MachineLearning / Client / create_evaluation
create_evaluation#
- MachineLearning.Client.create_evaluation(**kwargs)#
Creates a new
Evaluationof anMLModel. AnMLModelis evaluated on a set of observations associated to aDataSource. Like aDataSourcefor anMLModel, theDataSourcefor anEvaluationcontains values for theTarget Variable. TheEvaluationcompares the predicted result for each observation to the actual outcome and provides a summary so that you know how effective theMLModelfunctions on the test data. Evaluation generates a relevant performance metric, such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on the correspondingMLModelType:BINARY,REGRESSIONorMULTICLASS.CreateEvaluationis an asynchronous operation. In response toCreateEvaluation, Amazon Machine Learning (Amazon ML) immediately returns and sets the evaluation status toPENDING. After theEvaluationis created and ready for use, Amazon ML sets the status toCOMPLETED.You can use the
GetEvaluationoperation to check progress of the evaluation during the creation operation.See also: AWS API Documentation
Request Syntax
response = client.create_evaluation( EvaluationId='string', EvaluationName='string', MLModelId='string', EvaluationDataSourceId='string' )
- Parameters:
EvaluationId (string) –
[REQUIRED]
A user-supplied ID that uniquely identifies the
Evaluation.EvaluationName (string) – A user-supplied name or description of the
Evaluation.MLModelId (string) –
[REQUIRED]
The ID of the
MLModelto evaluate.The schema used in creating the
MLModelmust match the schema of theDataSourceused in theEvaluation.EvaluationDataSourceId (string) –
[REQUIRED]
The ID of the
DataSourcefor the evaluation. The schema of theDataSourcemust match the schema used to create theMLModel.
- Return type:
dict
- Returns:
Response Syntax
{ 'EvaluationId': 'string' }
Response Structure
(dict) –
Represents the output of a
CreateEvaluationoperation, and is an acknowledgement that Amazon ML received the request.CreateEvaluationoperation is asynchronous. You can poll for status updates by using theGetEvcaluationoperation and checking theStatusparameter.EvaluationId (string) –
The user-supplied ID that uniquely identifies the
Evaluation. This value should be identical to the value of theEvaluationIdin the request.
Exceptions
MachineLearning.Client.exceptions.InvalidInputExceptionMachineLearning.Client.exceptions.InternalServerExceptionMachineLearning.Client.exceptions.IdempotentParameterMismatchException