Personalize / Client / describe_solution_version
describe_solution_version#
- Personalize.Client.describe_solution_version(**kwargs)#
- Describes a specific version of a solution. For more information on solutions, see CreateSolution - See also: AWS API Documentation - Request Syntax - response = client.describe_solution_version( solutionVersionArn='string' ) - Parameters:
- solutionVersionArn (string) – - [REQUIRED] - The Amazon Resource Name (ARN) of the solution version. 
- Return type:
- dict 
- Returns:
- Response Syntax - { 'solutionVersion': { 'name': 'string', 'solutionVersionArn': 'string', 'solutionArn': 'string', 'performHPO': True|False, 'performAutoML': True|False, 'recipeArn': 'string', 'eventType': 'string', 'datasetGroupArn': 'string', 'solutionConfig': { 'eventValueThreshold': 'string', 'hpoConfig': { 'hpoObjective': { 'type': 'string', 'metricName': 'string', 'metricRegex': 'string' }, 'hpoResourceConfig': { 'maxNumberOfTrainingJobs': 'string', 'maxParallelTrainingJobs': 'string' }, 'algorithmHyperParameterRanges': { 'integerHyperParameterRanges': [ { 'name': 'string', 'minValue': 123, 'maxValue': 123 }, ], 'continuousHyperParameterRanges': [ { 'name': 'string', 'minValue': 123.0, 'maxValue': 123.0 }, ], 'categoricalHyperParameterRanges': [ { 'name': 'string', 'values': [ 'string', ] }, ] } }, 'algorithmHyperParameters': { 'string': 'string' }, 'featureTransformationParameters': { 'string': 'string' }, 'autoMLConfig': { 'metricName': 'string', 'recipeList': [ 'string', ] }, 'optimizationObjective': { 'itemAttribute': 'string', 'objectiveSensitivity': 'LOW'|'MEDIUM'|'HIGH'|'OFF' } }, 'trainingHours': 123.0, 'trainingMode': 'FULL'|'UPDATE', 'tunedHPOParams': { 'algorithmHyperParameters': { 'string': 'string' } }, 'status': 'string', 'failureReason': 'string', 'creationDateTime': datetime(2015, 1, 1), 'lastUpdatedDateTime': datetime(2015, 1, 1) } } - Response Structure - (dict) – - solutionVersion (dict) – - The solution version. - name (string) – - The name of the solution version. 
- solutionVersionArn (string) – - The ARN of the solution version. 
- solutionArn (string) – - The ARN of the solution. 
- performHPO (boolean) – - Whether to perform hyperparameter optimization (HPO) on the chosen recipe. The default is - false.
- performAutoML (boolean) – - When true, Amazon Personalize searches for the most optimal recipe according to the solution configuration. When false (the default), Amazon Personalize uses - recipeArn.
- recipeArn (string) – - The ARN of the recipe used in the solution. 
- eventType (string) – - The event type (for example, ‘click’ or ‘like’) that is used for training the model. 
- datasetGroupArn (string) – - The Amazon Resource Name (ARN) of the dataset group providing the training data. 
- solutionConfig (dict) – - Describes the configuration properties for the solution. - eventValueThreshold (string) – - Only events with a value greater than or equal to this threshold are used for training a model. 
- hpoConfig (dict) – - Describes the properties for hyperparameter optimization (HPO). - hpoObjective (dict) – - The metric to optimize during HPO. - Note - Amazon Personalize doesn’t support configuring the - hpoObjectiveat this time.- type (string) – - The type of the metric. Valid values are - Maximizeand- Minimize.
- metricName (string) – - The name of the metric. 
- metricRegex (string) – - A regular expression for finding the metric in the training job logs. 
 
- hpoResourceConfig (dict) – - Describes the resource configuration for HPO. - maxNumberOfTrainingJobs (string) – - The maximum number of training jobs when you create a solution version. The maximum value for - maxNumberOfTrainingJobsis- 40.
- maxParallelTrainingJobs (string) – - The maximum number of parallel training jobs when you create a solution version. The maximum value for - maxParallelTrainingJobsis- 10.
 
- algorithmHyperParameterRanges (dict) – - The hyperparameters and their allowable ranges. - integerHyperParameterRanges (list) – - The integer-valued hyperparameters and their ranges. - (dict) – - Provides the name and range of an integer-valued hyperparameter. - name (string) – - The name of the hyperparameter. 
- minValue (integer) – - The minimum allowable value for the hyperparameter. 
- maxValue (integer) – - The maximum allowable value for the hyperparameter. 
 
 
- continuousHyperParameterRanges (list) – - The continuous hyperparameters and their ranges. - (dict) – - Provides the name and range of a continuous hyperparameter. - name (string) – - The name of the hyperparameter. 
- minValue (float) – - The minimum allowable value for the hyperparameter. 
- maxValue (float) – - The maximum allowable value for the hyperparameter. 
 
 
- categoricalHyperParameterRanges (list) – - The categorical hyperparameters and their ranges. - (dict) – - Provides the name and range of a categorical hyperparameter. - name (string) – - The name of the hyperparameter. 
- values (list) – - A list of the categories for the hyperparameter. - (string) – 
 
 
 
 
 
- algorithmHyperParameters (dict) – - Lists the hyperparameter names and ranges. - (string) – - (string) – 
 
 
- featureTransformationParameters (dict) – - Lists the feature transformation parameters. - (string) – - (string) – 
 
 
- autoMLConfig (dict) – - The AutoMLConfig object containing a list of recipes to search when AutoML is performed. - metricName (string) – - The metric to optimize. 
- recipeList (list) – - The list of candidate recipes. - (string) – 
 
 
- optimizationObjective (dict) – - Describes the additional objective for the solution, such as maximizing streaming minutes or increasing revenue. For more information see Optimizing a solution. - itemAttribute (string) – - The numerical metadata column in an Items dataset related to the optimization objective. For example, VIDEO_LENGTH (to maximize streaming minutes), or PRICE (to maximize revenue). 
- objectiveSensitivity (string) – - Specifies how Amazon Personalize balances the importance of your optimization objective versus relevance. 
 
 
- trainingHours (float) – - The time used to train the model. You are billed for the time it takes to train a model. This field is visible only after Amazon Personalize successfully trains a model. 
- trainingMode (string) – - The scope of training to be performed when creating the solution version. The - FULLoption trains the solution version based on the entirety of the input solution’s training data, while the- UPDATEoption processes only the data that has changed in comparison to the input solution. Choose- UPDATEwhen you want to incrementally update your solution version instead of creating an entirely new one.- Warning - The - UPDATEoption can only be used when you already have an active solution version created from the input solution using the- FULLoption and the input solution was trained with the User-Personalization recipe or the HRNN-Coldstart recipe.
- tunedHPOParams (dict) – - If hyperparameter optimization was performed, contains the hyperparameter values of the best performing model. - algorithmHyperParameters (dict) – - A list of the hyperparameter values of the best performing model. - (string) – - (string) – 
 
 
 
- status (string) – - The status of the solution version. - A solution version can be in one of the following states: - CREATE PENDING 
- CREATE IN_PROGRESS 
- ACTIVE 
- CREATE FAILED 
- CREATE STOPPING 
- CREATE STOPPED 
 
- failureReason (string) – - If training a solution version fails, the reason for the failure. 
- creationDateTime (datetime) – - The date and time (in Unix time) that this version of the solution was created. 
- lastUpdatedDateTime (datetime) – - The date and time (in Unix time) that the solution was last updated. 
 
 
 
 - Exceptions - Personalize.Client.exceptions.InvalidInputException
- Personalize.Client.exceptions.ResourceNotFoundException