will setSDK_UNKNOWN_MEMBERas the top level key, which maps to the name or tag of the unknown member. The structure ofSDK_UNKNOWN_MEMBERis as follows:'SDK_UNKNOWN_MEMBER': {'name': 'UnknownMemberName'}
s3Uri (string) –
The S3 URI of the S3 bucket specified in the job.
metricNames (list) –
The names of the metrics used. For automated model evaluation jobs valid values are
"Builtin.Accuracy","Builtin.Robustness", and"Builtin.Toxicity". In human-based model evaluation jobs the array of strings must match thenameparameter specified inHumanEvaluationCustomMetric.(string) –
inferenceConfig (dict) –
Details about the models you specified in your model evaluation job.
Note
This is a Tagged Union structure. Only one of the following top level keys will be set:
models. If a client receives an unknown member it will setSDK_UNKNOWN_MEMBERas the top level key, which maps to the name or tag of the unknown member. The structure ofSDK_UNKNOWN_MEMBERis as follows:'SDK_UNKNOWN_MEMBER': {'name': 'UnknownMemberName'}
models (list) –
Used to specify the models.
(dict) –
Defines the models used in the model evaluation job.
Note
This is a Tagged Union structure. Only one of the following top level keys will be set:
bedrockModel. If a client receives an unknown member it will setSDK_UNKNOWN_MEMBERas the top level key, which maps to the name or tag of the unknown member. The structure ofSDK_UNKNOWN_MEMBERis as follows:'SDK_UNKNOWN_MEMBER': {'name': 'UnknownMemberName'}
bedrockModel (dict) –
Defines the Amazon Bedrock model or inference profile and inference parameters you want used.
modelIdentifier (string) –
The ARN of the Amazon Bedrock model or inference profile specified.
inferenceParams (string) –
Each Amazon Bedrock support different inference parameters that change how the model behaves during inference.
outputDataConfig (dict) –
Amazon S3 location for where output data is saved.
s3Uri (string) –
The Amazon S3 URI where the results of model evaluation job are saved.
creationTime (datetime) –
When the model evaluation job was created.
lastModifiedTime (datetime) –
When the model evaluation job was last modified.
failureMessages (list) –
An array of strings the specify why the model evaluation job has failed.
(string) –
Exceptions
Bedrock.Client.exceptions.ResourceNotFoundExceptionBedrock.Client.exceptions.AccessDeniedExceptionBedrock.Client.exceptions.ValidationExceptionBedrock.Client.exceptions.InternalServerExceptionBedrock.Client.exceptions.ThrottlingException