SageMaker / Client / update_mlflow_tracking_server
update_mlflow_tracking_server#
- SageMaker.Client.update_mlflow_tracking_server(**kwargs)#
- Updates properties of an existing MLflow Tracking Server. - See also: AWS API Documentation - Request Syntax- response = client.update_mlflow_tracking_server( TrackingServerName='string', ArtifactStoreUri='string', TrackingServerSize='Small'|'Medium'|'Large', AutomaticModelRegistration=True|False, WeeklyMaintenanceWindowStart='string' ) - Parameters:
- TrackingServerName (string) – - [REQUIRED] - The name of the MLflow Tracking Server to update. 
- ArtifactStoreUri (string) – The new S3 URI for the general purpose bucket to use as the artifact store for the MLflow Tracking Server. 
- TrackingServerSize (string) – The new size for the MLflow Tracking Server. 
- AutomaticModelRegistration (boolean) – Whether to enable or disable automatic registration of new MLflow models to the SageMaker Model Registry. To enable automatic model registration, set this value to - True. To disable automatic model registration, set this value to- False. If not specified,- AutomaticModelRegistrationdefaults to- False
- WeeklyMaintenanceWindowStart (string) – The new weekly maintenance window start day and time to update. The maintenance window day and time should be in Coordinated Universal Time (UTC) 24-hour standard time. For example: TUE:03:30. 
 
- Return type:
- dict 
- Returns:
- Response Syntax- { 'TrackingServerArn': 'string' } - Response Structure- (dict) – - TrackingServerArn (string) – - The ARN of the updated MLflow Tracking Server. 
 
 
 - Exceptions- SageMaker.Client.exceptions.ResourceNotFound
- SageMaker.Client.exceptions.ResourceLimitExceeded
- SageMaker.Client.exceptions.ConflictException