SageMaker / Paginator / ListCandidatesForAutoMLJob
ListCandidatesForAutoMLJob#
- class SageMaker.Paginator.ListCandidatesForAutoMLJob#
- paginator = client.get_paginator('list_candidates_for_auto_ml_job') - paginate(**kwargs)#
- Creates an iterator that will paginate through responses from - SageMaker.Client.list_candidates_for_auto_ml_job().- See also: AWS API Documentation - Request Syntax - response_iterator = paginator.paginate( AutoMLJobName='string', StatusEquals='Completed'|'InProgress'|'Failed'|'Stopped'|'Stopping', CandidateNameEquals='string', SortOrder='Ascending'|'Descending', SortBy='CreationTime'|'Status'|'FinalObjectiveMetricValue', PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) - Parameters:
- AutoMLJobName (string) – - [REQUIRED] - List the candidates created for the job by providing the job’s name. 
- StatusEquals (string) – List the candidates for the job and filter by status. 
- CandidateNameEquals (string) – List the candidates for the job and filter by candidate name. 
- SortOrder (string) – The sort order for the results. The default is - Ascending.
- SortBy (string) – The parameter by which to sort the results. The default is - Descending.
- PaginationConfig (dict) – - A dictionary that provides parameters to control pagination. - MaxItems (integer) – - The total number of items to return. If the total number of items available is more than the value specified in max-items then a - NextTokenwill be provided in the output that you can use to resume pagination.
- PageSize (integer) – - The size of each page. 
- StartingToken (string) – - A token to specify where to start paginating. This is the - NextTokenfrom a previous response.
 
 
- Return type:
- dict 
- Returns:
- Response Syntax - { 'Candidates': [ { 'CandidateName': 'string', 'FinalAutoMLJobObjectiveMetric': { 'Type': 'Maximize'|'Minimize', 'MetricName': 'Accuracy'|'MSE'|'F1'|'F1macro'|'AUC'|'RMSE'|'MAE'|'R2'|'BalancedAccuracy'|'Precision'|'PrecisionMacro'|'Recall'|'RecallMacro', 'Value': ..., 'StandardMetricName': 'Accuracy'|'MSE'|'F1'|'F1macro'|'AUC'|'RMSE'|'MAE'|'R2'|'BalancedAccuracy'|'Precision'|'PrecisionMacro'|'Recall'|'RecallMacro' }, 'ObjectiveStatus': 'Succeeded'|'Pending'|'Failed', 'CandidateSteps': [ { 'CandidateStepType': 'AWS::SageMaker::TrainingJob'|'AWS::SageMaker::TransformJob'|'AWS::SageMaker::ProcessingJob', 'CandidateStepArn': 'string', 'CandidateStepName': 'string' }, ], 'CandidateStatus': 'Completed'|'InProgress'|'Failed'|'Stopped'|'Stopping', 'InferenceContainers': [ { 'Image': 'string', 'ModelDataUrl': 'string', 'Environment': { 'string': 'string' } }, ], 'CreationTime': datetime(2015, 1, 1), 'EndTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1), 'FailureReason': 'string', 'CandidateProperties': { 'CandidateArtifactLocations': { 'Explainability': 'string', 'ModelInsights': 'string' }, 'CandidateMetrics': [ { 'MetricName': 'Accuracy'|'MSE'|'F1'|'F1macro'|'AUC'|'RMSE'|'MAE'|'R2'|'BalancedAccuracy'|'Precision'|'PrecisionMacro'|'Recall'|'RecallMacro', 'Value': ..., 'Set': 'Train'|'Validation'|'Test', 'StandardMetricName': 'Accuracy'|'MSE'|'F1'|'F1macro'|'AUC'|'RMSE'|'MAE'|'R2'|'BalancedAccuracy'|'Precision'|'PrecisionMacro'|'Recall'|'RecallMacro'|'LogLoss'|'InferenceLatency' }, ] } }, ], } - Response Structure - (dict) – - Candidates (list) – - Summaries about the - AutoMLCandidates.- (dict) – - Information about a candidate produced by an AutoML training job, including its status, steps, and other properties. - CandidateName (string) – - The name of the candidate. 
- FinalAutoMLJobObjectiveMetric (dict) – - The best candidate result from an AutoML training job. - Type (string) – - The type of metric with the best result. 
- MetricName (string) – - The name of the metric with the best result. For a description of the possible objective metrics, see AutoMLJobObjective$MetricName. 
- Value (float) – - The value of the metric with the best result. 
- StandardMetricName (string) – - The name of the standard metric. For a description of the standard metrics, see Autopilot candidate metrics. 
 
- ObjectiveStatus (string) – - The objective’s status. 
- CandidateSteps (list) – - Information about the candidate’s steps. - (dict) – - Information about the steps for a candidate and what step it is working on. - CandidateStepType (string) – - Whether the candidate is at the transform, training, or processing step. 
- CandidateStepArn (string) – - The ARN for the candidate’s step. 
- CandidateStepName (string) – - The name for the candidate’s step. 
 
 
- CandidateStatus (string) – - The candidate’s status. 
- InferenceContainers (list) – - Information about the inference container definitions. - (dict) – - A list of container definitions that describe the different containers that make up an AutoML candidate. For more information, see . - Image (string) – - The Amazon Elastic Container Registry (Amazon ECR) path of the container. For more information, see . 
- ModelDataUrl (string) – - The location of the model artifacts. For more information, see . 
- Environment (dict) – - The environment variables to set in the container. For more information, see . - (string) – - (string) – 
 
 
 
 
- CreationTime (datetime) – - The creation time. 
- EndTime (datetime) – - The end time. 
- LastModifiedTime (datetime) – - The last modified time. 
- FailureReason (string) – - The failure reason. 
- CandidateProperties (dict) – - The properties of an AutoML candidate job. - CandidateArtifactLocations (dict) – - The Amazon S3 prefix to the artifacts generated for an AutoML candidate. - Explainability (string) – - The Amazon S3 prefix to the explainability artifacts generated for the AutoML candidate. 
- ModelInsights (string) – - The Amazon S3 prefix to the model insight artifacts generated for the AutoML candidate. 
 
- CandidateMetrics (list) – - Information about the candidate metrics for an AutoML job. - (dict) – - Information about the metric for a candidate produced by an AutoML job. - MetricName (string) – - The name of the metric. 
- Value (float) – - The value of the metric. 
- Set (string) – - The dataset split from which the AutoML job produced the metric. 
- StandardMetricName (string) – - The name of the standard metric. - Note - For definitions of the standard metrics, see Autopilot candidate metrics.