MachineLearning / Client / create_ml_model
create_ml_model#
- MachineLearning.Client.create_ml_model(**kwargs)#
- Creates a new - MLModelusing the- DataSourceand the recipe as information sources.- An - MLModelis nearly immutable. Users can update only the- MLModelNameand the- ScoreThresholdin an- MLModelwithout creating a new- MLModel.- CreateMLModelis an asynchronous operation. In response to- CreateMLModel, Amazon Machine Learning (Amazon ML) immediately returns and sets the- MLModelstatus to- PENDING. After the- MLModelhas been created and ready is for use, Amazon ML sets the status to- COMPLETED.- You can use the - GetMLModeloperation to check the progress of the- MLModelduring the creation operation.- CreateMLModelrequires a- DataSourcewith computed statistics, which can be created by setting- ComputeStatisticsto- truein- CreateDataSourceFromRDS,- CreateDataSourceFromS3, or- CreateDataSourceFromRedshiftoperations.- See also: AWS API Documentation - Request Syntax - response = client.create_ml_model( MLModelId='string', MLModelName='string', MLModelType='REGRESSION'|'BINARY'|'MULTICLASS', Parameters={ 'string': 'string' }, TrainingDataSourceId='string', Recipe='string', RecipeUri='string' ) - Parameters:
- MLModelId (string) – - [REQUIRED] - A user-supplied ID that uniquely identifies the - MLModel.
- MLModelName (string) – A user-supplied name or description of the - MLModel.
- MLModelType (string) – - [REQUIRED] - The category of supervised learning that this - MLModelwill address. Choose from the following types:- Choose - REGRESSIONif the- MLModelwill be used to predict a numeric value.
- Choose - BINARYif the- MLModelresult has two possible values.
- Choose - MULTICLASSif the- MLModelresult has a limited number of values.
 - For more information, see the Amazon Machine Learning Developer Guide. 
- Parameters (dict) – - A list of the training parameters in the - MLModel. The list is implemented as a map of key-value pairs.- The following is the current set of training parameters: - sgd.maxMLModelSizeInBytes- The maximum allowed size of the model. Depending on the input data, the size of the model might affect its performance. The value is an integer that ranges from- 100000to- 2147483648. The default value is- 33554432.
- sgd.maxPasses- The number of times that the training process traverses the observations to build the- MLModel. The value is an integer that ranges from- 1to- 10000. The default value is- 10.
- sgd.shuffleType- Whether Amazon ML shuffles the training data. Shuffling the data improves a model’s ability to find the optimal solution for a variety of data types. The valid values are- autoand- none. The default value is- none. We strongly recommend that you shuffle your data.
- sgd.l1RegularizationAmount- The coefficient regularization L1 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to zero, resulting in a sparse feature set. If you use this parameter, start by specifying a small value, such as- 1.0E-08. The value is a double that ranges from- 0to- MAX_DOUBLE. The default is to not use L1 normalization. This parameter can’t be used when- L2is specified. Use this parameter sparingly.
- sgd.l2RegularizationAmount- The coefficient regularization L2 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this parameter, start by specifying a small value, such as- 1.0E-08. The value is a double that ranges from- 0to- MAX_DOUBLE. The default is to not use L2 normalization. This parameter can’t be used when- L1is specified. Use this parameter sparingly.
 - (string) – - String type. - (string) – - String type. 
 
 
- TrainingDataSourceId (string) – - [REQUIRED] - The - DataSourcethat points to the training data.
- Recipe (string) – The data recipe for creating the - MLModel. You must specify either the recipe or its URI. If you don’t specify a recipe or its URI, Amazon ML creates a default.
- RecipeUri (string) – The Amazon Simple Storage Service (Amazon S3) location and file name that contains the - MLModelrecipe. You must specify either the recipe or its URI. If you don’t specify a recipe or its URI, Amazon ML creates a default.
 
- Return type:
- dict 
- Returns:
- Response Syntax - { 'MLModelId': 'string' } - Response Structure - (dict) – - Represents the output of a - CreateMLModeloperation, and is an acknowledgement that Amazon ML received the request.- The - CreateMLModeloperation is asynchronous. You can poll for status updates by using the- GetMLModeloperation and checking the- Statusparameter.- MLModelId (string) – - A user-supplied ID that uniquely identifies the - MLModel. This value should be identical to the value of the- MLModelIdin the request.
 
 
 - Exceptions - MachineLearning.Client.exceptions.InvalidInputException
- MachineLearning.Client.exceptions.InternalServerException
- MachineLearning.Client.exceptions.IdempotentParameterMismatchException