SageMaker / Client / start_mlflow_tracking_server
start_mlflow_tracking_server#
- SageMaker.Client.start_mlflow_tracking_server(**kwargs)#
- Programmatically start an MLflow Tracking Server. - See also: AWS API Documentation - Request Syntax- response = client.start_mlflow_tracking_server( TrackingServerName='string' ) - Parameters:
- TrackingServerName (string) – - [REQUIRED] - The name of the tracking server to start. 
- Return type:
- dict 
- Returns:
- Response Syntax- { 'TrackingServerArn': 'string' } - Response Structure- (dict) – - TrackingServerArn (string) – - The ARN of the started tracking server. 
 
 
 - Exceptions- SageMaker.Client.exceptions.ResourceNotFound
- SageMaker.Client.exceptions.ConflictException