AgentsforBedrock / Client / create_knowledge_base
create_knowledge_base#
- AgentsforBedrock.Client.create_knowledge_base(**kwargs)#
- Creates a knowledge base. A knowledge base contains your data sources so that Large Language Models (LLMs) can use your data. To create a knowledge base, you must first set up your data sources and configure a supported vector store. For more information, see Set up a knowledge base. - Note- If you prefer to let Amazon Bedrock create and manage a vector store for you in Amazon OpenSearch Service, use the console. For more information, see Create a knowledge base. - Provide the - nameand an optional- description.
- Provide the Amazon Resource Name (ARN) with permissions to create a knowledge base in the - roleArnfield.
- Provide the embedding model to use in the - embeddingModelArnfield in the- knowledgeBaseConfigurationobject.
- Provide the configuration for your vector store in the - storageConfigurationobject.- For an Amazon OpenSearch Service database, use the - opensearchServerlessConfigurationobject. For more information, see Create a vector store in Amazon OpenSearch Service.
- For an Amazon Aurora database, use the - RdsConfigurationobject. For more information, see Create a vector store in Amazon Aurora.
- For a Pinecone database, use the - pineconeConfigurationobject. For more information, see Create a vector store in Pinecone.
- For a Redis Enterprise Cloud database, use the - redisEnterpriseCloudConfigurationobject. For more information, see Create a vector store in Redis Enterprise Cloud.
 
 - See also: AWS API Documentation - Request Syntax- response = client.create_knowledge_base( clientToken='string', description='string', knowledgeBaseConfiguration={ 'type': 'VECTOR', 'vectorKnowledgeBaseConfiguration': { 'embeddingModelArn': 'string', 'embeddingModelConfiguration': { 'bedrockEmbeddingModelConfiguration': { 'dimensions': 123 } } } }, name='string', roleArn='string', storageConfiguration={ 'mongoDbAtlasConfiguration': { 'collectionName': 'string', 'credentialsSecretArn': 'string', 'databaseName': 'string', 'endpoint': 'string', 'endpointServiceName': 'string', 'fieldMapping': { 'metadataField': 'string', 'textField': 'string', 'vectorField': 'string' }, 'vectorIndexName': 'string' }, 'opensearchServerlessConfiguration': { 'collectionArn': 'string', 'fieldMapping': { 'metadataField': 'string', 'textField': 'string', 'vectorField': 'string' }, 'vectorIndexName': 'string' }, 'pineconeConfiguration': { 'connectionString': 'string', 'credentialsSecretArn': 'string', 'fieldMapping': { 'metadataField': 'string', 'textField': 'string' }, 'namespace': 'string' }, 'rdsConfiguration': { 'credentialsSecretArn': 'string', 'databaseName': 'string', 'fieldMapping': { 'metadataField': 'string', 'primaryKeyField': 'string', 'textField': 'string', 'vectorField': 'string' }, 'resourceArn': 'string', 'tableName': 'string' }, 'redisEnterpriseCloudConfiguration': { 'credentialsSecretArn': 'string', 'endpoint': 'string', 'fieldMapping': { 'metadataField': 'string', 'textField': 'string', 'vectorField': 'string' }, 'vectorIndexName': 'string' }, 'type': 'OPENSEARCH_SERVERLESS'|'PINECONE'|'REDIS_ENTERPRISE_CLOUD'|'RDS'|'MONGO_DB_ATLAS' }, tags={ 'string': 'string' } ) - Parameters:
- clientToken (string) – - A unique, case-sensitive identifier to ensure that the API request completes no more than one time. If this token matches a previous request, Amazon Bedrock ignores the request, but does not return an error. For more information, see Ensuring idempotency. - This field is autopopulated if not provided. 
- description (string) – A description of the knowledge base. 
- knowledgeBaseConfiguration (dict) – - [REQUIRED] - Contains details about the embeddings model used for the knowledge base. - type (string) – [REQUIRED] - The type of data that the data source is converted into for the knowledge base. 
- vectorKnowledgeBaseConfiguration (dict) – - Contains details about the model that’s used to convert the data source into vector embeddings. - embeddingModelArn (string) – [REQUIRED] - The Amazon Resource Name (ARN) of the model or inference profile used to create vector embeddings for the knowledge base. 
- embeddingModelConfiguration (dict) – - The embeddings model configuration details for the vector model used in Knowledge Base. - bedrockEmbeddingModelConfiguration (dict) – - The vector configuration details on the Bedrock embeddings model. - dimensions (integer) – - The dimensions details for the vector configuration used on the Bedrock embeddings model. 
 
