describe_model_package
(**kwargs)¶Returns a description of the specified model package, which is used to create SageMaker models or list them on Amazon Web Services Marketplace.
To create models in SageMaker, buyers can subscribe to model packages listed on Amazon Web Services Marketplace.
See also: AWS API Documentation
Request Syntax
response = client.describe_model_package(
ModelPackageName='string'
)
[REQUIRED]
The name or Amazon Resource Name (ARN) of the model package to describe.
When you specify a name, the name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
{
'ModelPackageName': 'string',
'ModelPackageGroupName': 'string',
'ModelPackageVersion': 123,
'ModelPackageArn': 'string',
'ModelPackageDescription': 'string',
'CreationTime': datetime(2015, 1, 1),
'InferenceSpecification': {
'Containers': [
{
'ContainerHostname': 'string',
'Image': 'string',
'ImageDigest': 'string',
'ModelDataUrl': 'string',
'ProductId': 'string',
'Environment': {
'string': 'string'
},
'ModelInput': {
'DataInputConfig': 'string'
},
'Framework': 'string',
'FrameworkVersion': 'string',
'NearestModelName': 'string'
},
],
'SupportedTransformInstanceTypes': [
'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
],
'SupportedRealtimeInferenceInstanceTypes': [
'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge',
],
'SupportedContentTypes': [
'string',
],
'SupportedResponseMIMETypes': [
'string',
]
},
'SourceAlgorithmSpecification': {
'SourceAlgorithms': [
{
'ModelDataUrl': 'string',
'AlgorithmName': 'string'
},
]
},
'ValidationSpecification': {
'ValidationRole': 'string',
'ValidationProfiles': [
{
'ProfileName': 'string',
'TransformJobDefinition': {
'MaxConcurrentTransforms': 123,
'MaxPayloadInMB': 123,
'BatchStrategy': 'MultiRecord'|'SingleRecord',
'Environment': {
'string': 'string'
},
'TransformInput': {
'DataSource': {
'S3DataSource': {
'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
'S3Uri': 'string'
}
},
'ContentType': 'string',
'CompressionType': 'None'|'Gzip',
'SplitType': 'None'|'Line'|'RecordIO'|'TFRecord'
},
'TransformOutput': {
'S3OutputPath': 'string',
'Accept': 'string',
'AssembleWith': 'None'|'Line',
'KmsKeyId': 'string'
},
'TransformResources': {
'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
'InstanceCount': 123,
'VolumeKmsKeyId': 'string'
}
}
},
]
},
'ModelPackageStatus': 'Pending'|'InProgress'|'Completed'|'Failed'|'Deleting',
'ModelPackageStatusDetails': {
'ValidationStatuses': [
{
'Name': 'string',
'Status': 'NotStarted'|'InProgress'|'Completed'|'Failed',
'FailureReason': 'string'
},
],
'ImageScanStatuses': [
{
'Name': 'string',
'Status': 'NotStarted'|'InProgress'|'Completed'|'Failed',
'FailureReason': 'string'
},
]
},
'CertifyForMarketplace': True|False,
'ModelApprovalStatus': 'Approved'|'Rejected'|'PendingManualApproval',
'CreatedBy': {
'UserProfileArn': 'string',
'UserProfileName': 'string',
'DomainId': 'string'
},
'MetadataProperties': {
'CommitId': 'string',
'Repository': 'string',
'GeneratedBy': 'string',
'ProjectId': 'string'
},
'ModelMetrics': {
'ModelQuality': {
'Statistics': {
'ContentType': 'string',
'ContentDigest': 'string',
'S3Uri': 'string'
},
'Constraints': {
'ContentType': 'string',
'ContentDigest': 'string',
'S3Uri': 'string'
}
},
'ModelDataQuality': {
'Statistics': {
'ContentType': 'string',
'ContentDigest': 'string',
'S3Uri': 'string'
},
'Constraints': {
'ContentType': 'string',
'ContentDigest': 'string',
'S3Uri': 'string'
}
},
'Bias': {
'Report': {
'ContentType': 'string',
'ContentDigest': 'string',
'S3Uri': 'string'
},
'PreTrainingReport': {
'ContentType': 'string',
'ContentDigest': 'string',
'S3Uri': 'string'
},
'PostTrainingReport': {
'ContentType': 'string',
'ContentDigest': 'string',
'S3Uri': 'string'
}
},
'Explainability': {
'Report': {
'ContentType': 'string',
'ContentDigest': 'string',
'S3Uri': 'string'
}
}
},
'LastModifiedTime': datetime(2015, 1, 1),
'LastModifiedBy': {
'UserProfileArn': 'string',
'UserProfileName': 'string',
'DomainId': 'string'
},
'ApprovalDescription': 'string',
'CustomerMetadataProperties': {
'string': 'string'
},
'DriftCheckBaselines': {
'Bias': {
'ConfigFile': {
'ContentType': 'string',
'ContentDigest': 'string',
'S3Uri': 'string'
},
'PreTrainingConstraints': {
'ContentType': 'string',
'ContentDigest': 'string',
'S3Uri': 'string'
},
'PostTrainingConstraints': {
