MachineLearning / Client / update_ml_model
update_ml_model#
- MachineLearning.Client.update_ml_model(**kwargs)#
Updates the
MLModelName
and theScoreThreshold
of anMLModel
.You can use the
GetMLModel
operation to view the contents of the updated data element.See also: AWS API Documentation
Request Syntax
response = client.update_ml_model( MLModelId='string', MLModelName='string', ScoreThreshold=... )
- Parameters:
MLModelId (string) –
[REQUIRED]
The ID assigned to the
MLModel
during creation.MLModelName (string) – A user-supplied name or description of the
MLModel
.ScoreThreshold (float) –
The
ScoreThreshold
used in binary classificationMLModel
that marks the boundary between a positive prediction and a negative prediction.Output values greater than or equal to the
ScoreThreshold
receive a positive result from theMLModel
, such astrue
. Output values less than theScoreThreshold
receive a negative response from theMLModel
, such asfalse
.
- Return type:
dict
- Returns:
Response Syntax
{ 'MLModelId': 'string' }
Response Structure
(dict) –
Represents the output of an
UpdateMLModel
operation.You can see the updated content by using the
GetMLModel
operation.MLModelId (string) –
The ID assigned to the
MLModel
during creation. This value should be identical to the value of theMLModelID
in the request.
Exceptions
MachineLearning.Client.exceptions.InvalidInputException
MachineLearning.Client.exceptions.ResourceNotFoundException
MachineLearning.Client.exceptions.InternalServerException