 
 
 
- name (string) – - [REQUIRED] - A name for the knowledge base. 
- roleArn (string) – - [REQUIRED] - The Amazon Resource Name (ARN) of the IAM role with permissions to invoke API operations on the knowledge base. 
- storageConfiguration (dict) – - [REQUIRED] - Contains details about the configuration of the vector database used for the knowledge base. - mongoDbAtlasConfiguration (dict) – - Contains the storage configuration of the knowledge base in MongoDB Atlas. - collectionName (string) – [REQUIRED] - The collection name of the knowledge base in MongoDB Atlas. 
- credentialsSecretArn (string) – [REQUIRED] - The Amazon Resource Name (ARN) of the secret that you created in Secrets Manager that contains user credentials for your MongoDB Atlas cluster. 
- databaseName (string) – [REQUIRED] - The database name in your MongoDB Atlas cluster for your knowledge base. 
- endpoint (string) – [REQUIRED] - The endpoint URL of your MongoDB Atlas cluster for your knowledge base. 
- endpointServiceName (string) – - The name of the VPC endpoint service in your account that is connected to your MongoDB Atlas cluster. 
- fieldMapping (dict) – [REQUIRED] - Contains the names of the fields to which to map information about the vector store. - metadataField (string) – [REQUIRED] - The name of the field in which Amazon Bedrock stores metadata about the vector store. 
- textField (string) – [REQUIRED] - The name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose. 
- vectorField (string) – [REQUIRED] - The name of the field in which Amazon Bedrock stores the vector embeddings for your data sources. 
 
- vectorIndexName (string) – [REQUIRED] - The name of the MongoDB Atlas vector search index. 
 
- opensearchServerlessConfiguration (dict) – - Contains the storage configuration of the knowledge base in Amazon OpenSearch Service. - collectionArn (string) – [REQUIRED] - The Amazon Resource Name (ARN) of the OpenSearch Service vector store. 
- fieldMapping (dict) – [REQUIRED] - Contains the names of the fields to which to map information about the vector store. - metadataField (string) – [REQUIRED] - The name of the field in which Amazon Bedrock stores metadata about the vector store. 
- textField (string) – [REQUIRED] - The name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose. 
- vectorField (string) – [REQUIRED] - The name of the field in which Amazon Bedrock stores the vector embeddings for your data sources. 
 
- vectorIndexName (string) – [REQUIRED] - The name of the vector store. 
 
- pineconeConfiguration (dict) – - Contains the storage configuration of the knowledge base in Pinecone. - connectionString (string) – [REQUIRED] - The endpoint URL for your index management page. 
- credentialsSecretArn (string) – [REQUIRED] - The Amazon Resource Name (ARN) of the secret that you created in Secrets Manager that is linked to your Pinecone API key. 
- fieldMapping (dict) – [REQUIRED] - Contains the names of the fields to which to map information about the vector store. - metadataField (string) – [REQUIRED] - The name of the field in which Amazon Bedrock stores metadata about the vector store. 
- textField (string) – [REQUIRED] - The name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose. 
 
- namespace (string) – - The namespace to be used to write new data to your database. 
 
- rdsConfiguration (dict) – - Contains details about the storage configuration of the knowledge base in Amazon RDS. For more information, see Create a vector index in Amazon RDS. - credentialsSecretArn (string) – [REQUIRED] - The Amazon Resource Name (ARN) of the secret that you created in Secrets Manager that is linked to your Amazon RDS database. 
- databaseName (string) – [REQUIRED] - The name of your Amazon RDS database. 
- fieldMapping (dict) – [REQUIRED] - Contains the names of the fields to which to map information about the vector store. - metadataField (string) – [REQUIRED] - The name of the field in which Amazon Bedrock stores metadata about the vector store. 
- primaryKeyField (string) – [REQUIRED] - The name of the field in which Amazon Bedrock stores the ID for each entry. 
- textField (string) – [REQUIRED] - The name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose. 
- vectorField (string) – [REQUIRED] - The name of the field in which Amazon Bedrock stores the vector embeddings for your data sources. 
 
- resourceArn (string) – [REQUIRED] - The Amazon Resource Name (ARN) of the vector store. 
- tableName (string) – [REQUIRED] - The name of the table in the database. 
 
- redisEnterpriseCloudConfiguration (dict) – - Contains the storage configuration of the knowledge base in Redis Enterprise Cloud. - credentialsSecretArn (string) – [REQUIRED] - The Amazon Resource Name (ARN) of the secret that you created in Secrets Manager that is linked to your Redis Enterprise Cloud database. 
- endpoint (string) – [REQUIRED] - The endpoint URL of the Redis Enterprise Cloud database. 
- fieldMapping (dict) – [REQUIRED] - Contains the names of the fields to which to map information about the vector store. - metadataField (string) – [REQUIRED] - The name of the field in which Amazon Bedrock stores metadata about the vector store. 
- textField (string) – [REQUIRED] - The name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose. 
- vectorField (string) – [REQUIRED] - The name of the field in which Amazon Bedrock stores the vector embeddings for your data sources. 
 