'ContentType': 'string',
'ContentDigest': 'string',
'S3Uri': 'string'
}
},
'Explainability': {
'Constraints': {
'ContentType': 'string',
'ContentDigest': 'string',
'S3Uri': 'string'
},
'ConfigFile': {
'ContentType': 'string',
'ContentDigest': 'string',
'S3Uri': 'string'
}
},
'ModelQuality': {
'Statistics': {
'ContentType': 'string',
'ContentDigest': 'string',
'S3Uri': 'string'
},
'Constraints': {
'ContentType': 'string',
'ContentDigest': 'string',
'S3Uri': 'string'
}
},
'ModelDataQuality': {
'Statistics': {
'ContentType': 'string',
'ContentDigest': 'string',
'S3Uri': 'string'
},
'Constraints': {
'ContentType': 'string',
'ContentDigest': 'string',
'S3Uri': 'string'
}
}
},
'Domain': 'string',
'Task': 'string',
'SamplePayloadUrl': 'string',
'AdditionalInferenceSpecifications': [
{
'Name': 'string',
'Description': 'string',
'Containers': [
{
'ContainerHostname': 'string',
'Image': 'string',
'ImageDigest': 'string',
'ModelDataUrl': 'string',
'ProductId': 'string',
'Environment': {
'string': 'string'
},
'ModelInput': {
'DataInputConfig': 'string'
},
'Framework': 'string',
'FrameworkVersion': 'string',
'NearestModelName': 'string'
},
],
'SupportedTransformInstanceTypes': [
'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
],
'SupportedRealtimeInferenceInstanceTypes': [
'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge',
],
'SupportedContentTypes': [
'string',
],
'SupportedResponseMIMETypes': [
'string',
]
},
]
}
Response Structure
The name of the model package being described.
If the model is a versioned model, the name of the model group that the versioned model belongs to.
The version of the model package.
The Amazon Resource Name (ARN) of the model package.
A brief summary of the model package.
A timestamp specifying when the model package was created.
Details about inference jobs that can be run with models based on this model package.
The Amazon ECR registry path of the Docker image that contains the inference code.
Describes the Docker container for the model package.
The DNS host name for the Docker container.
The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.
If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag]
and registry/repository[@digest]
image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
An MD5 hash of the training algorithm that identifies the Docker image used for training.
The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip
compressed tar archive ( .tar.gz
suffix).
Note
The model artifacts must be in an S3 bucket that is in the same region as the model package.
The Amazon Web Services Marketplace product ID of the model package.
The environment variables to set in the Docker container. Each key and value in the Environment
string to string map can have length of up to 1024. We support up to 16 entries in the map.
A structure with Model Input details.
The input configuration object for the model.
The machine learning framework of the model package container image.
The framework version of the Model Package Container Image.
The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata
.
A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.
This parameter is required for unversioned models, and optional for versioned models.
A list of the instance types that are used to generate inferences in real-time.
This parameter is required for unversioned models, and optional for versioned models.
The supported MIME types for the input data.
The supported MIME types for the output data.
Details about the algorithm that was used to create the model package.
A list of the algorithms that were used to create a model package.
Specifies an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your SageMaker account or an algorithm in Amazon Web Services Marketplace that you are subscribed to.
The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip
compressed tar archive ( .tar.gz
suffix).
Note
The model artifacts must be in an S3 bucket that is in the same region as the algorithm.
The name of an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your SageMaker account or an algorithm in Amazon Web Services Marketplace that you are subscribed to.
Configurations for one or more transform jobs that SageMaker runs to test the model package.
The IAM roles to be used for the validation of the model package.
