SageMaker / Client / describe_studio_lifecycle_config
describe_studio_lifecycle_config#
- SageMaker.Client.describe_studio_lifecycle_config(**kwargs)#
- Describes the Amazon SageMaker AI Studio Lifecycle Configuration. - See also: AWS API Documentation - Request Syntax- response = client.describe_studio_lifecycle_config( StudioLifecycleConfigName='string' ) - Parameters:
- StudioLifecycleConfigName (string) – - [REQUIRED] - The name of the Amazon SageMaker AI Studio Lifecycle Configuration to describe. 
- Return type:
- dict 
- Returns:
- Response Syntax- { 'StudioLifecycleConfigArn': 'string', 'StudioLifecycleConfigName': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1), 'StudioLifecycleConfigContent': 'string', 'StudioLifecycleConfigAppType': 'JupyterServer'|'KernelGateway'|'CodeEditor'|'JupyterLab' } - Response Structure- (dict) – - StudioLifecycleConfigArn (string) – - The ARN of the Lifecycle Configuration to describe. 
- StudioLifecycleConfigName (string) – - The name of the Amazon SageMaker AI Studio Lifecycle Configuration that is described. 
- CreationTime (datetime) – - The creation time of the Amazon SageMaker AI Studio Lifecycle Configuration. 
- LastModifiedTime (datetime) – - This value is equivalent to CreationTime because Amazon SageMaker AI Studio Lifecycle Configurations are immutable. 
- StudioLifecycleConfigContent (string) – - The content of your Amazon SageMaker AI Studio Lifecycle Configuration script. 
- StudioLifecycleConfigAppType (string) – - The App type that the Lifecycle Configuration is attached to. 
 
 
 - Exceptions- SageMaker.Client.exceptions.ResourceNotFound