- vectorIndexName (string) – [REQUIRED] - The name of the vector index. 
 
- type (string) – [REQUIRED] - The vector store service in which the knowledge base is stored. 
 
- tags (dict) – - Specify the key-value pairs for the tags that you want to attach to your knowledge base in this object. - (string) – - (string) – 
 
 
 
- Return type:
- dict 
- Returns:
- Response Syntax- { 'knowledgeBase': { 'createdAt': datetime(2015, 1, 1), 'description': 'string', 'failureReasons': [ 'string', ], 'knowledgeBaseArn': 'string', 'knowledgeBaseConfiguration': { 'type': 'VECTOR', 'vectorKnowledgeBaseConfiguration': { 'embeddingModelArn': 'string', 'embeddingModelConfiguration': { 'bedrockEmbeddingModelConfiguration': { 'dimensions': 123 } } } }, 'knowledgeBaseId': 'string', 'name': 'string', 'roleArn': 'string', 'status': 'CREATING'|'ACTIVE'|'DELETING'|'UPDATING'|'FAILED'|'DELETE_UNSUCCESSFUL', 'storageConfiguration': { 'mongoDbAtlasConfiguration': { 'collectionName': 'string', 'credentialsSecretArn': 'string', 'databaseName': 'string', 'endpoint': 'string', 'endpointServiceName': 'string', 'fieldMapping': { 'metadataField': 'string', 'textField': 'string', 'vectorField': 'string' }, 'vectorIndexName': 'string' }, 'opensearchServerlessConfiguration': { 'collectionArn': 'string', 'fieldMapping': { 'metadataField': 'string', 'textField': 'string', 'vectorField': 'string' }, 'vectorIndexName': 'string' }, 'pineconeConfiguration': { 'connectionString': 'string', 'credentialsSecretArn': 'string', 'fieldMapping': { 'metadataField': 'string', 'textField': 'string' }, 'namespace': 'string' }, 'rdsConfiguration': { 'credentialsSecretArn': 'string', 'databaseName': 'string', 'fieldMapping': { 'metadataField': 'string', 'primaryKeyField': 'string', 'textField': 'string', 'vectorField': 'string' }, 'resourceArn': 'string', 'tableName': 'string' }, 'redisEnterpriseCloudConfiguration': { 'credentialsSecretArn': 'string', 'endpoint': 'string', 'fieldMapping': { 'metadataField': 'string', 'textField': 'string', 'vectorField': 'string' }, 'vectorIndexName': 'string' }, 'type': 'OPENSEARCH_SERVERLESS'|'PINECONE'|'REDIS_ENTERPRISE_CLOUD'|'RDS'|'MONGO_DB_ATLAS' }, 'updatedAt': datetime(2015, 1, 1) } } - Response Structure- (dict) – - knowledgeBase (dict) – - Contains details about the knowledge base. - createdAt (datetime) – - The time the knowledge base was created. 
- description (string) – - The description of the knowledge base. 
- failureReasons (list) – - A list of reasons that the API operation on the knowledge base failed. - (string) – 
 
- knowledgeBaseArn (string) – - The Amazon Resource Name (ARN) of the knowledge base. 
- knowledgeBaseConfiguration (dict) – - Contains details about the embeddings configuration of the knowledge base. - type (string) – - The type of data that the data source is converted into for the knowledge base. 
- vectorKnowledgeBaseConfiguration (dict) – - Contains details about the model that’s used to convert the data source into vector embeddings. - embeddingModelArn (string) – - The Amazon Resource Name (ARN) of the model or inference profile used to create vector embeddings for the knowledge base. 
- embeddingModelConfiguration (dict) – - The embeddings model configuration details for the vector model used in Knowledge Base. - bedrockEmbeddingModelConfiguration (dict) – - The vector configuration details on the Bedrock embeddings model. - dimensions (integer) – - The dimensions details for the vector configuration used on the Bedrock embeddings model. 
 
 
 
 
- knowledgeBaseId (string) – - The unique identifier of the knowledge base. 
- name (string) – - The name of the knowledge base. 
- roleArn (string) – - The Amazon Resource Name (ARN) of the IAM role with permissions to invoke API operations on the knowledge base. 
- status (string) – - The status of the knowledge base. The following statuses are possible: - CREATING – The knowledge base is being created. 
- ACTIVE – The knowledge base is ready to be queried. 
- DELETING – The knowledge base is being deleted. 
- UPDATING – The knowledge base is being updated. 
- FAILED – The knowledge base API operation failed. 
 
