MachineLearning / Client / create_evaluation
create_evaluation#
- MachineLearning.Client.create_evaluation(**kwargs)#
- Creates a new - Evaluationof an- MLModel. An- MLModelis evaluated on a set of observations associated to a- DataSource. Like a- DataSourcefor an- MLModel, the- DataSourcefor an- Evaluationcontains values for the- Target Variable. The- Evaluationcompares the predicted result for each observation to the actual outcome and provides a summary so that you know how effective the- MLModelfunctions on the test data. Evaluation generates a relevant performance metric, such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on the corresponding- MLModelType:- BINARY,- REGRESSIONor- MULTICLASS.- CreateEvaluationis an asynchronous operation. In response to- CreateEvaluation, Amazon Machine Learning (Amazon ML) immediately returns and sets the evaluation status to- PENDING. After the- Evaluationis created and ready for use, Amazon ML sets the status to- COMPLETED.- You can use the - GetEvaluationoperation to check progress of the evaluation during the creation operation.- See also: AWS API Documentation - Request Syntax - response = client.create_evaluation( EvaluationId='string', EvaluationName='string', MLModelId='string', EvaluationDataSourceId='string' ) - Parameters:
- EvaluationId (string) – - [REQUIRED] - A user-supplied ID that uniquely identifies the - Evaluation.
- EvaluationName (string) – A user-supplied name or description of the - Evaluation.
- MLModelId (string) – - [REQUIRED] - The ID of the - MLModelto evaluate.- The schema used in creating the - MLModelmust match the schema of the- DataSourceused in the- Evaluation.
- EvaluationDataSourceId (string) – - [REQUIRED] - The ID of the - DataSourcefor the evaluation. The schema of the- DataSourcemust match the schema used to create the- MLModel.
 
- Return type:
- dict 
- Returns:
- Response Syntax - { 'EvaluationId': 'string' } - Response Structure - (dict) – - Represents the output of a - CreateEvaluationoperation, and is an acknowledgement that Amazon ML received the request.- CreateEvaluationoperation is asynchronous. You can poll for status updates by using the- GetEvcaluationoperation and checking the- Statusparameter.- EvaluationId (string) – - The user-supplied ID that uniquely identifies the - Evaluation. This value should be identical to the value of the- EvaluationIdin the request.
 
 
 - Exceptions - MachineLearning.Client.exceptions.InvalidInputException
- MachineLearning.Client.exceptions.InternalServerException
- MachineLearning.Client.exceptions.IdempotentParameterMismatchException