An array of ModelPackageValidationProfile
objects, each of which specifies a batch transform job that SageMaker runs to validate your model package.
Contains data, such as the inputs and targeted instance types that are used in the process of validating the model package.
The data provided in the validation profile is made available to your buyers on Amazon Web Services Marketplace.
The name of the profile for the model package.
The TransformJobDefinition
object that describes the transform job used for the validation of the model package.
The maximum number of parallel requests that can be sent to each instance in a transform job. The default value is 1.
The maximum payload size allowed, in MB. A payload is the data portion of a record (without metadata).
A string that determines the number of records included in a single mini-batch.
SingleRecord
means only one record is used per mini-batch.MultiRecord
means a mini-batch is set to contain as many records that can fit within theMaxPayloadInMB
limit.
The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.
A description of the input source and the way the transform job consumes it.
Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.
The S3 location of the data source that is associated with a channel.
If you choose S3Prefix
, S3Uri
identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.
If you choose ManifestFile
, S3Uri
identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.
The following values are compatible: ManifestFile
, S3Prefix
The following value is not compatible: AugmentedManifestFile
Depending on the value specified for the S3DataType
, identifies either a key name prefix or a manifest. For example:
s3://bucketname/exampleprefix
.s3://bucketname/example.manifest
The manifest is an S3 object which is a JSON file with the following format: [ {"prefix": "s3://customer_bucket/some/prefix/"},
"relative/path/to/custdata-1",
"relative/path/custdata-2",
...
"relative/path/custdata-N"
]
The preceding JSON matches the following S3Uris
: s3://customer_bucket/some/prefix/relative/path/to/custdata-1
s3://customer_bucket/some/prefix/relative/path/custdata-2
...
s3://customer_bucket/some/prefix/relative/path/custdata-N
The complete set of S3Uris
in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris
points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.
If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None
.
The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType
is None
, which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line
to split records on a newline character boundary. SplitType
also supports a number of record-oriented binary data formats. Currently, the supported record formats are:
When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy
and MaxPayloadInMB
parameters. When the value of BatchStrategy
is MultiRecord
, Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB
limit. If the value of BatchStrategy
is SingleRecord
, Amazon SageMaker sends individual records in each request.
Note
Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of BatchStrategy
is set to SingleRecord
. Padding is not removed if the value of BatchStrategy
is set to MultiRecord
.
For more information about RecordIO
, see Create a Dataset Using RecordIO in the MXNet documentation. For more information about TFRecord
, see Consuming TFRecord data in the TensorFlow documentation.
Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.
The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix
.
For every S3 object used as input for the transform job, batch transform stores the transformed data with an . out
suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv
, batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out
. Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an . out
file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.
The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.
Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None
. To add a newline character at the end of every transformed record, specify Line
.
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId
can be any of the following formats:
1234abcd-12ab-34cd-56ef-1234567890ab
arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
alias/ExampleAlias
arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.
The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .
Identifies the ML compute instances for the transform job.
The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ml.m5.large
instance types.
The number of ML compute instances to use in the transform job. The default value is 1
, and the maximum is 100
. For distributed transform jobs, specify a value greater than 1
.
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job.
Note
Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId
when using an instance type with local storage.
For a list of instance types that support local instance storage, see Instance Store Volumes.
For more information about local instance storage encryption, see SSD Instance Store Volumes.
The VolumeKmsKeyId
can be any of the following formats:
1234abcd-12ab-34cd-56ef-1234567890ab
arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
alias/ExampleAlias
arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
The current status of the model package.
Details about the current status of the model package.
The validation status of the model package.
Represents the overall status of a model package.
The name of the model package for which the overall status is being reported.
The current status.
if the overall status is Failed
, the reason for the failure.
The status of the scan of the Docker image container for the model package.
Represents the overall status of a model package.
The name of the model package for which the overall status is being reported.
The current status.
if the overall status is Failed
, the reason for the failure.
Whether the model package is certified for listing on Amazon Web Services Marketplace.
The approval status of the model package.
Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
The Amazon Resource Name (ARN) of the user's profile.
The name of the user's profile.
The domain associated with the user.
Metadata properties of the tracking entity, trial, or trial component.
The commit ID.
The repository.
The entity this entity was generated by.
The project ID.
Metrics for the model.
Metrics that measure the quality of a model.
Model quality statistics.
The metric source content type.
The hash key used for the metrics source.