- storageConfiguration (dict) – - Contains details about the storage configuration of the knowledge base. - mongoDbAtlasConfiguration (dict) – - Contains the storage configuration of the knowledge base in MongoDB Atlas. - collectionName (string) – - The collection name of the knowledge base in MongoDB Atlas. 
- credentialsSecretArn (string) – - The Amazon Resource Name (ARN) of the secret that you created in Secrets Manager that contains user credentials for your MongoDB Atlas cluster. 
- databaseName (string) – - The database name in your MongoDB Atlas cluster for your knowledge base. 
- endpoint (string) – - The endpoint URL of your MongoDB Atlas cluster for your knowledge base. 
- endpointServiceName (string) – - The name of the VPC endpoint service in your account that is connected to your MongoDB Atlas cluster. 
- fieldMapping (dict) – - Contains the names of the fields to which to map information about the vector store. - metadataField (string) – - The name of the field in which Amazon Bedrock stores metadata about the vector store. 
- textField (string) – - The name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose. 
- vectorField (string) – - The name of the field in which Amazon Bedrock stores the vector embeddings for your data sources. 
 
- vectorIndexName (string) – - The name of the MongoDB Atlas vector search index. 
 
- opensearchServerlessConfiguration (dict) – - Contains the storage configuration of the knowledge base in Amazon OpenSearch Service. - collectionArn (string) – - The Amazon Resource Name (ARN) of the OpenSearch Service vector store. 
- fieldMapping (dict) – - Contains the names of the fields to which to map information about the vector store. - metadataField (string) – - The name of the field in which Amazon Bedrock stores metadata about the vector store. 
- textField (string) – - The name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose. 
- vectorField (string) – - The name of the field in which Amazon Bedrock stores the vector embeddings for your data sources. 
 
- vectorIndexName (string) – - The name of the vector store. 
 
- pineconeConfiguration (dict) – - Contains the storage configuration of the knowledge base in Pinecone. - connectionString (string) – - The endpoint URL for your index management page. 
- credentialsSecretArn (string) – - The Amazon Resource Name (ARN) of the secret that you created in Secrets Manager that is linked to your Pinecone API key. 
- fieldMapping (dict) – - Contains the names of the fields to which to map information about the vector store. - metadataField (string) – - The name of the field in which Amazon Bedrock stores metadata about the vector store. 
- textField (string) – - The name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose. 
 
- namespace (string) – - The namespace to be used to write new data to your database. 
 
- rdsConfiguration (dict) – - Contains details about the storage configuration of the knowledge base in Amazon RDS. For more information, see Create a vector index in Amazon RDS. - credentialsSecretArn (string) – - The Amazon Resource Name (ARN) of the secret that you created in Secrets Manager that is linked to your Amazon RDS database. 
- databaseName (string) – - The name of your Amazon RDS database. 
- fieldMapping (dict) – - Contains the names of the fields to which to map information about the vector store. - metadataField (string) – - The name of the field in which Amazon Bedrock stores metadata about the vector store. 
- primaryKeyField (string) – - The name of the field in which Amazon Bedrock stores the ID for each entry. 
- textField (string) – - The name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose. 
- vectorField (string) – - The name of the field in which Amazon Bedrock stores the vector embeddings for your data sources. 
 
- resourceArn (string) – - The Amazon Resource Name (ARN) of the vector store. 
- tableName (string) – - The name of the table in the database. 
 
- redisEnterpriseCloudConfiguration (dict) – - Contains the storage configuration of the knowledge base in Redis Enterprise Cloud. - credentialsSecretArn (string) – - The Amazon Resource Name (ARN) of the secret that you created in Secrets Manager that is linked to your Redis Enterprise Cloud database. 
- endpoint (string) – - The endpoint URL of the Redis Enterprise Cloud database. 
- fieldMapping (dict) – - Contains the names of the fields to which to map information about the vector store. - metadataField (string) – - The name of the field in which Amazon Bedrock stores metadata about the vector store. 
- textField (string) – - The name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose. 
- vectorField (string) – - The name of the field in which Amazon Bedrock stores the vector embeddings for your data sources. 
 
- vectorIndexName (string) – - The name of the vector index. 
 
- type (string) – - The vector store service in which the knowledge base is stored. 
 
- updatedAt (datetime) – - The time the knowledge base was last updated. 
 
 
 
 - Exceptions- AgentsforBedrock.Client.exceptions.ThrottlingException
- AgentsforBedrock.Client.exceptions.AccessDeniedException
- AgentsforBedrock.Client.exceptions.ValidationException
- AgentsforBedrock.Client.exceptions.InternalServerException
- AgentsforBedrock.Client.exceptions.ConflictException
- AgentsforBedrock.Client.exceptions.ServiceQuotaExceededException