MachineLearning / Client / create_realtime_endpoint
create_realtime_endpoint#
- MachineLearning.Client.create_realtime_endpoint(**kwargs)#
- Creates a real-time endpoint for the - MLModel. The endpoint contains the URI of the- MLModel; that is, the location to send real-time prediction requests for the specified- MLModel.- See also: AWS API Documentation - Request Syntax- response = client.create_realtime_endpoint( MLModelId='string' ) - Parameters:
- MLModelId (string) – - [REQUIRED] - The ID assigned to the - MLModelduring creation.
- Return type:
- dict 
- Returns:
- Response Syntax- { 'MLModelId': 'string', 'RealtimeEndpointInfo': { 'PeakRequestsPerSecond': 123, 'CreatedAt': datetime(2015, 1, 1), 'EndpointUrl': 'string', 'EndpointStatus': 'NONE'|'READY'|'UPDATING'|'FAILED' } } - Response Structure- (dict) – - Represents the output of an - CreateRealtimeEndpointoperation.- The result contains the - MLModelIdand the endpoint information for the- MLModel.- Note: The endpoint information includes the URI of the - MLModel; that is, the location to send online prediction requests for the specified- MLModel.- MLModelId (string) – - A user-supplied ID that uniquely identifies the - MLModel. This value should be identical to the value of the- MLModelIdin the request.
- RealtimeEndpointInfo (dict) – - The endpoint information of the - MLModel- PeakRequestsPerSecond (integer) – - The maximum processing rate for the real-time endpoint for - MLModel, measured in incoming requests per second.
- CreatedAt (datetime) – - The time that the request to create the real-time endpoint for the - MLModelwas received. The time is expressed in epoch time.
- EndpointUrl (string) – - The URI that specifies where to send real-time prediction requests for the - MLModel.- Note: The application must wait until the real-time endpoint is ready before using this URI. 
- EndpointStatus (string) – - The current status of the real-time endpoint for the - MLModel. This element can have one of the following values:- NONE- Endpoint does not exist or was previously deleted.
- READY- Endpoint is ready to be used for real-time predictions.
- UPDATING- Updating/creating the endpoint.
 
 
 
 
 - Exceptions- MachineLearning.Client.exceptions.InvalidInputException
- MachineLearning.Client.exceptions.ResourceNotFoundException
- MachineLearning.Client.exceptions.InternalServerException