The S3 URI for the metrics source.
Model quality constraints.
The metric source content type.
The hash key used for the metrics source.
The S3 URI for the metrics source.
Metrics that measure the quality of the input data for a model.
Data quality statistics for a model.
The metric source content type.
The hash key used for the metrics source.
The S3 URI for the metrics source.
Data quality constraints for a model.
The metric source content type.
The hash key used for the metrics source.
The S3 URI for the metrics source.
Metrics that measure bais in a model.
The bias report for a model
The metric source content type.
The hash key used for the metrics source.
The S3 URI for the metrics source.
The pre-training bias report for a model.
The metric source content type.
The hash key used for the metrics source.
The S3 URI for the metrics source.
The post-training bias report for a model.
The metric source content type.
The hash key used for the metrics source.
The S3 URI for the metrics source.
Metrics that help explain a model.
The explainability report for a model.
The metric source content type.
The hash key used for the metrics source.
The S3 URI for the metrics source.
The last time that the model package was modified.
Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
The Amazon Resource Name (ARN) of the user's profile.
The name of the user's profile.
The domain associated with the user.
A description provided for the model approval.
The metadata properties associated with the model package versions.
Represents the drift check baselines that can be used when the model monitor is set using the model package. For more information, see the topic on Drift Detection against Previous Baselines in SageMaker Pipelines in the Amazon SageMaker Developer Guide .
Represents the drift check bias baselines that can be used when the model monitor is set using the model package.
The bias config file for a model.
The type of content stored in the file source.
The digest of the file source.
The Amazon S3 URI for the file source.
The pre-training constraints.
The metric source content type.
The hash key used for the metrics source.
The S3 URI for the metrics source.
The post-training constraints.
The metric source content type.
The hash key used for the metrics source.
The S3 URI for the metrics source.
Represents the drift check explainability baselines that can be used when the model monitor is set using the model package.
The drift check explainability constraints.
The metric source content type.
The hash key used for the metrics source.
The S3 URI for the metrics source.
The explainability config file for the model.
The type of content stored in the file source.
The digest of the file source.
The Amazon S3 URI for the file source.
Represents the drift check model quality baselines that can be used when the model monitor is set using the model package.
The drift check model quality statistics.
The metric source content type.
The hash key used for the metrics source.
The S3 URI for the metrics source.
The drift check model quality constraints.
The metric source content type.
The hash key used for the metrics source.
The S3 URI for the metrics source.
Represents the drift check model data quality baselines that can be used when the model monitor is set using the model package.
The drift check model data quality statistics.
The metric source content type.
The hash key used for the metrics source.
The S3 URI for the metrics source.
The drift check model data quality constraints.
The metric source content type.
The hash key used for the metrics source.
The S3 URI for the metrics source.
The machine learning domain of the model package you specified. Common machine learning domains include computer vision and natural language processing.
The machine learning task you specified that your model package accomplishes. Common machine learning tasks include object detection and image classification.
The Amazon Simple Storage Service (Amazon S3) path where the sample payload are stored. This path points to a single gzip compressed tar archive (.tar.gz suffix).
An array of additional Inference Specification objects. Each additional Inference Specification specifies artifacts based on this model package that can be used on inference endpoints. Generally used with SageMaker Neo to store the compiled artifacts.
A structure of additional Inference Specification. Additional Inference Specification specifies details about inference jobs that can be run with models based on this model package
A unique name to identify the additional inference specification. The name must be unique within the list of your additional inference specifications for a particular model package.
A description of the additional Inference specification
The Amazon ECR registry path of the Docker image that contains the inference code.
Describes the Docker container for the model package.
The DNS host name for the Docker container.
The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.
If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag]
and registry/repository[@digest]
image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
An MD5 hash of the training algorithm that identifies the Docker image used for training.
The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip
compressed tar archive ( .tar.gz
suffix).
Note
The model artifacts must be in an S3 bucket that is in the same region as the model package.
The Amazon Web Services Marketplace product ID of the model package.
The environment variables to set in the Docker container. Each key and value in the Environment
string to string map can have length of up to 1024. We support up to 16 entries in the map.
A structure with Model Input details.
The input configuration object for the model.
The machine learning framework of the model package container image.
The framework version of the Model Package Container Image.
The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata
.
A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.
A list of the instance types that are used to generate inferences in real-time.
The supported MIME types for the input data.
The supported MIME types for the output data.